Por favor, use este identificador para citar o enlazar este ítem: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1727
Título : A comparative case study of neural network training by using frame-level cost functions for automatic speech recognition purposes in Spanish
Autor : 31249
Fecha de publicación : mar-2020
Editorial : Springer
Resumen : Training procedures of a deep neural network are still an area with ample research possibilities and constant improvement either to increase its efficiency or its time performance. One of the lesser-addressed components is its objective function, which is an underlying aspect to consider when there is the necessity to achieve better error rates in the area of automatic speech recognition. The aim of this paper is to present two new variations of the frame-level cost function for training a deep neural network with the purpose of obtaining superior word error rates in speech recognition applied to a case study in Spanish.
URI : http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1727
ISSN : 1380-7501
Otros identificadores : info:eu-repo/semantics/publishedVersion
Aparece en las colecciones: *Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
31_Becerra_DelaRosa MTAP P1 2020.pdfBecerra_DelaRosa MTAP 2020175,61 kBAdobe PDFVisualizar/Abrir

Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons