Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1929
Title: A generalized model for indoor location estimation using environmental sound from human activity recognition
Authors: Galván Tejada, Carlos Eric
López Monteagudo, Francisco Eneldo
Alonso González, Omero
Galván Tejada, Jorge Issac
Celaya Padilla, José María
Gamboa Rosales, Hamurabi
Magallanes Quintanar, Rafael
Zanella Calzada, Laura Alejandra
Issue Date: 10-Mar-2018
Publisher: MDPI
Abstract: The indoor location of individuals is a key contextual variable for commercial and assisted location-based services and applications. Commercial centers and medical buildings (eg, hospitals) require location information of their users/patients to offer the services that are needed at the correct moment. Several approaches have been proposed to tackle this problem. In this paper, we present the development of an indoor location system which relies on the human activity recognition approach, using sound as an information source to infer the indoor location based on the contextual information of the activity that is realized at the moment. In this work, we analyze the sound information to estimate the location using the contextual information of the activity. A feature extraction approach to the sound signal is performed to feed a random forest algorithm in order to generate a model to estimate the location of the user. We evaluate the quality of the resulting model in terms of sensitivity and specificity for each location, and we also perform out-of-bag error estimation. Our experiments were carried out in five representative residential homes. Each home had four individual indoor rooms. Eleven activities (brewing coffee, cooking, eggs, taking a shower, etc.) were performed to provide the contextual information. Experimental results show that developing an indoor location system (ILS) that uses contextual information from human activities (identified with data provided from the environmental sound) can achieve an estimation that is 95% correct.
URI: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1929
https://doi.org/10.48779/f2ak-e441
ISSN: 2220-9964
Other Identifiers: info:eu-repo/semantics/publishedVersion
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
ijgi-07-00081-v2.pdf2,15 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.