Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2562
Title: Effect of bi- and trimodal size distribution on the superficial hardness of Al/SiCp composites prepared by pressureless infiltration
Authors: Montoya Davila, Miguel
Pech Canul, Maximo A.
Pech Canul, Martin I.
Issue Date: Jul-2007
Publisher: Elsevier
Abstract: The effect of particle size distribution on the superficial hardness of Al/SiCp composites prepared by pressureless infiltration, as well as on the microhardness and fracture toughness (KIC) of particulate silicon carbide (SiCp) was investigated. Preforms with 0.6 volume fraction of SiC powders (10, 68 and 140 μm) with monomodal, bimodal and trimodal distribution were infiltrated with the alloy Al–15.52 Mg–13.62 Si (wt.%) in argon followed by nitrogen at 1100 °C for 60 min. Results show that density behaves linearly with increase in particle-size-distribution whilst superficial hardness, microhardness and fracture toughness exhibit all a parabolic behavior. Superficial hardness behavior can be explained by the combined effect of work-hardening in the alloy matrix and particle-to-particle impingement. Due to the highly covalent nature of SiC, the parabolic response shown by microhardness and KIC cannot be attributed to a dislocation mechanism as in strain-hardening.
Description: The effect of particle size distribution on the superficial hardness of Al/SiCp composites prepared by pressureless infiltration, as well as on the microhardness and fracture toughness (KIC) of particulate silicon carbide (SiCp) was investigated. Preforms with 0.6 volume fraction of SiC powders (10, 68 and 140 μm) with monomodal, bimodal and trimodal distribution were infiltrated with the alloy Al–15.52 Mg–13.62 Si (wt.%) in argon followed by nitrogen at 1100 °C for 60 min. Results show that density behaves linearly with increase in particle-size-distribution whilst superficial hardness, microhardness and fracture toughness exhibit all a parabolic behavior. Superficial hardness behavior can be explained by the combined effect of work-hardening in the alloy matrix and particle-to-particle impingement. Due to the highly covalent nature of SiC, the parabolic response shown by microhardness and KIC cannot be attributed to a dislocation mechanism as in strain-hardening.
URI: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2562
ISSN: 0032-5910
Other Identifiers: info:eu-repo/semantics/publishedVersion
Appears in Collections:*Documentos Académicos*-- M. en C. e Ing. de los Materiales

Files in This Item:
File Description SizeFormat 
2007_Effect of bi- and trimodal.pdfEffect of bi- and trimodal size distribution on the superficial hardness of Al/SiCp composites prepared by pressureless infiltration1,37 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons