Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1655
Title: Markov Chain Monte Carlo Posterior Density Approximation for a Groove Dimensioning Purpose
Authors: De la Rosa Vargas, José Ismael
Fleury, Gilles
Osuna, Sonia Esther
Davoust, Marie Eve
Issue Date: Feb-2006
Publisher: Institute of Electrical and Electronics Engineers
Abstract: The purpose of this paper is to present a new approach for measurand uncertainty characterization. The Márkov chain Monte Carlo (MCMC) is applied to measurand probability density function (pdf) estimation, which is considered as an inverse problem. The measurement characterization is driven by the pdf estimation in a nonlinear Gaussian framework with unknown variance and with limited observed data. These techniques are applied to a realistic measurand problem of groove dimensioning using remote field eddy current (RFEC) inspection. The application of resampling methods such as bootstrap and the perfect sampling for convergence diagnostics purposes gives large improvements in the accuracy of the MCMC estimates.
URI: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1655
https://doi.org/10.48779/90q5-gx28
ISSN: 0018- 9456
1557-9662
Other Identifiers: info:eu-repo/semantics/publishedVersion
Appears in Collections:*Documentos Académicos*-- M. en Ciencias del Proc. de la Info.

Files in This Item:
File Description SizeFormat 
3_DelaRosa IEEETIM P1 2006.pdfDelaRosa IEEETIM 2006A398,62 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons