Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2383
Full metadata record
DC FieldValueLanguage
dc.contributor39645es_ES
dc.contributor39945es_ES
dc.contributor.otherhttps://orcid.org/0000-0003-0087-8991-
dc.coverage.spatialGlobales_ES
dc.creatorGarcía Cervantes, H.-
dc.creatorMadrigal Melchor, J.-
dc.creatorMartínez Orozco, Juan Carlos-
dc.creatorRodríguez Vargas, Isaac-
dc.date.accessioned2021-04-23T18:04:28Z-
dc.date.available2021-04-23T18:04:28Z-
dc.date.issued2015-12-01-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issn0921-4526es_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/2383-
dc.identifier.urihttps://doi.org/10.48779/mr5p-vg60-
dc.description.abstractWe study the transmission, transport and electronic structure properties of aperiodic Fibonacci monolayer graphene-based structures (AFGBSs). The transfer matrix method has been implemented to obtain the transmittance, linear-regime conductance and electronic structure. In particular, we have studied two types of aperiodic graphene-based structures: (1) electrostatic AFGBSs (EAFGBSs), structures formed with electrostatic potentials, and (2) substrate AFGBSs (SAFGBSs), obtained alternating substrates that can open and non-open, such as SiC and SiO2, an energy bandgap on graphene. We have found that the transmission properties can be modulated readily by changing the main parameters of the systems: well and barrier widths, energy and angle of incident electrons and the degree of aperiodicity. In the case of the linear-regime conductance turns out that it diminishes various orders of magnitude increasing the barrier width for SAFGBSs. On the contrary, Klein tunneling sustains the conductance in EAFGBSs. Calculating the electronic structure or miniband-structure formation and its fragmentation we establish a direct connection between the conductance peaks and the opening, closure and degeneration of energy minibands for both EAFGSLs and SAFGSLs.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation10.1016/j.physb.2015.09.009es_ES
dc.relation.ispartofhttps://www.sciencedirect.com/science/article/abs/pii/S0921452615302222es_ES
dc.relation.urigeneralPublices_ES
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.sourcePhysica B: Condensed Matter Vol. 478, No.1, pp. 99-107es_ES
dc.subject.classificationCIENCIAS FISICO MATEMATICAS Y CIENCIAS DE LA TIERRA [1]es_ES
dc.subject.otherFibonacci graphene superlatticeses_ES
dc.subject.otherTransport propertieses_ES
dc.subject.otherElectronic structurees_ES
dc.titleFibonacci quasiregular graphene-based superlattices: Quasiperiodicity and its effects on the transmission, transport and electronic structure propertieses_ES
dc.typearticlees_ES
Appears in Collections:*Documentos Académicos*-- Doc. en Ciencias Básicas

Files in This Item:
File Description SizeFormat 
Fibonacci.pdf87,67 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons