Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2530
Full metadata record
DC FieldValueLanguage
dc.contributor84285es_ES
dc.coverage.spatialGlobales_ES
dc.creatorBuelna García, Carlos Emilano-
dc.creatorCabellos, JoséLuis-
dc.creatorQuiroz Castillo, Jesus Manuel-
dc.creatorMartínez Guajardo, Gerardo-
dc.creatorCastillo Quevedo, César-
dc.creatorFlores de León, Aned-
dc.creatorAnzueto Sánchez, Gilberto-
dc.creatorMartín de Campo Solís, Martha Fabiola-
dc.date.accessioned2021-05-27T15:17:04Z-
dc.date.available2021-05-27T15:17:04Z-
dc.date.issued2020-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issn1996-1944es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2530-
dc.description.abstractThe starting point to understanding cluster properties is the putative global minimum and all the nearby local energy minima; however, locating them is computationally expensive and difficult. The relative populations and spectroscopic properties that are a function of temperature can be approximately computed by employing statistical thermodynamics. Here, we investigate entropy-driven isomers distribution on Be6B11− clusters and the effect of temperature on their infrared spectroscopy and relative populations. We identify the vibration modes possessed by the cluster that significantly contribute to the zero-point energy. A couple of steps are considered for computing the temperature-dependent relative population: First, using a genetic algorithm coupled to density functional theory, we performed an extensive and systematic exploration of the potential/free energy surface of Be6B11− clusters to locate the putative global minimum and elucidate the low-energy structures. Second, the relative populations’ temperature effects are determined by considering the thermodynamic properties and Boltzmann factors. The temperature-dependent relative populations show that the entropies and temperature are essential for determining the global minimum. We compute the temperature-dependent total infrared spectra employing the Boltzmann factor weighted sums of each isomer’s infrared spectrum and find that at finite temperature, the total infrared spectrum is composed of an admixture of infrared spectra that corresponds to the lowest energy structure and its isomers located at high energies. The methodology and results describe the thermal effects in the relative population and the infrared spectra.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relationhttps://www.mdpi.com/1996-1944/14/1/112es_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.sourceMaterials Vol. 14, No. 1, pp. 112-145es_ES
dc.subject.classificationBIOLOGIA Y QUIMICA [2]es_ES
dc.subject.otherglobal minimumes_ES
dc.subject.otherinfrared spectrumes_ES
dc.subject.otherboron clusteres_ES
dc.subject.otherfluxionales_ES
dc.subject.otherdensity functional theoryes_ES
dc.subject.othertemperaturees_ES
dc.subject.otherBoltzmann factorses_ES
dc.subject.otherGibbs free energyes_ES
dc.subject.otherentropyes_ES
dc.titleExploration of Free Energy Surface and Thermal Effects on Relative Population and Infrared Spectrum of the Be6B11− Fluxional Clusteres_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
Appears in Collections:*Documentos Académicos*-- M. en Ciencias y Tecnología Química

Files in This Item:
File Description SizeFormat 
Materials 2020, 13, x_.pdf2,08 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons