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Abstract. We calculate the stellar energy loss due to neutrino-pair production in e+e− annihilation in the
context of a 331 model, a left-right symmetric model and a simplest little Higgs model in a way that can be
used in supernova calculations. We also present some simple estimates which show that such process can
act as an efficient energy loss mechanism in the shocked supernova core. We find that the stellar energy
loss is almost independent of the parameters of the models in the allowed range for these parameters. This
work complements other studies on the stellar energy loss rate in e+e− annihilation.

1 Introduction

Gamow [1,2] and Pontecorvo [3] were the first to recog-
nize the important role played by neutrinos in the evolu-
tion of stars. The neutrino emission processes may affect
the properties of matter at high temperatures, and hence
affect stellar evolution.

On the other hand, when a massive star collapses in
an explosion of a supernova, almost 99% of the energy
released comes out in the form of neutrinos, with only
1–2% coming out as light. Many of these neutrinos have
energies of the order of 10–30MeV. This results in much
more neutrinos being produced in a few seconds that all
those released in the rest of the star life time. These neu-
trinos are produced in all flavors (νe, νµ, ντ ) and about
the same number of particles as antiparticles. Among the
material ejected during the explosion there are heavy ele-
ments that are important for the stellar evolution of galax-
ies, stars, planets and life. Other supernovas can create
neutron stars, remnants or even black holes depending on
the mass of the star. In general, the neutrinos radiated
by the supernovas carry in their spectrum key informa-
tion not only about the detailed nature of the supernova
collapse but also about properties of neutrinos, not yet
explored in the laboratories [4]. This is one reason why it
is important to study the stellar energy loss rates due to
neutrino pair production in e+e− annihilation.

Neutrino emission is known to play an important role
in stellar evolution, especially in the late stages when the
rate of evolution is almost fully dependent on the energy
loss via neutrinos. This refers to the stage of steady burn-
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ing prior to the implosion of the stellar core, to the pro-
cess of catastrophic core-collapse, and to the cooling of
the neutron star which is formed.

The stellar energy loss rate due to neutrino emission re-
ceives contributions from both weak nuclear reactions and
purely leptonic processes. However, for the large values of
density and temperature which characterize the final stage
of stellar evolution, the latter are largely dominant, and
are mainly produced by four possible interaction mecha-
nisms [5–10]:

e+ + e− → ν + ν̄ (pair annihilation), (1)

γ + e± → e± + ν + ν̄ (ν-photoproduction), (2)

γ∗ → ν + ν̄ (plasmon decay), (3)

e± + Z → e± + Z + ν + ν̄ (bremsstrahlung on nuclei).

(4)

Actually these processes are the dominant cause of
the energy loss rate in different regions in a density-
temperature plane. For very large core temperature, T ≥
109 K, and not excessively high values of density, pair anni-
hilations are most efficient, while ν photoproduction gives
the leading contribution for 108 K ≤ T ≤ 109 K and rela-
tively low density, ρ ≤ 105 g cm−3. These are the typical
ranges for very massive stars in their late evolution [5–8].

The Standard Model (SM) [11–13] of the electroweak
interactions is the starting point of all the extended gauge
models. In other words, any gauge group with physical
sense must have as a subgroup the SU(2)L×U(1)Y group
of the standard model. The purpose of the extended the-
ories is to explain some fundamental aspects which are
not clarified in the frame of the SM. One of these as-
pects is the origin of parity violation at current energies.
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The left-right symmetric models (LRSM) based on the
SU(2)R × SU(2)L × U(1)Y gauge group [14–18] give an
answer to that problem, since they restore the parity sym-
metry at high energies and give their violations at low en-
ergies as a result of the breaking of gauge symmetry. De-
tailed discussions on the left-right symmetric model can
be found in the literature [14–19].

The SU(3)C × SU(3)L × U(1)X model [20,21], also
called 331 model is one of the most simplest and attrac-
tive extensions of the SM. In the literature [22–32] there
are different versions of this model which are characterized
by the parameter ß = ±

√
3 and ß = ± 1√

3
. The different

models with different choices of ß have new particles with
different electric charges. However, in general these mod-
els have the same characteristics, that is to say: 1) Unlike
in the SM where anomaly cancellation is fulfilled within
each generation, the gauge anomaly is cancelled in the 331
model when considering all the generations. The number
of generations N must be a multiple of three. On the other
hand, in order to ensure QCD an asymptotic free theory,
N has to be smaller than six. So the number of gener-
ations N is equal to three, which explains why the SM
has three generations. 2) One of the three quark genera-
tions is different from the other two, making sure that the
anomaly is free, which leads to tree-level Flavour Chang-
ing Neutral Current (FCNC) through a new neutral gauge
boson Z ′ or the mixing Z − Z ′. 3) Peccei-Quinn (PQ)
symmetry [33] which can solve the strong CP problem is
a natural result of gauge invariance in the 331 model [22,
23]. 4) As a consequence of the extended gauge sector, the
331 model contains a much broader spectrum of particles
than the SM: more heavy quarks or leptons, more gauge
bosons and more Higgs scalars. This may change the SM
phenomenology significantly and lead to interesting sig-
natures at the current and future colliders such as the
Large Hadron Collider (LHC) [34–36], International Lin-
ear Collider (ILC) [37–42] and the Compact Linear Col-
lider (CLIC) [43–45].

The existence of a heavy neutral (Z ′) vector boson is
a feature of many extensions of the standard model. In
particular, one (or more) additional U(1)′ gauge factor
provides one of the simplest extensions of the SM. Ad-
ditional Z ′ gauge bosons appear in Grand Unified The-
ories (GUTs) [46], Superstring Theories [47], Left-Right
Symmetric Models (LRSM) [15,48,49] 331 model [20,21]
and in other models such as models of composite gauge
bosons [50]. In particular, it is possible to study some phe-
nomenological features associates with this extra neutral
gauge boson through the little Higgs model. Many little
Higgs models have been proposed in the literature; how-
ever the Littlest Higgs model (LH) proposed by Arkani-
Hamed et al. [51,52], provides one of the most economical
implementations and forms the basis for most phenomeno-
logical analysis. The LH model [51,52] has been proposed
for solving the little hierarchy problem. In this scenario,
the Higgs boson is regarded as a pseudo Nambu-Goldstone
boson associated with a global symmetry at some higher
scale. Though the symmetry is not exact, its breaking is
specially arranged to cancel quadratically divergent cor-

rections to the Higgs mass term at 1-loop level. This is
called the little Higgs mechanism. As a result, the scale
of new physics can be as high as 10TeV without a fine-
tuning on the Higgs mass term. Among various little Higgs
models, the simplest little Higgs model (SLH) [53–55] is
attractive due to its relatively simple theory structure. De-
tailed discussions on the little Higgs models are reported
in the literature [51–64].

Our main objective in this work is to provide suitable
expressions for the stellar energy loss rates of pair pro-
duction of neutrinos via the process e+e− → νν̄ in the
context of three models, a 331 Model (331M) [31], a Left-
Right Symmetric Model (LRSM) [14–18,65,66] and the
Simplest Little Higgs Model (SLHM) [55,67]. These will
be expressed in a form which can be easily incorporated
into realistic supernova models. These models have the in-
teresting feature that they are independent of the mass of
the new additional Z ′ heavy gauge boson, and only depend
on the mixing angles θ and φ of the 331M and LRSM and
of the characteristic energy scale f of the SLHM besides
the SM parameters. For this reason, we chose these mod-
els to calculate the stellar energy loss rates of neutrinos in
a supernova.

The neutrinos play a crucial role for the understanding
of a core-collapse supernova in terms of heating and cool-
ing of supernova matter as well as for the incompletely
known supernova explosion mechanism [68–70]. The long-
term neutrino signal of the deleptonizing/cooling nascent
protoneutron star, which is to say after the supernova
explosion has been launched, was reviewed in refs. [71–
74]. Both studies are milestones of consistent simulations
of supernova explosions and represent standard works in
the field of core-collapse supernova modeling. The associ-
ated long-term neutrino signal ∼ 10–30 seconds is relevant
for supernova neutrino detection, for recent insights see
ref. [75]. Detailed analyses regarding the neutrino spectra
formation and evolution including the neutrino-energy hi-
erarchy can be found in the literature [76–78].

Stellar energy loss rates data have been used to put
constraints on the properties and interaction of light par-
ticles [6,9,79,10]. In addition, one of the most interest-
ing possibilities to use stars as particle physics laborato-
ries [80] is to study the backreaction of the novel energy
loss rates implied by the existence of new low-mass par-
ticles such as axions [81,82], or by non-standard neutrino
properties such as magnetic moment and electric dipole
moment [83–86].

This paper is organized as follows: in sect. 2 we present
the calculation of the stellar energy loss rates of the pro-
cess e+e− → νν̄ for our three models. In sect. 3 we give
our results and conclusions.

2 Stellar energy loss rates beyond the

standard model
2.1 Stellar energy loss rates through e++e−

→ν+ν̄

in a 331 model

In the context of this model we obtain the energy loss
rates through the pair-annihilation process

e+(p1) + e−(p2) → ν̄(k1, λ1) + ν(k2, λ2), (5)
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with Z exchange, which is to say, in the limit of a four-
fermion electroweak interaction no electromagnetic radia-
tive corrections. Here the ki and pi are the particle mo-
menta and λ is the helicity of the neutrino.

The amplitude of transition for the process given in
eq. (5) is

M=− g2ab

M2
Z cos2 θW

[

ū (k2, λ2) γµ 1

2
(gν

V − gν
Aγ5) v (k1, λ1)

]

×
[

v̄ (p1) γµ
1

2
(ge

V − ge
Aγ5) u (p2)

]

, (6)

where the constants a and b depend only on the parame-
ters of the 331M [31]

a = cos θ − sin θ
√

3 − 4 sin2 θW

,

b = cos θ +
(1 − 2 sin2 θW )
√

3 − 4 sin2 θW

sin θ, (7)

and where θ is the mixing angle between Z − Z ′ of the
SM and the 331M [31], g is the coupling constant and
it related to the Fermi constant GF through the relation

GF =
√

2g2

8M2
W

= 1.1663787(6) × 10−5 GeV−2 [87], with MW

the mass of the charged (W±) vector boson, u and v are
the usual Dirac spinors. We then write

∑

s

|M|2 =
G2

F

2
a2b2N µνEµν , (8)

where

N µν =
1

4
Tr[(/k2 + mν)γµ(gν

V − gν
Aγ5)(/k1 − mν)γν

×(gν
V − gν

Aγ5)], (9)

Eµν =
1

4
Tr[(/p2

+ me)γµ(ge
V − ge

Aγ5)(/p1
− me)γν

×(ge
V − ge

Aγ5)], (10)

here mν and me are the neutrino and electron mass, re-
spectively.

We now evaluate the traces given in eqs. (9) and (10)
and the contraction of N µνEµν gives

NµνEµν = 16
{

(ge
V + ge

A)2(p1 · k1)(p2 · k2)

+(ge
V − ge

A)2(p1 · k2)(p2 · k1)

+
[

(ge
V )2 − (ge

A)2
]

m2
e(k1 · k2)

}

, (11)

where ge
V = − 1

2 + 2 sin2 θW and ge
A = − 1

2 .
From eqs. (8) and (11) the explicit form for the squared

transition amplitude is

∑

s

|M|2 = 8G2
F a2b2

{

(ge
V + ge

A)2(p1 · k1)(p2 · k2)

+(ge
V − ge

A)2(p1 · k2)(p2 · k1)

+
[

(ge
V )2 − (ge

A)2
]

m2
e(k1 · k2)

}

. (12)

In the decoupling limit, when the mixing angle θ = 0
and a = b = 1, eq. (12) is thus reduced to the expression
of the amplitude given in refs. [88–92,6,79].

The stellar energy loss in the pair-annihilation process
e++e− → ν+ ν̄ is obtained by using eq. (12). The formula
of the stellar energy loss is given by [88–90,92,93]

Qνν̄ =
4

(2π)8

∫

d3p1

2E1

d3p2

2E2

d3k1

2ǫ1

d3k2

2ǫ2
(E1 + E2)

×F1F2δ
(4)(p1 + p2 − k1 − k2)|M|2, (13)

where the quantities F1,2 = [1+exp(Ee− ±μe−)/T ]−1 are
the Fermi-Dirac distribution functions for e±, μe is the
chemical potential for the electrons and T is the temper-
ature (we take KB = 1 for the Boltzmann constant).

From the transition amplitude eq. (12) and the formula
of the stellar energy loss eq. (13) we obtain

Q
[1]
νν̄ = 8G2

F a2b2 (ge
V + ge

A)
2
I1, (14)

where I1 is explicitly given by

I1 =
4

(2π)8

∫

d3p1

2E1

d3p2

2E2

d3k1

2ǫ1

d3k2

2ǫ2
(E1 + E2)

×F1F2δ
(4)(p1 + p2 − k1 − k2)(p1 · k1)(p2 · k2). (15)

The integration can be performed by using the Lenard
formula, namely [93]

∫

d3k1

2ǫ1

d3k2

2ǫ2
kα
1 kβ

2 δ(4)(p1 + p2 − k1 − k2) =

π

24

[

gαβ(p1 + p2)
2 + 2(pα

1 + pα
2 )(pβ

1 + pβ
2 )

]

×Θ
[

(p1 + p2)
2
]

, (16)

thus eq. (15) takes the form

I1 =
1

24(2π)7

∫

d3p1

E1

d3p2

E2
(E1 + E2)F1F2

×
[

3m2
e(p1 · p2) + 2(p1 · p2)

2 + m4
e

]

. (17)

Similarly for the second and third term of eq. (12), we
obtain

Q
[2]
νν̄ = 8G2

F a2b2 (ge
V − ge

A)
2
I2, (18)

Q
[3]
νν̄ = 8G2

F a2b2
[

(ge
V )2 − (ge

A)2
]

m2
eI3, (19)

where

I2 = I1 =
1

24(2π)7

∫

d3p1

E1

d3p2

E2
(E1 + E2)F1F2

×
[

3m2
e(p1 · p2) + 2(p1 · p2)

2 + m4
e

]

, (20)

I3 =
1

4(2π)7

∫

d3p1

E1

d3p2

E2
(E1 + E2)F1F2

×
[

(p1 · p2) + m2
e

]

. (21)
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The calculation of the stellar energy loss rate can be
more easily performed by expressing the latest integrals
in terms of the Fermi integral, which is defined as [92]

G±
s (α, β, x) =

1

α3+2s

∫ ∞

α

x2s+1

√
x2 − α2

1 + ex±β
dx, (22)

where α = me

KT , β = µe

KT and x = E
KT .

With these definitions, eq. (22) becomes

G±
s =

1

m3+2s
e

∫ ∞

me/KT

E2s+1

√

E2 − m2
e

1 + e(E±µe)/KT
dE, (23)

therefore

∫ ∞

me/KT

En

√

E2 − m2
e

1 + e(E±µe)/KT
dE = mn+2

e G±
n−1

2

, (24)

∫ ∞

me/KT

En+1

√

E2 − m2
e

1 + e(E±µe)/KT
dE = mn+3

e G±
n

2

, (25)

∫ ∞

me/KT

En+2

√

E2 − m2
e

1 + e(E±µe)/KT
dE = mn+4

e G±
n+1

2

. (26)

From (24)–(26), eqs. (17), (20) and (21) are expressed
as

Inm
1 = Inm

2 =
mn+m+8

e

6(2π)5

[

3G−
n

2

G+
m

2

+ 2G−
n+1

2

G+
m+1

2

+G−
n−1

2

G+
m−1

2

+
4

9

(

G−
n+1

2

− G−
n−1

2

)

×
(

G+
m+1

2

− G+
m−1

2

)]

, (27)

Inm
3 =

mn+m+6
e

(2π)5

[

G−
n−1

2

G+
m−1

2

+ G−
n

2

G+
m

2

]

. (28)

Therefore, eqs. (14), (18) and (19) are explicitly

Q
[1]
νν̄ = 8G2

F a2b2 [ge
V + ge

A]
2 [

I10
1 + I01

1

]

, (29)

Q
[2]
νν̄ = 8G2

F a2b2 [ge
V − ge

A]
2 [

I10
2 + I01

2

]

, (30)

Q
[3]
νν̄ = 8G2

F

[

(ge
V )

2 − (ge
A)

2
]

m2
e

[

I10
3 + I01

3

]

. (31)

Finally, the expression for the stellar energy loss of
neutrino pair production is given by

Q331
νν̄ (θ, β) = Q

[1]
νν̄(θ, β) + Q

[2]
νν̄(θ, β) + Q

[3]
νν̄(θ, β); (32)

this is an exact result for all values of the α and β, i.e.,
whether or not the electrons are degenerate or relativistic.

We emphasise that the dependence of the mixing angle
θ between Z − Z ′ of the SM and the 331M is contained
in the constants a and b, while the dependence of the β
degeneration parameter is contained in the Fermi integrals
G±

s (α, β, x), respectively.
It is noteworthy that the Fermi integrals G±

s (α, β, x)
given in eq. (22) cannot be solved analytically for all α and
β, i.e., we cannot find an analytic expression for Q331

νν̄ (θ, β)
which holds for all values of temperature T and chemical

potential μe. However, with the purpose of comparing our
new contribution with the standard result, we will eval-
uate eq. (32) in various limits regions of α = me

KT and
β = µe

KT . In addition, to see the effects of θ, the free pa-
rameter of the 331M, as well as the deviation of the stellar
energy loss rate in our model from the standard one, we
define the relative correction

δQ

QSM
νν̄

=
Q331

νν̄ (θ, β) − QSM
νν̄ (β)

QSM
νν̄ (β)

, (33)

as a function of θ and β. Having done this we obtain the
relative correction as follows.

Region I : This nonrelativistic and nondegenerate case
(1 ≪ α, β ≪ α) is characterized by temperatures between
3× 108 ≤ T ≤ 3× 109 K and density ρ ≤ 105 g/cm3, with
higher densities requiring higher temperatures.

For the Fermi integrals given in eq. (22) we make the
variable change z = x − α. Therefore,

x = z + α,

x2 − α2 = z2 + 2zα,

dx = dz, (34)

and for this new variable, the integration limits change
from 0 to ∞. Thus

G±
n =

√
2α−3/2

∫ ∞

0

(α−1z + 1)2n+1z1/2(1 + α−1z
2 )1/2

1 + ez+α±β
dz,

(35)
and applying the approximation β ≪ α, we get

G±
n =

√
2
α−3/2

eα±β

∫ ∞

0

(α−1z + 1)2n+1

×z1/2

(

1 +
α−1z

2

)1/2

e−zdz. (36)

Now, applying the condition 1 ≪ α, we see that for
large z, we always can find a α−1 such that 0 < 1 ≪ α,
and z ≪ α. Therefore,

G±
n =

√
2α−3/2e−α∓β

∫ ∞

0

[1 + (2n + 1)α−1z]

×z1/2

(

1 +
α−1z

4

)

e−zdz, (37)

from which the quadratic terms can be neglected to give
us

G±
n =

√
2α−3/2e−αe∓β

∫ ∞

0

[

1+

(

2n+
5

4

)

α−1z

]

z1/2e−zdz,

=
√

2α−3/2e−αe∓β

[
∫ ∞

0

z1/2e−zdz

+

(

2n +
5

4

)

α−1

∫ ∞

0

z3/2e−zdz

]

,

=
√

2α−3/2e−αe∓β

[

Γ (3/2)+

(

2n+
5

4

)

α−1Γ (5/2)

]

;

(38)
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finally, we obtain

G±
n =

√

π

2
α−3/2e−αe∓β

[

1 +
3

2

(

2n +
5

4

)

α−1

]

. (39)

So, a first approximation is given by

G±
0 =

√

π

2
α−3/2e−αe∓β

(

1 +
15

8
α−1

)

. (40)

Now, taking into account the sign, the condition 1 ≪
α, and the first order of result (40), we get

G±
n ≈ G±

0 =

√

π

2
α−3/2e−αe∓β . (41)

With these approximations and after of a direct calcu-
lation we get the relative correction for the region I

δQI

QSM
I

=
a2b2[(ge

V )2 + (ge
A)2] − [(ge

V )2 + (ge
A)2]

[(ge
V )2 + (ge

A)2]
. (42)

Region II : For the nonrelativistic and mildly degenerate
case (1 ≪ α, α ≪ β ≪ 2α), the temperature T < 108 K.

In this case, it holds that G−
0 ≫ G+

0 and G−
n ≈ G−

0 ,
so that the result for G±

n given by eq. (41) remains valid,
and we obtain

δQII

QSM
II

=
a2b2[(ge

V )2 + (ge
A)2] − [(ge

V )2 + (ge
A)2]

[(ge
V )2 + (ge

A)2]
. (43)

Region III : Relativistic and degenerate case (1 ≪ α, β ≫
α), valid for temperatures T > 6 × 107 K and densities
ρ > 107 g/cm3.

From the condition 1 ≪ α, the following is obtained:

G+
n ≈ G+

0 =

√

π

2
α−3/2e−αe−β , (44)

and from the condition β ≫ α it holds that G−
n ≫ G+

n .
In addition, considering the Fermi integral G−

n and us-
ing the condition β ≫ α,

G−
n (α, β, x) =

1

α3+2n

∫ ∞

α

x2n+1

√
x2 − α2

1 + ex±β
dx,

≈ 1

α3+2n

∫ ∞

α

x2n+1
√

x2 − α2dx, (45)

integrating by parts repeatedly and using the condition
β ≫ α, one can show that

G−
n ≈ 3

2n + 3
(α−1β)2nG−

0 . (46)

In this case the relative correction is given by

δQIII

QSM
III

=
a2b2[(ge

V )2 + (ge
A)2] − [(ge

V )2 + (ge
A)2]

[(ge
V )2 + (ge

A)2]
. (47)

Region IV : The relativistic and nondegenerate case (α ≪
1, β ≪ 1) is for densities ρ > 107 g/cm3.

In this case, the Fermi integrals can be approximated
as

G−
n ≈ 1

α3+2n

∫ ∞

α

x2n+2

1 + ex±β
dx, (48)

using

x2n+2

1 + ex±β
= x2n+2

∞
∑

k=0

(−1)kek(x±β),

and applying the condition β ≪ 1, the Fermi integrals are

∫ ∞

α

x2n+2

1 + ex±β
dx =

∞
∑

k=0

∫ ∞

α

ekxx2n+2dx. (49)

After integrating it follows that

G±
n ≈ 1

α3+2n
Γ (2n + 3)η(2n + 3), (50)

where Γ (2n + 3) is the gamma function, while η(2n + 3)
is defined by

η(2n + 3) =

∞
∑

0

(−1)k+1

k2n+3
. (51)

Therefore, in this case we obtain

δQIV

QSM
IV

=
a2b2[(ge

V )2 + (ge
A)2] − [(ge

V )2 + (ge
A)2]

[(ge
V )2 + (ge

A)2]
. (52)

Region V : For the relativistic and degenerate case (α ≪ 1,
β ≫ 1), the restriction is for temperatures and densities
T = 1010 K and ρ > 108 g/cm3.

From the condition α ≪ 1, the Fermi integral G+
n can

be approximated as

G+
n ≈ 1

α3+2n

∫ ∞

α

x2n+2

1 + ex+β
dx, (53)

and from the condition β ≫ 1 we obtain

G+
n ≈ 1

α3+2n

∫ ∞

α

x2n+2

ex+β
dx,

=
1

α3+2n
e−βΓ (2n + 3), (54)

=
1

α3+2n
e−β(2n + 2)!.

In addition, we have

G−
n ≈ (α−1β)2n+3

2n + 3
, (55)

and

G−
0 ≈ (α−1β)3

3
, (56)

therefore,

G−
n ≈ (3α−1β)2n

2n + 3
G−

0 . (57)
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In this case the relative correction is given by

δQV

QSM
V

=
a2b2[(ge

V )2 + (ge
A)2] − [(ge

V )2 + (ge
A)2]

[(ge
V )2 + (ge

A)2]
. (58)

In general, the relative correction for the stellar energy
loss rate for the different regions I–V is given by

δQI–V

QSM
I–V

=
a2b2[(ge

V )2 + (ge
A)2] − [(ge

V )2 + (ge
A)2]

[(ge
V )2 + (ge

A)2]
. (59)

2.2 Stellar energy loss rates through e++e−

→ν+ν̄

in a left-right symmetric model

Another potentially interesting model is the LRSM [14–
18,65,66]. In the context of this model, the amplitude of
transition for the process (5) is given by

M =
g2

2M2
Z

[

ū (k2, λ2) γµ 1

2
(a′gν

V − b′gν
Aγ5) v (k1, λ1)

]

×
[

v̄ (p1) γµ
1

2
(a′ge

V − b′ge
Aγ5) u (p2)

]

, (60)

where the constants a′ and b′ depend only on the param-
eters of the LRSM [94]

a′=cos φ − sin φ√
cos 2θW

and b′=cos φ +
√

cos 2θW sin φ,

(61)
and φ is the mixing angle Z − Z ′ of the LRSM.

The explicit form for the squared transition amplitude
is

∑

s

|M|2 = 4G2
F (a′2 + b′2)

{[

a′2(ge
V )2 + b′2(ge

A)

+4
a′2b′2

(a′2 + b′2)
ge

V ge
A

]

(p1 · k1)(p2 · k2)

+

[

a′2(ge
V )2 + b′2(ge

A) − 4
a′2b′2

(a′2 + b′2)
ge

V ge
A

]

×(p1 · k2)(p2 · k1) +
[

a′2(ge
V )2 − b′2(ge

A)
]

×m2
e(k1 · k2)

}

. (62)

In the decoupling limit when the mixing angle φ = 0
and a′ = b′ = 1, eq. (62) is thus reduced to the expression
to the amplitude given in the literature [88–92,6,79].

To derive the expression for the stellar energy loss
rates, we follow the methodology as in subsect. 2.1 and
make the respective changes to get

QLRSM
νν̄ (φ, β) = Q

[1]
νν̄ (φ, β) + Q

[2]
νν̄ (φ, β) + Q

[3]
νν̄ (φ, β) ,

(63)

with

Q
[1]
νν̄ = 4G2

F (a′2 + b′2)

[

a′2 (ge
V )

2
+ b′2 (ge

A)
2

+
4a′2b′2

a′2 + b′2
ge

V ge
A

]

[

I10
1 + I01

1

]

, (64)

Q
[2]
νν̄ = 4G2

F (a′2 + b′2)

[

a′2 (ge
V )

2
+ b′2 (ge

A)
2

− 4a′2b′2

a′2 + b′2
ge

V ge
A

]

[

I10
2 + I01

2

]

, (65)

Q
[3]
νν̄ = 4G2

F (a′2 + b′2)
[

a′2 (ge
V )

2 − b′2 (ge
A)

2
]

×m2
e

[

I10
3 + I01

3

]

, (66)

where the dependence of the β degeneration parameter is
contained in the Fermi integrals G±

s (α, β, x).
As mentioned in subsect. 2.1, Fermi integrals

G±
s (α, β, x) which are given by eq. (22) cannot be solved

analytically, but only for certain limit cases of the tem-
perature T and chemical potential. For this reason, we
consider the following approximations.

Region I : The nonrelativistic and nondegenerate case
(1 ≪ α, β ≪ α) is characterized by temperatures between
3 × 108 ≤ T ≤ 3 × 109 K and density ρ ≤ 105 g/cm3.
Higher densities require higher temperatures, thus we get

δQI

QSM
I

=
a′2(a′2 + b′2)(ge

V )2 − 2(ge
V )2

2(ge
V )2

. (67)

Region II : In the nonrelativistic and mildly degenerate
case (1 ≪ α, α ≪ β ≪ 2α) and T < 108 K we obtain

δQII

QSM
II

=
a′2(a′2 + b′2)(ge

V )2 − 2(ge
V )2

2(ge
V )2

. (68)

Region III : The relativistic and degenerate case (1 ≪ α,
β ≫ α), with temperatures and densities of T > 6×107 K
and ρ > 107 g/cm3. The relative correction is given by

δQIII

QSM
III

=
(a′2 + b′2)[a′2(ge

V )2 + b′2(ge
A)2]

2[(ge
V )2 + (ge

A)2]
− 1. (69)

Region IV : For the relativistic and nondegenerate case
(α ≪ 1, β ≪ 1) with densities ρ > 107 g/cm3. In this case
the relative correction is

δQIV

QSM
IV

=
(a′2 + b′2)[a′2(ge

V )2 + b′2(ge
A)2]

2[(ge
V )2 + (ge

A)2]
− 1. (70)

Region V : In the relativistic and degenerate case (α ≪ 1,
β ≫ 1), the restriction is for temperatures T = 1010 K
and densities ρ > 108 g/cm3 obtaining

δQV

QSM
V

=
(a′2 + b′2)[a′2(ge

V )2 + b′2(ge
A)2]

2[(ge
V )2 + (ge

A)2]
− 1. (71)
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Finally, we summarize the relative correction as fol-
lows:

δQI–II

QSM
I–II

=
a′2(a′2 + b′2)(ge

V )2 − 2(ge
V )2

2(ge
V )2

, (72)

and

δQIII–V

QSM
III–V

=
(a′2 + b′2)[a′2(ge

V )2 + b′2(ge
A)2]

2[(ge
V )2 + (ge

A)2]
− 1. (73)

2.3 Stellar energy loss rates through e++e−

→ν+ν̄

in a simplest little Higgs model

In this subsection we calculate the stellar energy loss rate
through the reaction e+e− → νν̄ using the neutral current
Lagrangian given in eq. (20) of ref. [22] for the SLHM.
An interesting characteristic of this model is that it is
independent of the mass of the additional ZH heavy gauge
boson and so we have the characteristic energy scale of the
model f as the only additional parameter. The respective
transition amplitude is given by

M =
g2

M2
Z cos2 θW

[

ū (k2, λ2) γµ 1

2
(gν

V − gν
Aγ5) v (k1, λ1)

]

×
[

v̄ (p1) γµ
1

2
(ge

V − ge
Aγ5) u (p2)

]

, (74)

where explicitly the coupling constants ge
V (gν

V ) and ge
A(gν

A)
which contain the characteristic energy scale f of the
SLHM are

ge
V = −

(

1

2
− 2 sin2 θW

)(

1 −
(

1 − 4 cos2 θW

8 cos4 θW

)

v2

f2

)

,

ge
A = −1

2
+

(

1 − 4 cos2 θW

16 cos4 θW

)

v2

f2
,

gν
V =

1

2
−

(

1 − 4 cos2 θW

16 cos4 θW

)

v2

f2
, (75)

gν
A =

1

2
+

(

1 − 4 cos2 θW

16 cos4 θW

)

v2

f2
.

After making the corresponding algebra, the explicit
expression for the square of the transition amplitude is

∑

s

|M|2 = 64G2
F

[

(gν
V )2 + (gν

A)2
]

{[

(ge
V )2 + (ge

A)2

+
4gν

V gν
Age

V ge
A

((gν
V )2 + (gν

A)2)

]

(p1 · k1)(p2 · k2)

+

[

(ge
V )2 + (ge

A)2 − 4gν
V gν

Age
V ge

A

((gν
V )2 + (gν

A)2)

]

×(p1 · k2)(p2 · k1) +
[

(ge
V )2 − (ge

A)2
]

×m2
e(k1 · k2)

}

. (76)

The stellar energy loss rates through e+ + e− → ν + ν̄
in a SLHM is given by

QSLHM
νν̄ (f, β) = Q

[1]
νν̄ (f, β)+Q

[2]
νν̄ (f, β)+Q

[3]
νν̄ (f, β) , (77)

where

Q
[1]
νν̄ = 16G2

F

[

(gν
V )2 + (gν

A)2
]

[

(ge
V )2 + (ge

A)2

+
4gν

V gν
Age

V ge
A

((gν
V )2 + (gν

A)2)

]

[

I10
1 + I01

1

]

, (78)

Q
[2]
νν̄ = 16G2

F

[

(gν
V )2 + (gν

A)2
]

[

(ge
V )2 + (ge

A)2

− 4gν
V gν

Age
V ge

A

((gν
V )2 + (gν

A)2)

]

[

I10
2 + I01

2

]

, (79)

Q
[3]
νν̄ = 16G2

F

[

(gν
V )2 + (gν

A)2
] [

(ge
V )2 − (ge

A)2
]

×m2
e

[

I10
3 + I01

3

]

. (80)

To study the effects of the scale of energy f , which
is the free parameter of the SLHM with respect to the
standard result, we consider different limiting cases for
α = me

KT and β = µe

KT . For this, we consider the relative
correction which is defined as in eq. (33). The following
cases are considered.

Region I : In the nonrelativistic and nondegenerate case
(1 ≪ α, β ≪ α) characterized by temperatures between
3 × 108 ≤ T ≤ 3 × 109 K and density ρ ≤ 105 g/cm3, we
get

δQI

QSM
I

=
2(ge

V )2[(gν
V )2 + (gν

A)2] − (geSM
V )2

(geSM
V )2

, (81)

where the parameter of scale f of the SLHM is contained
in the constants ge

V (gν
V ) and ge

A(gν
A) defined in eq. (76).

Region II : The nonrelativistic and mildly degenerate case
(1 ≪ α, α ≪ β ≪ 2α) is for T < 108 K. In this case, the
relative correction is

δQII

QSM
II

=
2(ge

V )2[(gν
V )2 + (gν

A)2] − (geSM
V )2

(geSM
V )2

. (82)

Region III : Relativistic and degenerate case (1 ≪ α, β ≫
α), this region is for temperatures T > 6 × 107 K and
densities ρ > 107 g/cm3. The relative correction is given
by

δQIII

QSM
III

=
2[(gν

V )2 + (gν
A)2][(ge

V )2 + (ge
A)2]

[(geSM
V )2 + (geSM

A )2]
− 1. (83)

Region IV : The relativistic and nondegenerate case (α ≪
1, β ≪ 1) is for densities ρ > 107 g/cm3 and the corre-
sponding expression for the relative correction is

δQIV

QSM
IV

=
2[(gν

V )2 + (gν
A)2][(ge

V )2 + (ge
A)2]

[(geSM
V )2 + (geSM

A )2]
− 1. (84)

Region V : The relativistic and degenerate case (α ≪ 1,
β ≫ 1) is restricted at temperatures T = 1010 K and
densities ρ > 108 g/cm3 obtaining

δQV

QSM
V

=
2[(gν

V )2 + (gν
A)2][(ge

V )2 + (ge
A)2]

[(geSM
V )2 + (geSM

A )2]
− 1. (85)
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Table 1. Physical constants [87].

Quantity Value

Electron mass me = 0.510998928 ± 0.000000011 MeV

Gauge boson mass MZ = 91.1876 ± 0.0021 GeV

Fermi constant GF = 1.1663787(6) × 10−5 GeV−2

Weak mixing angle sin2 θW = 0.23149 ± 0.00016

Expectation value v = 246 GeV
of the vacuum

In summary, the relative correction for the stellar en-
ergy loss rates for the regions I and II is given by

δQI–II

QSM
I–II

=
2(ge

V )2[(gν
V )2 + (gν

A)2] − (geSM
V )2

(geSM
V )2

, (86)

while in the case of the regions III–V we obtain

δQIII–V

QSM
III–V

=
2[(gν

V )2 + (gν
A)2][(ge

V )2 + (ge
A)2]

[(geSM
V )2 + (geSM

A )2]
− 1. (87)

3 Results and conclusions

A comprehensive calculation of the stellar energy loss
rates through the neutrino pair production via the pro-
cess e+e− → νν̄ in the context of a 331M, a LRSM and
the SLHM as a function of the degeneration parameter β,
as well as of the parameters of each model, the mixing
angles θ, φ and the energy scale f , has been addressed.

For the numerical calculation we have considered the
input data [87] given in table 1, thereby obtaining the stel-
lar energy loss rates of the neutrinos Q331

νν̄ = Q331
νν̄ (θ, β),

QLRSM
νν̄ = QLRSM

νν̄ (φ, β) and QSLHM
νν̄ = QSLHM

νν̄ (f, β).
For the mixing angle Z − Z ′ of the 331M [31] and

LRSM [95] we consider the following:

−3.979 × 10−3 ≤ θ ≤ 1.309 × 10−4, 90% C.L., (88)

−1.6 × 10−3 ≤ φ ≤ 1.1 × 10−3, 90% C.L. (89)

Other limits on the mixing angles θ and φ reported in
the literature are given in refs. [96,97] and [98,65,94,99].
While for the characteristic energy scale f of the SLHM
we consider

1.5 ≤ f ≤ 10TeV, (90)

there are other limits on f reported in refs. [22,67,100].
In fig. 1 we show the stellar energy loss rates Q331

νν̄ (θ, β)
as a function of the degeneracy parameter β and different
values of the mixing angle θ = −3.979 × 10−3, 0, 1.309 ×
10−4, which is defined by eq. (32). We observe that the
stellar energy loss rates remain almost constant for any
value of the mixing angle θ and decrease when β increases,
which is due to the reduction in the number of positrons
available necessary to cause the collision.

To visualize the effects of θ, the free parameter of the
331M, on the stellar energy loss rates we plot the relative

Fig. 1. The stellar energy loss rates for e+e− → νν̄ as a func-
tion of the degeneration parameter β and the mixing angle
θ = −3.979 × 10−3, 0, 1.309 × 10−4 of the 331M.

Fig. 2. The relative correction
δQI–V

QSM

I–V

=

a2b2[(ge
V

)2+(ge
A

)2]−[(ge
V

)2+(ge
A

)2]

[(ge
V

)2+(ge
A

)2]
as a function of θ and

sin2 θW = 0.23149 − 0.00016, 0.23149, 0.23149 + 0.00016.

correction for the different regions which were already dis-
cussed in the text

δQI–V

QSM
I–V

=
a2b2[(ge

V )2 + (ge
A)2] − [(ge

V )2 + (ge
A)2]

[(ge
V )2 + (ge

A)2]
, (91)

as a function of θ and sin2 θW = 0.23149 − 0.00016,
0.23149, 0.23149 + 0.00016, in fig. 2. We can see that
the relative correction reaches its maximum value for the
lower limit of θ and decreases as θ increases, remaining
constant with respect to sin2 θW . The relative correction
is of the order of 0.4% relative to the value of the standard
model [6].

In the case of the LRSM, we plot the stellar energy loss
rates as a function of β and of the mixing angle Z −Z ′ of
the model, that is to say φ = −1.6×10−3, 0, 1.1×10−3, in
fig. 3. The QLRSM

νν̄ (φ, β) has a very similar behaviour as
in the case of the 331 model, this is due to the fact that
the mixing angles from these models are very restricted
and both are of the same order of magnitude.
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Fig. 3. The same as fig. 1 but for β and the mixing angle
φ = −1.6 × 10−3, 0, 1.1 × 10−3 of the LRSM.

Fig. 4. The same as fig. 2 but for
δQI–II

QSM

I–II

=
a′2(a′2+b′2)(ge

V
)2−2(ge

V
)2

2(ge
V

)2
and

δQIII–V

QSM

III–V

=

(a′2+b′2)[a′2(ge
V

)2+b′2(ge
A

)2]−2[(ge
V

)2+(ge
A

)2]

2[(ge
V

)2+(ge
A

)2]
as a function of

φ and sin2 θW = 0.23149−0.00016, 0.23149, 0.23149+0.00016.

The deviation of the stellar energy loss rates in the
LRSM from the SM one, for the regions I, II and III–V

δQI–II

QSM
I–II

=
a′2(a′2 + b′2)(ge

V )2 − 2(ge
V )2

2(ge
V )2

, (92)

and

δQIII–V

QSM
III–V

=
(a′2 + b′2)[a′2(ge

V )2 + b′2(ge
A)2]

2[(ge
V )2 + (ge

A)2]
− 1, (93)

are depicted in fig. 4 as a function of the parameter of
mixing φ and different values of the sin2 θW = 0.23149 −
0.00016, 0.23149, 0.23149+0.00016 of the Weinberg angle.
Figure 4 shows that the relative correction is sensitive to
the mixing angle φ, however it is independent of sin2 θW .
From this figure we observed that the relative correction
δQ

I–II

QSM

I–II

is of the order of 0.5% to the lower bound of φ

Fig. 5. The same as fig. 1 but for β and the characteristic
energy scale f = 1.5 TeV, 5 TeV, 10 TeV of the SLHM.

Fig. 6. The same as fig. 2 but for
δQI–II

QSM

I–II

=

2(ge
V

)2[(gν
V

)2+(gν
A

)2]−(geSM
V

)2

(geSM
V

)2
and

δQIII–V

QSM

III–V

=

2[(gν
V

)2+(gν
A

)2][(ge
V

)2+(ge
A

)2]−[(geSM
V

)2+(geSM
A

)2]

[(geSM
V

)2+(geSM
A

)2]
as a function of f

and sin2 θW = 0.23149 − 0.00016, 0.23149, 0.23149 + 0.00016.

given in eq. (90), whereas for δQ
III–V

QSM

III–V

is of the order of

0.2% for the lower and upper bounds of the mixing angle.
In fig. 5 we show the stellar energy loss rate QSLHM

νν̄

(f, β). It is worth mentioning that the curves obtained are
very similar to those obtained in the 331 model and the
LRSM.

Finally, to analyze the contribution of the energy
scale f of the SLHM on the stellar energy loss rates
QSLHM

νν̄ (f, β) of the neutrinos, in fig. 6 we show the rela-
tive change for the regions I and II

δQI–II

QSM
I–II

=
2(ge

V )2[(gν
V )2 + (gν

A)2] − (geSM
V )2

(geSM
V )2

, (94)

as well as for the regions III–V

δQIII–V

QSM
III–V

=
2[(gν

V )2 + (gν
A)2][(ge

V )2 + (ge
A)2]

[(geSM
V )2 + (geSM

A )2]
− 1. (95)



Page 10 of 11 Eur. Phys. J. A (2017) 53: 16

From this figure it is clear that the relative correction
reaches its maximum value between 1.5 ≤ f ≤ 2TeV,
and is of the order of 3.5% with respect to the standard
model [6], and decreases rapidly for large f . The curves
also demonstrate that the effect of the SLHM is not sen-
sitive to f in the range of f ≥ 6.5TeV. This is generally
because the extra contribution of the SLHM model to the
relative correction is proportional to a factor of 1

f2 .

In general, the relative correction is sensitive to the
parameters θ, φ and f of the models considered. However,
there are other effects which may change the stellar energy
loss rates, for example the radiative corrections at one-
loop level.

We conclude that the energy loss via ν + ν̄ pairs is
relevant at the moment of collapse when the thermal pro-
cess becomes extremely important. Even when the stel-
lar energy loss is dominated by heavy lepton flavor neu-
trinos, the energy loss is higher in general for the three
extensions of the standard model, being maximum for the
Simplest Little Higgs Model (SLHM), up to 3.5% in com-
parison with the SM. It is worth mentioning that at the
present time an enhancement or suppression of individ-
ual weak rates on the order of 3.5% cannot be identified.
This means that it will leave no imprint in neither the
supernova dynamics nor the potentially observable neu-
trino signal. Therefore, some SM weak rates uncertainties
can be as large as one order of magnitude at some specific
conditions, mainly due to the unknown state of matter of
the supernova medium in particular at high matter den-
sity. This can be improved considering that the analytical
approximation for the Fermi integrals must be performed
for various limits regions of high matter density and then

evaluating the relative correction δQ
QSM

νν̄

=
QNew

νν̄
−QSM

νν̄

QSM
νν̄

.

In conclusion, in this article we determine exact and
approximate analytical expressions for the stellar energy
loss rates through the process e+e− → νν̄ in the context of
a 331M, a LRSM and the SLHM. In addition, we study the
contributions of the parameters of these models through
the relative correction and for different limiting cases as is
mentioned in the text. We find that the stellar energy loss
rates is almost independent of the mixing angle θ, φ and
f of each considered model in the allowed range for these
parameters. As expected, in the decoupling limit, when
θ = 0, φ = 0 and f → ∞, the expression for the stellar
energy loss rates QSM

νν̄ (β) of the SM previously obtained
in the literature [91,88–90,92] is recovered. Furthermore,
our analytical and numerical results for the stellar energy
loss rates have never been reported in the literature be-
fore, and complement other studies on the stellar energy
loss rates in e+e− annihilation and could be useful for the
scientific community. In the calculation of the stellar en-
ergy loss rates the computation of the Fermi integral in
different regions of density and temperature was needed.
These Fermi integrals, and their implementation in large-
scale astrophysics simulations as well as in the study of
the stellar energy loss rates will be published in a paper
in preparation [101].

This work was supported by CONACyT, SNI and PROFOCIE
(México). AGS thanks Lerma and Observatoire de Paris for a
Visiting Astronomer position during which part of this work
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