Please use this identifier to cite or link to this item: http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1665
Full metadata record
DC FieldValueLanguage
dc.contributor121858es_ES
dc.contributor.otherhttps://orcid.org/0000-0001-8052-7483-
dc.coverage.spatialGlobales_ES
dc.creatorBurnes Rudecino, Susana-
dc.creatorMartínez León, Lluís-
dc.creatorClemente, Pere-
dc.creatorAraiza Esquivel, María Auxiliadora-
dc.creatorTajahuerce Romera, Enrique-
dc.date.accessioned2020-04-15T17:01:08Z-
dc.date.available2020-04-15T17:01:08Z-
dc.date.issued2019-03-04-
dc.identifierinfo:eu-repo/semantics/publishedVersiones_ES
dc.identifier.issn0277-786Xes_ES
dc.identifier.urihttp://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1665-
dc.identifier.urihttps://doi.org/10.48779/kxc8-s910-
dc.description.abstractSingle-pixel imaging employs structured illumination to record images with very simple light detectors. It can be an alternative to conventional imaging in certain applications such as imaging with radiation in exotic spectral regions, multidimensional imaging, imaging with low light levels, 3D imaging or imaging through scattering media. In most cases, the measurement process is just a basis transformation which depends on the functions used to codify the light patterns. Sampling the object with a different basis of functions allows us to transform the object directly onto a different space. The more common functions used in single-pixel imaging belong to the Hadamard basis or the Fourier basis, although random patterns are also frequently used, particularly in ghost imaging techniques. In this work we compare the performance of different alternative sampling functions for single pixel imaging, all of them codifi ed with a digital micromirror device (DMD). In particular, we analyze the performance of the system with Hadamard, cosine, Fourier and noiselet patterns. Some of these functions are binary, some others real and other complex functions. However, all of them are codifi ed with the same DMD by using different approaches. We perform both numerical and experimental tests with the different sampling functions and we compare the performance in terms of the efficiency and the signal-to-noise ratio (SNR) of the fi nal imageses_ES
dc.language.isoenges_ES
dc.publisherSPIE OPTO, 2019es_ES
dc.relationhttps://www.spiedigitallibrary.org/conference-proceedings-of-spies_ES
dc.relation.ispartofdoi: 10.1117/12.2508600es_ES
dc.relation.urigeneralPublices_ES
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceProc. SPIE 10932, Emerging Digital Micromirror Device Based Systems and Applications XI, 109320D (4 March 2019)Proc. SPIE 10932, Emerging Digital Micromirror Device Based Systems and Applications XI, 109320Des_ES
dc.subject.classificationCIENCIAS FISICO MATEMATICAS Y CIENCIAS DE LA TIERRA [1]es_ES
dc.subject.otherComputational imaging,es_ES
dc.subject.othersingle-pixel imaging,es_ES
dc.subject.otherspatial light modulator,es_ES
dc.subject.otherstructured lightes_ES
dc.titleAlternative sampling functions for single-pixel imaging with a digital micromirror devicees_ES
dc.title.alternativeFunciones de muestreo alternativas para imágenes de un solo píxel con un dispositivo digital de microespejoses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
Appears in Collections:*Documentos Académicos*-- UA Ingeniería Eléctrica

Files in This Item:
File Description SizeFormat 
2019 SPIE-109320D_PWest.pdfArtículo425,21 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons