Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2520
Full metadata record
DC FieldValueLanguage
dc.contributor170687es_ES
dc.contributor5505es_ES
dc.coverage.spatialGlobales_ES
dc.creatorPérez Viramontes, Nicté-
dc.creatorCollins Martínez, Virginia-
dc.creatorEscalante García, Ismailia Leilani-
dc.creatorFlores Hernández, José-
dc.creatorGalván Valencia, Marisol-
dc.creatorDurón Torres, Sergio Miguel-
dc.date.accessioned2021-05-26T14:32:22Z-
dc.date.available2021-05-26T14:32:22Z-
dc.date.issued2020-05-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issnhttps://doi.org/10.3390/catal10050524es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2520-
dc.description.abstractMixed oxide Ir-Sn-Sb-O electrocatalyst was synthesized using thermal decomposition from chloride precursors in ethanol. Our previous results showed that Ir-Sn-Sb-O possesses electrocatalytic activity for an oxygen evolution reaction (OER) in acidic media. In the present work, the physicochemical characterization and performance of Ir-Sn-Sb-O in an electrolysis cell are reported. IrO2 supported on antimony doped tin oxide (ATO) was also considered in this study as a reference catalyst. Scanning electron microscopy (SEM) images indicated that Ir-Sn-Sb-O has a mixed morphology with nanometric size. Energy dispersive X-ray spectroscopy (EDS) showed a heterogeneous atomic distribution. Transmission electron microscopy (TEM) analysis resulted in particle sizes of IrO2 and ATO between 3 to >10 nm, while the Ir-Sn-Sb-O catalyst presented non-uniform particle sizes from 3 to 50 nm. X-ray diffraction (XRD) measurements indicated that synthesized mixed oxide consists of IrO2, IrOx, doped SnO2 phases and metallic Ir. The Ir-Sn-Sb-O mixed composition was corroborated by temperature programmed reduction (TPR) measurements. The performance of Ir-Sn-Sb-O in a single cell electrolyser showed better results for hydrogen production than IrO2/ATO using a mechanical mixture. Ir-Sn-Sb-O demonstrated an onset potential for water electrolysis close to 1.45 V on Ir-Sn-Sb-O and a current density near to 260 mA mg−1 at 1.8 V. The results suggest that the mixed oxide Ir-Sn-Sb-O has favorable properties for further applications in water electrolysers.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relationhttps://www.mdpi.com/2073-4344/10/5/524es_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.sourceCatalysts 2020, 10, 524es_ES
dc.subject.classificationBIOLOGIA Y QUIMICA [2]es_ES
dc.subject.otherOER electrocatalystes_ES
dc.subject.otherIr-Sn-Sb-Oes_ES
dc.subject.othersolid polymer electrolyte water electrolyseres_ES
dc.titleIr-Sn-Sb-O Electrocatalyst for Oxygen Evolution Reaction: Physicochemical Characterization and Performance in Water Electrolysis Single Cell with Solid Polymer Electrolytees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias y Tecnología Química

Files in This Item:
File Description SizeFormat 
Ir-Sn-Sb-O Electrocatalyst for Oxygen Evolution.pdf4,77 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons