Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2554
Full metadata record
DC FieldValueLanguage
dc.contributor164509es_ES
dc.contributor.other0000-0002-0793-192Xes_ES
dc.coverage.spatialGlobales_ES
dc.creatorLugo Granados, Hebert-
dc.creatorCanizalez Dávalos, Lázaro-
dc.creatorPicon Nuñez, Martín-
dc.date.accessioned2021-06-04T16:44:40Z-
dc.date.available2021-06-04T16:44:40Z-
dc.date.issued2020-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issn0958305Xes_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2554-
dc.description.abstractThe aim of this paper is to develop guidelines for the placing of new coolers in cooling systems subject to retrofit. The effects of the accumulation of scale on the flow system are considered. A methodology to assess the interconnected effect of local fluid velocity and fouling deposition is developed. The local average fluid velocity depends on the water flow rate distribution across the piping network. The methodology has four main calculation components: a) the determination of the flow rate distribution across the piping network, b) the prediction of fouling deposition, c) determination of the hydraulic changes and the effect on fouling brought about by the placing of new exchangers into an existing structure, and d) the calculation of the total cooling load and pressure drop of the system. The set of disturbances introduced to the system through fouling and the incorporation of new coolers, create network responses that eventually influence the cooling capacity and the pressure drop. In this work, these interactions are analysed using two case studies. The results indicate that, from the thermal point of view, the incorporation of new heat exchangers is recommended in series. The limit is the point where the increase of the total pressure drop causes a reduction in the overall volumetric flow rate. New coolers added in parallel create a reduction of pressure drop and an increase in the overall water flow rate; however, this increase is not enough to counteract the reduction of fluid velocity and heat capacity removal.es_ES
dc.language.isoenges_ES
dc.publisherSAGEes_ES
dc.relationhttps://journals.sagepub.com/doi/abs/10.1177/0958305X20945312es_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.sourceEnergy & Environment Vol. 0, pp.1-23es_ES
dc.subject.classificationBIOLOGIA Y QUIMICA [2]es_ES
dc.subject.otherScale foulinges_ES
dc.subject.otherwater cooling networkses_ES
dc.subject.otherflow distributiones_ES
dc.subject.otherpumping poweres_ES
dc.subject.otherretrofites_ES
dc.titleComprehensive analysis of the thermohydraulic performance of cooling networks subject to fouling and undergoing retrofit projectses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias y Tecnología Química

Files in This Item:
File Description SizeFormat 
Comprehensive analysis of thethermohydraulic.pdf254,05 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons