Repositorio Dspace

Non-conventional graphene superlattices as electron band-pass filters

Mostrar el registro sencillo del ítem

dc.contributor 39945 es_ES
dc.contributor.other https://orcid.org/0000-0003-0087-8991
dc.coverage.spatial Global es_ES
dc.creator Sánchez-Arellano, Arsenio
dc.creator Madrigal Melchor, Jesús
dc.creator Rodríguez Vargas, Isaac
dc.date.accessioned 2020-04-08T19:04:59Z
dc.date.available 2020-04-08T19:04:59Z
dc.date.issued 2019-06-19
dc.identifier info:eu-repo/semantics/publishedVersion es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://ricaxcan.uaz.edu.mx/jspui/handle/20.500.11845/1503
dc.identifier.uri https://doi.org/10.48779/mnp4-0r17
dc.description.abstract Electron transmission through different non-conventional (non-uniform barrier height) gated and gapped graphene superlattices (GSLs) is studied. Linear, Gaussian, Lorentzian and Pöschl-Teller superlattice potential profiles have been assessed. A relativistic description of electrons in graphene as well as the transfer matrix method have been used to obtain the transmission properties. We find that it is not possible to have perfect or nearly perfect pass bands in gated GSLs. Regardless of the potential profile and the number of barriers there are remanent oscillations in the transmission bands. On the contrary, nearly perfect pass bands are obtained for gapped GSLs. The Gaussian profile is the best option when the number of barriers is reduced, and there is practically no difference among the profiles for large number of barriers. We also find that both gated and gapped GSLs can work as omnidirectional band-pass filters. In the case of gated Gaussian GSLs the omnidirectional range goes from −50° to 50° with an energy bandwidth of 55 meV, while for gapped Gaussian GSLs the range goes from −80° to 80° with a bandwidth of 40 meV. Here, it is important that the energy range does not include remanent oscillations. On the light of these results, the hole states inside the barriers of gated GSLs are not beneficial for band-pass filtering. So, the flatness of the pass bands is determined by the superlattice potential profile and the chiral nature of the charge carriers in graphene. Moreover, the width and the number of electron pass bands can be modulated through the superlattice structural parameters. We consider that our findings can be useful to design electron filters based on non-conventional GSLs. es_ES
dc.language.iso eng es_ES
dc.publisher Springer Nature es_ES
dc.relation.uri generalPublic es_ES
dc.rights Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América *
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/us/ *
dc.source Scientific Reports, Vol. 9, Article number: 8759 (2019) es_ES
dc.subject.classification CIENCIAS FISICO MATEMATICAS Y CIENCIAS DE LA TIERRA [1] es_ES
dc.subject.other Non-conventional superlattices es_ES
dc.subject.other monolayer graphene es_ES
dc.subject.other band-pass filters es_ES
dc.title Non-conventional graphene superlattices as electron band-pass filters es_ES
dc.type info:eu-repo/semantics/article es_ES


Ficheros en el ítem

El ítem tiene asociados los siguientes ficheros de licencia:

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta

Estadísticas