Please use this identifier to cite or link to this item:
http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1655
Title: | Markov Chain Monte Carlo Posterior Density Approximation for a Groove Dimensioning Purpose |
Authors: | De la Rosa Vargas, José Ismael Fleury, Gilles Osuna, Sonia Esther Davoust, Marie Eve |
Issue Date: | Feb-2006 |
Publisher: | Institute of Electrical and Electronics Engineers |
Abstract: | The purpose of this paper is to present a new approach for measurand uncertainty characterization. The Márkov chain Monte Carlo (MCMC) is applied to measurand probability density function (pdf) estimation, which is considered as an inverse problem. The measurement characterization is driven by the pdf estimation in a nonlinear Gaussian framework with unknown variance and with limited observed data. These techniques are applied to a realistic measurand problem of groove dimensioning using remote field eddy current (RFEC) inspection. The application of resampling methods such as bootstrap and the perfect sampling for convergence diagnostics purposes gives large improvements in the accuracy of the MCMC estimates. |
URI: | http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1655 https://doi.org/10.48779/90q5-gx28 |
ISSN: | 0018- 9456 1557-9662 |
Other Identifiers: | info:eu-repo/semantics/publishedVersion |
Appears in Collections: | *Documentos Académicos*-- M. en Ciencias del Proc. de la Info. |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
3_DelaRosa IEEETIM P1 2006.pdf | DelaRosa IEEETIM 2006A | 398,62 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License