Por favor, use este identificador para citar o enlazar este ítem: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1886
Título : A Case Study of Speech Recognition in Spanish: from Conventional to Deep Approach
Autor : 31249
Fecha de publicación : oct-2016
Editorial : IEEE
Resumen : The aim of this paper is to exhibit a comparative case study of the conventional speech recognition GMM-HMM (Gaussian mixture model - hidden Markov model) architecture and the recent model based on deep neural networks. During years the GMM approach has controlled the speech recognition tasks, however it has been surpassed with the resurgence of artificial neural networks. To exemplify these acoustic modeling frameworks, a case study has been conducted by using the Kaldi toolkit, employing a personalized speaker-independent mid-vocabulary voice corpus for recognition of digit strings and personal name lists in latin spanish on a connected-words pone dialing task. The speech recognition accuracy obtained in the results shows a better word error rate by using the DNN acoustic modeling. A 20:71% relative improvement is obtained with DNNHMM models (3:33% WER) in respect to the lowest GMM-HMM rate (4:20% WER).
URI : http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1886
Otros identificadores : info:eu-repo/semantics/publishedVersion
Aparece en las colecciones: *Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
64_Becerra_DelaRosa_IEEEANDESCON P1 2016.pdfBecerra_DelaRosa_IEEEANDESCON P1 2016405,7 kBAdobe PDFVisualizar/Abrir

Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons