Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2520
Title: Ir-Sn-Sb-O Electrocatalyst for Oxygen Evolution Reaction: Physicochemical Characterization and Performance in Water Electrolysis Single Cell with Solid Polymer Electrolyte
Authors: Pérez Viramontes, Nicté
Collins Martínez, Virginia
Escalante García, Ismailia Leilani
Flores Hernández, José
Galván Valencia, Marisol
Durón Torres, Sergio Miguel
Issue Date: May-2020
Publisher: MDPI
Abstract: Mixed oxide Ir-Sn-Sb-O electrocatalyst was synthesized using thermal decomposition from chloride precursors in ethanol. Our previous results showed that Ir-Sn-Sb-O possesses electrocatalytic activity for an oxygen evolution reaction (OER) in acidic media. In the present work, the physicochemical characterization and performance of Ir-Sn-Sb-O in an electrolysis cell are reported. IrO2 supported on antimony doped tin oxide (ATO) was also considered in this study as a reference catalyst. Scanning electron microscopy (SEM) images indicated that Ir-Sn-Sb-O has a mixed morphology with nanometric size. Energy dispersive X-ray spectroscopy (EDS) showed a heterogeneous atomic distribution. Transmission electron microscopy (TEM) analysis resulted in particle sizes of IrO2 and ATO between 3 to >10 nm, while the Ir-Sn-Sb-O catalyst presented non-uniform particle sizes from 3 to 50 nm. X-ray diffraction (XRD) measurements indicated that synthesized mixed oxide consists of IrO2, IrOx, doped SnO2 phases and metallic Ir. The Ir-Sn-Sb-O mixed composition was corroborated by temperature programmed reduction (TPR) measurements. The performance of Ir-Sn-Sb-O in a single cell electrolyser showed better results for hydrogen production than IrO2/ATO using a mechanical mixture. Ir-Sn-Sb-O demonstrated an onset potential for water electrolysis close to 1.45 V on Ir-Sn-Sb-O and a current density near to 260 mA mg−1 at 1.8 V. The results suggest that the mixed oxide Ir-Sn-Sb-O has favorable properties for further applications in water electrolysers.
URI: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2520
ISSN: https://doi.org/10.3390/catal10050524
Other Identifiers: info:eu-repo/semantics/publishedVersion
Appears in Collections:*Documentos Académicos*-- M. en Ciencias y Tecnología Química

Files in This Item:
File Description SizeFormat 
Ir-Sn-Sb-O Electrocatalyst for Oxygen Evolution.pdf4,77 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons