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We study the prospects of the 𝐵 − 𝐿 model with an additional 𝑍󸀠 boson to be a Higgs boson factory at high-energy and high-
luminosity linear electron positron colliders, such as the ILC and CLIC, through the Higgs-strahlung process 𝑒+𝑒− → (𝑍,𝑍

󸀠
) →

𝑍ℎ, including both the resonant and the nonresonant effects. We evaluate the total cross section of 𝑍ℎ and we calculate the total
number of events for integrated luminosities of 500–2000fb−1 and center of mass energies between 500 and 3000GeV. We find
that the total number of expected 𝑍ℎ events can reach 106, which is a very optimistic scenario and it would be possible to perform
precision measurements for both 𝑍󸀠 and Higgs boson in future high-energy 𝑒+𝑒− colliders experiments.

1. Introduction

The discovery of a light scalar boson 𝐻 of the ATLAS [1]
and CMS [2] collaborations at the Large Hadron Collider
(LHC) compatible with a SM Higgs boson [3–7] and with
mass around 𝑀

ℎ
= 125 ± 0.4 (stat.) ± 0.5 (syst.)GeV has

opened a window to new sectors in the search for physics
beyond the StandardModel (SM).The Higgs boson might be
a portal leading to more profound physics models and even
physics principles. Therefore, another Higgs factory besides
the LHC such as the International Linear Collider (ILC) [8–
13] and the Compact Linear Collider (CLIC) [14–16] that can
study in detail and can precisely determine the properties of
the Higgs boson is another important future step in high-
energy and high-luminosity physics exploration.

The existence of a heavy neutral (𝑍󸀠) vector boson
is a feature of many extensions of the Standard Model.
In particular, one (or more) additional 𝑈(1)󸀠 gauge group
provides one of the simplest extensions of the SM. Addi-
tional 𝑍󸀠 gauge bosons appear in Grand Unified Theories
(GUTs) [17], SuperstringTheories [18], Left-Right Symmetric
Models (LRSM) [19–21], and other models such as models of

composite gauge bosons [22]. In particular, it is possible to
study some phenomenological features associated with this
extra neutral gauge boson by considering a 𝐵 − 𝐿 (baryon
number minus lepton number) model.

The 𝐵 − 𝐿 symmetry plays an important role in various
physics scenarios beyond the SM. (a) The gauge 𝑈(1)

𝐵−𝐿

symmetry group is contained in aGUTdescribed by a 𝑆𝑂(10)
group [23]. (b) The scale of the 𝐵 − 𝐿 symmetry breaking is
related to the mass scale of the heavy right-handedMajorana
neutrinos mass terms providing the well-known see-saw
mechanism [24] to explain light left-handed neutrino mass.
(c) The 𝐵 − 𝐿 symmetry and the scale of its breaking are
tightly connected to the baryogenesis mechanism through
leptogenesis [25].

The 𝐵 − 𝐿model [26, 27] is attractive due to its relatively
simple theoretical structure, and the crucial test of the model
is the detection of the new heavy neutral (𝑍󸀠) gauge boson.
The analysis of precision electroweakmeasurements indicates
that the new 𝑍

󸀠 gauge boson should be heavier than about
1.2 TeV [28]. On the other hand, recent bounds from the LHC
indicate that the𝑍󸀠 gauge boson should be heavier than about
2 TeV [29, 30], while future LHC runs at 13-14 TeV could
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increase the𝑍󸀠mass bounds to higher values or may be lucky
and find evidence for its presence. Further studies of the 𝑍󸀠
properties will require a new linear collider [31], which will
also allow us to perform precision studies of the Higgs sector.
Detailed discussions on the 𝐵 − 𝐿model can be found in the
literature [26, 32–38].

The Higgs-stralung [39–43] process 𝑒+𝑒− → 𝑍ℎ is one
of the main production mechanisms of the Higgs boson
in the future linear 𝑒+𝑒− colliders experiments, such as the
ILC and CLIC. Therefore, after the discovery of the Higgs
boson, detailed experimental and theoretical studies are
necessary for checking its properties and dynamics [44–47].
It is possible to search for the Higgs boson in the framework
of the 𝐵 − 𝐿 model; however the existence of a new gauge
boson could also provide new Higgs particle production
mechanisms, which could prove its nonstandard origin. In
this work, we analyze how the 𝑍󸀠 gauge boson of the𝑈(1)

𝐵−𝐿

model could be used as a factory of Higgs bosons.
Our aim in the present paper is to study the sensitivity of

the 𝑍󸀠 boson of the 𝐵 − 𝐿 model as a Higgs boson factory
through the Higgs-strahlung process 𝑒+𝑒− → (𝑍,𝑍

󸀠
) →

𝑍ℎ, including both the resonant and the nonresonant effects
at future high-energy and high-luminosity linear 𝑒+𝑒− collid-
ers, such as the International Linear Collider (ILC) [8] and
the Compact Linear Collider (CLIC) [14]. We evaluate the
total cross section of 𝑍ℎ and we calculate the total number
of events for integrated luminosities of 500–2000 fb−1 and
center-of-mass energies between 500 and 3000GeV. We find
that the total number of expected 𝑍ℎ events for the 𝑒+𝑒−
colliders is very promising and that it would be possible
to perform precision measurements for both the 𝑍󸀠 and
the Higgs boson in the future high-energy 𝑒+𝑒− colliders
experiments. In addition, we also studied the dependence of
the Higgs signal strengths (𝜇) on the parameters 𝑔󸀠1 and 𝜃𝐵−𝐿
of the 𝑈(1)

𝐵−𝐿
model for the Higgs-stralung process 𝑒+𝑒− →

𝑍ℎ.
This paper is organized as follows. In Section 2, we present

the theoretical framework. In Section 3, we present the decay
widths of the 𝑍󸀠 boson in the context of the 𝐵 − 𝐿 model. In
Section 4, we present the calculation of the process 𝑒+𝑒− →
(𝑍,𝑍
󸀠
) → 𝑍ℎ, and, finally, we present our results and

conclusions in Section 5.

2. Theoretical Framework

We consider an 𝑆𝑈(2)
𝐿
× 𝑈(1)

𝑌
× 𝑈(1)

𝐵−𝐿
model consisting

of one doublet Φ and one singlet 𝜒 and briefly describe the
lagrangian including the scalar, fermion, and gauge sector.
The Lagrangian for the gauge sector is given by [36, 48–50]

L
𝑔
= −

1
4
𝐵
𝜇]𝐵
𝜇]
−
1
4
𝑊
𝑎

𝜇]𝑊
𝑎𝜇]

−
1
4
𝑍
󸀠

𝜇]𝑍
󸀠𝜇]
, (1)

where 𝑊𝑎
𝜇], 𝐵𝜇], and 𝑍

󸀠

𝜇] are the field strength tensors for
𝑆𝑈(2)

𝐿
, 𝑈(1)

𝑌
, and 𝑈(1)

𝐵−𝐿
, respectively.

The Lagrangian for the scalar sector of the 𝑆𝑈(2)
𝐿
×

𝑈(1)
𝑌
× 𝑈(1)

𝐵−𝐿
model is

L
𝑠
= (𝐷
𝜇
Φ)
†

(𝐷
𝜇
Φ)+ (𝐷

𝜇
𝜒)
†

(𝐷
𝜇
𝜒) −𝑉 (Φ, 𝜒) , (2)

where the potential term is [34]

𝑉 (Φ, 𝜒) = 𝑚
2
(Φ
†
Φ)+𝜇

2 󵄨󵄨
󵄨
󵄨
𝜒
󵄨
󵄨
󵄨
󵄨

2
+𝜆1 (Φ

†
Φ)

2
+𝜆2

󵄨
󵄨
󵄨
󵄨
𝜒
󵄨
󵄨
󵄨
󵄨

4

+𝜆3 (Φ
†
Φ)

󵄨
󵄨
󵄨
󵄨
𝜒
󵄨
󵄨
󵄨
󵄨

2
,

(3)

withΦ and 𝜒 as the complex scalar Higgs doublet and singlet
fields, respectively. The covariant derivatives for the doublet
and singlet are given by [32–34]

𝐷
𝜇
Φ = 𝜕

𝜇
Φ+ 𝑖 [𝑔𝑇

𝑎
𝑊
𝑎

𝜇
+𝑔1𝑌𝐵𝜇 +𝑔

󸀠

1𝑌
󸀠
𝐵
󸀠

𝜇
]Φ,

𝐷
𝜇
𝜒 = 𝜕
𝜇
𝜒+ 𝑖 [𝑔1𝑌𝐵𝜇 +𝑔

󸀠

1𝑌
󸀠
𝐵
󸀠

𝜇
] 𝜒,

(4)

where the doublet and singlet scalars are

Φ = (

𝐺
±

V + 𝜙0 + 𝑖𝐺
𝑍

√2

),

𝜒 = (

V󸀠 + 𝜙󸀠0 + 𝑖𝑧󸀠

√2
) ,

(5)

with 𝐺±, 𝐺
𝑍
, and 𝑧󸀠 being the Goldstone bosons of 𝑊±, 𝑍,

and 𝑍󸀠, respectively.
After spontaneous symmetry breaking the two scalar

fields can be written as

Φ = (

0

V + 𝜙0

√2

),

𝜒 =

V󸀠 + 𝜙󸀠0

√2
,

(6)

with V and V󸀠 being real and positive. Minimization of (3)
gives

𝑚
2
+ 2𝜆1V

2
+𝜆3VV

󸀠2
= 0,

𝜇
2
+ 4𝜆2V

󸀠2
+𝜆3V

2V󸀠 = 0.
(7)

To compute the scalarmasses, wemust expand the poten-
tial in (3) around the minima in (6). Using the minimization
conditions, we have the following scalar mass matrix:

M = (

𝜆1V
2 𝜆3VV

󸀠

2
𝜆3VV
󸀠

2
𝜆2V
󸀠2
) = (

M11 M12

M21 M22
) . (8)

The expressions for the scalar mass eigenvalues (𝑚
𝐻
󸀠 >

𝑚
ℎ
) are

𝑚
2
𝐻
󸀠
,ℎ
=

(M11 +M22) ± √(M11 −M22)
2
+ 4M2

12

2
,

(9)
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and the mass eigenstates are linear combinations of 𝜙0 and
𝜙
󸀠0 and written as

(

ℎ

𝐻
󸀠
) = (

cos𝛼 − sin𝛼
sin𝛼 cos𝛼

)(

𝜙
0

𝜙
󸀠0) , (10)

where ℎ is the SM-like Higgs boson. The scalar mixing angle
𝛼 can be expressed as

tan (2𝛼) =
2M12

M11 −M22
=

𝜆3VV
󸀠

𝜆1V2 − 𝜆2V󸀠2
. (11)

In the Lagrangian of the 𝑆𝑈(2)
𝐿
×𝑈(1)

𝑌
×𝑈(1)

𝐵−𝐿
model,

the terms for the interactions between neutral gauge bosons
𝑍,𝑍
󸀠 and a pair of fermions of the SM can be written in the

form [36, 37]

L
𝑁𝐶

=

−𝑖𝑔

cos 𝜃
𝑊

∑

𝑓

𝑓𝛾
𝜇 1
2
(𝑔
𝑓

𝑉
−𝑔
𝑓

𝐴
𝛾
5
) 𝑓𝑍
𝜇

+

−𝑖𝑔

cos 𝜃
𝑊

∑

𝑓

𝑓𝛾
𝜇 1
2
(𝑔
󸀠𝑓

𝑉
−𝑔
󸀠𝑓

𝐴
𝛾
5
) 𝑓𝑍
󸀠

𝜇
.

(12)

From this Lagrangian we determine the expressions for the
new couplings of the 𝑍,𝑍󸀠 bosons with the SM fermions,
which are given by

𝑔
𝑓

𝑉
= 𝑇
𝑓

3 cos 𝜃
𝐵−𝐿

− 2𝑄
𝑓
sin2𝜃
𝑊
cos 𝜃
𝐵−𝐿

+

2𝑔󸀠1
𝑔

cos 𝜃
𝑊
sin 𝜃
𝐵−𝐿

,

𝑔
𝑓

𝐴
= 𝑇
𝑓

3 cos 𝜃
𝐵−𝐿

,

(13)

𝑔
󸀠𝑓

𝑉
= −𝑇

𝑓

3 sin 𝜃
𝐵−𝐿

− 2𝑄
𝑓
sin2𝜃
𝑊
sin 𝜃
𝐵−𝐿

+

2𝑔󸀠1
𝑔

cos 𝜃
𝑊
cos 𝜃
𝐵−𝐿

,

𝑔
󸀠𝑓

𝐴
= −𝑇

𝑓

3 sin 𝜃
𝐵−𝐿

,

(14)

where 𝑔 = 𝑒/ sin 𝜃
𝑊
and 𝜃
𝐵−𝐿

is the 𝑍−𝑍󸀠 mixing angle. The
current bound on this parameter is |𝜃

𝐵−𝐿
| ≤ 10−3 [51]. In the

decoupling limit, that is to say, when 𝑔󸀠1 = 0 and 𝜃
𝐵−𝐿

= 0, the
couplings of the SM are recovered.

3. The Decay Widths of 𝑍󸀠 in the 𝐵 − 𝐿 Model

In this section we present the new decay widths of the 𝑍󸀠
boson [28, 52–54] in the context of the 𝐵 − 𝐿 model which
we need in the calculation of the cross section for the process

𝑒
+
𝑒
−
→ 𝑍ℎ. The 𝑍󸀠 partial decay widths involving vector

bosons and the scalar boson are

Γ (𝑍
󸀠
󳨀→𝑊

+
𝑊
−
) =

𝐺
𝐹
𝑀

2
𝑊

24𝜋√2
cos2𝜃
𝑊
sin2𝜃
𝐵−𝐿

⋅𝑀
𝑍
󸀠 (
𝑀
𝑍
󸀠

𝑀
𝑍

)

4
(1− 4

𝑀
2
𝑊

𝑀
2
𝑍
󸀠

)

1/3

⋅ [1+ 20
𝑀

2
𝑊

𝑀
2
𝑍
󸀠

+ 12
𝑀

4
𝑊

𝑀
4
𝑍
󸀠

] ,

Γ (𝑍
󸀠
󳨀→𝑍ℎ) =

𝐺
𝐹
𝑀

2
𝑍
𝑀
𝑍
󸀠

24𝜋√2
√𝜆[𝜆+ 12

𝑀
2
𝑍

𝑀
2
𝑍
󸀠

]

⋅ [𝑓 (𝜃
𝐵−𝐿

) cos𝛼−𝑔 (𝜃
𝐵−𝐿

) sin𝛼]2 ,

(15)

where

𝜆(1,
𝑀

2
𝑍

𝑀
2
𝑍
󸀠

,

𝑀
2
ℎ

𝑀
2
𝑍
󸀠

) = 1+(
𝑀

2
𝑍

𝑀
2
𝑍
󸀠

)

2

+(

𝑀
2
ℎ

𝑀
2
𝑍
󸀠

)

2

− 2(
𝑀

2
𝑍

𝑀
2
𝑍
󸀠

)− 2(
𝑀

2
ℎ

𝑀
2
𝑍
󸀠

)

− 2(
𝑀
2

𝑍

𝑀
2
𝑍
󸀠

)(

𝑀
2
ℎ

𝑀
2
𝑍
󸀠

) ,

𝑓 (𝜃
𝐵−𝐿

) = (

4𝑀2
𝑍

V2
−𝑔
󸀠2
1 ) sin (2𝜃

𝐵−𝐿
)

+(

4𝑔󸀠1𝑀𝑍
V

) cos (2𝜃
𝐵−𝐿

) ,

𝑔 (𝜃
𝐵−𝐿

) = 4𝑔󸀠21 (
V󸀠

V
) sin (2𝜃

𝐵−𝐿
) .

(16)

The vacuum expectation value V󸀠 is taken as V󸀠 = 2 TeV, while
𝛼 = 𝜋/9 for the Higgs mixing parameter in correspondence
with [1, 2, 48, 55]. In our analysis we take V = 246GeV and
constrain the other scale, V󸀠, by the lower bounds imposed on
the mass of the extra neutral gauge boson𝑍󸀠. Themass of the
𝑍
󸀠 and of the heavy neutrinos depends on V󸀠 and should be

related to it, while the Higgs masses depend on the angle 𝛼,
the value of which is completely arbitrary.

Finally, the decay width of the 𝑍󸀠 boson to fermions is
given by

Γ (𝑍
󸀠
󳨀→𝑓𝑓) =

2𝐺
𝐹

3𝜋√2

⋅ 𝑁
𝑓
𝑀

2
𝑍
𝑀
𝑍
󸀠
√1 − 4(

𝑀
2
𝑓

𝑀
2
𝑍
󸀠

)[(𝑔
󸀠𝑓

𝑉
)

2

⋅ {1+ 2(
𝑀

2
𝑓

𝑀
2

𝑍
󸀠

)}+ (𝑔
󸀠𝑓

𝐴
)

2
{1− 4(

𝑀
2
𝑓

𝑀
2
𝑍
󸀠

)}] ,

(17)
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Figure 1: Feynman diagram for the Higgs-strahlung process
𝑒
+
𝑒
−
→ 𝑍ℎ in the 𝐵 − 𝐿model.

where𝑁
𝑓
is the color factor (𝑁

𝑓
= 1 for leptons,𝑁

𝑓
= 3 for

quarks) and the couplings 𝑔󸀠𝑓
𝑉

and 𝑔󸀠𝑓
𝐴

of the 𝑍󸀠 boson with
the SM fermions are given in (14).

4. The Total Cross Section of 𝑒+𝑒− → 𝑍ℎ in the
𝐵 − 𝐿 Model

In this section, we calculate the Higgs production cross
section via the process 𝑒+𝑒− → 𝑍ℎ in the context of the
𝐵−𝐿model at future high-energy and high-luminosity linear
electron-positron colliders, such as the ILC and CLIC.

The Feynman diagrams contributing to the process
𝑒
+
𝑒
−

→ (𝑍,𝑍
󸀠
) → 𝑍ℎ are shown in Figure 1. The

expressions for the total cross section of the Higgs-strahlung
process for the different contributions, that is to say SM,𝐵−𝐿,
and SM − (𝐵−𝐿), respectively, can be written in the following
compact form:

𝜎 (𝑒
+
𝑒
−
󳨀→𝑍ℎ)tot =

𝐺
2
𝐹
𝑀

4
𝑍

24𝜋
[(𝑔
𝑒

𝑉
)
2
+ (𝑔
𝑒

𝐴
)
2
]

⋅

𝑠√𝜆 [𝜆 + 12𝑀2
𝑍
/𝑠]

[(𝑠 − 𝑀
2
𝑍
)
2
+𝑀

2
𝑍
Γ
2
𝑍
]

+

𝐺
2
𝐹
𝑀

6
𝑍

384𝜋
[(𝑔
󸀠𝑒

𝑉
)

2
+ (𝑔
󸀠𝑒

𝐴
)

2
]

⋅

𝑠√𝜆 [𝜆 + 12𝑀2
𝑍
󸀠/𝑠]

𝑀
2
𝑍
󸀠
[(𝑠 −𝑀

2
𝑍
󸀠
)

2
+𝑀

2
𝑍
󸀠
Γ
2
𝑍
󸀠
]

[𝑓 (𝜃
𝐵−𝐿

) cos𝛼−𝑔 (𝜃
𝐵−𝐿

)

⋅ sin𝛼]2 +
𝐺
2
𝐹
𝑀

6
𝑍

12𝜋
[𝑔
𝑒

𝑉
𝑔
󸀠𝑒

𝑉
+𝑔
𝑒

𝐴
𝑔
󸀠𝑒

𝐴
]

⋅ 𝑠√𝜆[
1
𝑀

2
𝑍

(𝜆 + 12𝑀2
𝑍
/𝑠)

+
1
𝑀

2
𝑍
󸀠

(𝜆 + 6 (𝑀2
𝑍
−𝑀

2
𝑍
󸀠) /𝑠)

+
𝑠𝜆

8𝑀2
𝑍
𝑀

2
𝑍
󸀠

(𝜆 − 12𝑀2
𝑍
/𝑠)]

⋅

[(𝑠 − 𝑀
2
𝑍
) (𝑠 − 𝑀

2
𝑍
󸀠) +𝑀𝑍𝑀𝑍󸀠Γ𝑍Γ𝑍󸀠]

[(𝑠 − 𝑀
2
𝑍
)
2
+𝑀

2
𝑍
Γ
2
𝑍
] [(𝑠 − 𝑀

2
𝑍
󸀠
)

2
+𝑀

2
𝑍
󸀠
Γ
2
𝑍
󸀠
]

[𝑓 (𝜃
𝐵−𝐿

)

⋅ cos𝛼−𝑔 (𝜃
𝐵−𝐿

) sin𝛼] ,

(18)

where

𝜆(1,
𝑀

2
𝑍

𝑠

,

𝑀
2
ℎ

𝑠

) = (1−
𝑀

2
𝑍

𝑠

−

𝑀
2
ℎ

𝑠

)

2

− 4
𝑀

2
𝑍
𝑀

2
ℎ

𝑠
2

(19)

is the usual two-particle phase space function, while 𝑔𝑒
𝑉
, 𝑔𝑒
𝐴
,

𝑔
󸀠𝑒

𝑉
, 𝑔󸀠𝑒
𝐴
, 𝑓(𝜃
𝐵−𝐿

), and 𝑔(𝜃
𝐵−𝐿

) are given in (13), (14), and (16),
respectively.

The expression given in the first term of (18) corresponds
to the cross section with the exchange of the 𝑍 boson, while
the second and third terms come from the contributions of
the 𝐵 − 𝐿model and of the interference, respectively. The SM
expression for the cross section of the reaction 𝑒+𝑒− → 𝑍ℎ

can be obtained in the decoupling limit, that is to say, when
𝜃
𝐵−𝐿

= 0 and 𝑔󸀠1 = 0; in this case the terms that depend
on 𝜃
𝐵−𝐿

and 𝑔󸀠1 in (18) are zero and (18) is reduced to the
expression given in [39, 43] for the standard model.

5. Results and Conclusions

5.1. 𝑍󸀠 Resonance and Associated 𝑍ℎ Production in the 𝐵 − 𝐿
Model. In this section we evaluate the total cross section of
the Higgs-strahlung process 𝑒+𝑒− → (𝑍,𝑍

󸀠
) → 𝑍ℎ in the

context of the 𝐵 − 𝐿 model at next generation linear 𝑒+𝑒−
colliders such as the ILC andCLIC.Using the following values
for numerical computation [51], sin2𝜃

𝑊
= 0.23126±0.00022,

𝑚
𝜏
= 1776.82 ± 0.16MeV, 𝑚

𝑏
= 4.6 ± 0.18GeV, 𝑚

𝑡
=

172 ± 0.9GeV,𝑀
𝑊
= 80.389 ± 0.023GeV,𝑀

𝑍
= 91.1876 ±

0.0021GeV, Γ
𝑍
= 2.4952 ± 0.0023GeV, and𝑀

ℎ
= 125 ± 0.4,

and considering the most recent limit from LEP [56]
𝑀
𝑍
󸀠

𝑔
󸀠

1
≥ 7 TeV, (20)

in our numerical analysis, we obtain the total cross section
𝜎tot = 𝜎tot(√𝑠,𝑀𝑍󸀠 , 𝑔

󸀠

1).Thus, in our numerical computation,
we will assume√𝑠,𝑀

𝑍
󸀠 and 𝑔󸀠1 as free parameters.

We do not consider the process 𝑒+𝑒− → (𝑍,𝑍
󸀠
) → 𝑍𝐻

󸀠

[35] in our study since in major parts of the 𝑈(1)
𝐵−𝐿

model
parameter space the Higgs boson𝐻󸀠 is quite heavy, and it is
difficult to detect the process 𝑒+𝑒− → 𝑍𝐻

󸀠 when the relevant
mechanism is 𝑒+𝑒− → 𝑍ℎ.

In Figures 2 and 3 we present the total decay width of
the 𝑍󸀠 boson as a function of 𝑀

𝑍
󸀠 and the new 𝑈(1)

𝐵−𝐿

gauge coupling 𝑔󸀠1, respectively, with the other parameters
held fixed to three different values. From Figure 2, we see
that the total width of the 𝑍󸀠 new gauge boson varies from
a few to hundreds of GeV over a mass range of 500GeV ≤

𝑀
𝑍
󸀠 ≤ 3000GeV, depending on the value of 𝑔󸀠1. In the case

of Figure 3, a similar behavior is obtained in the range 0 ≤

𝑔
󸀠

1 ≤ 1 and depends on the value of𝑀
𝑍
󸀠 .The branching ratios

versus 𝑍󸀠 mass are given in Figure 4 for different channels,
that is to say, BR(𝑍󸀠 → 𝑓𝑓), BR(𝑍󸀠 → 𝑍ℎ), and BR(𝑍󸀠 →
𝑊
+
𝑊
−
), respectively. In this figure the BR(𝑍󸀠 → 𝑓𝑓) is

the sum of all BRs for the decays into fermions. We consider
𝜃
𝐵−𝐿

= 10−3, 𝑔󸀠1 = 0.5, and 500GeV ≤ 𝑀
𝑍
󸀠 ≤ 3000GeV.

To illustrate our results on the sensitivity of the 𝑍󸀠 gauge
boson of the𝐵−𝐿model as aHiggs boson factory through the
Higgs-strahlung process 𝑒+𝑒− → (𝑍,𝑍

󸀠
) → 𝑍ℎ, including

both the resonant and the nonresonant effects at future high-
energy and high-luminosity linear 𝑒+𝑒− colliders, such as the
International Linear Collider (ILC) and the Compact Linear
Collider (CLIC), we present the total cross section in Figures
5–11.
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Figure 3: 𝑍󸀠 width as a function of 𝑔󸀠1 for fixed values of
𝑀
𝑍
󸀠 . Starting from the bottom, the curves are for 𝑀

𝑍
󸀠 =

1500, 2000, 2500GeV, respectively.

In Figure 5, we show the cross section 𝜎(𝑒+𝑒− → 𝑍ℎ)

for the different contributions as a function of the center-
of-mass energy √𝑠 for 𝜃

𝐵−𝐿
= 10−3 and 𝑔

󸀠

1 = 0.5: the
solid line corresponds to the first term of (18), where in the
𝑈(1)
𝐵−𝐿

model the couplings 𝑔𝑓
𝑉
and 𝑔𝑓

𝐴
of the SM gauge

boson 𝑍 to electrons receive contributions of the 𝑈(1)
𝐵−𝐿

model. The dashed line corresponds to the second term of
(18), that is to say, is the pure 𝐵 − 𝐿 contribution. Finally, the
dot-dashed line corresponds to the total cross section of the
process 𝜎(𝑒+𝑒− → 𝑍ℎ). From Figure 5, we can see that the
cross section corresponding to the first term of (18) decreases
for large √𝑠, whereas, in the case of the cross section of the
𝐵 − 𝐿 model and the total cross section, respectively, these
are increased for large values of the center-of-mass energy,
reaching its maximum value at the resonance 𝑍󸀠 boson; that
is to say,√𝑠 = 1500GeV.

To see the effects of 𝑔󸀠1, the free parameter of the 𝐵 − 𝐿
model on the process 𝑒+𝑒− → (𝑍,𝑍

󸀠
) → 𝑍ℎ, we plot

the relative correction 𝛿𝜎/𝜎SM = (𝜎tot − 𝜎SM)/𝜎SM as a
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Figure 4: Branching ratios as a function of 𝑀
𝑍
󸀠 . Starting from

the top, the curves are for the BR(𝑓𝑓), BR(𝑍ℎ), and BR(𝑊+𝑊−),
respectively.
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Figure 5: The total cross sections of the production processes
𝑒
+
𝑒
−

→ 𝑍ℎ as a function of the collision energy for 𝑀
𝑍
󸀠 =

1500GeV and 𝑀
ℎ
= 125GeV. The curves are for the first term

of (18) (solid line) and second term of (18) (dashed line) and the
dot-dashed line corresponds to the total cross section of the process
𝜎(𝑒
+
𝑒
−
→ 𝑍ℎ), respectively.

function of 𝑔󸀠1 for 𝑀
𝑍
󸀠 = 1500, 2000, 2500GeV and √𝑠 =

1500, 2000, 2500GeV in Figure 6.We can see that the relative
correction reaches its maximum value between 0.1 ≤ 𝑔

󸀠

1 ≤

2.5 and remains almost constant as 𝑔󸀠1 increases.
The deviation of the cross section in our model from the

SM one 𝛿𝜎/𝜎SM is depicted in Figure 7 as a function of𝑀
𝑍
󸀠

for √𝑠 = 1500GeV and three values of the 𝑔󸀠1, new gauge
coupling. Figure 7 shows that the relative correction is very
sensitive to the gauge boson mass 𝑀

𝑍
󸀠 and for the gauge

parameter 𝑔󸀠1 = 0.2, 0.5, 0.8 the peak of the total cross section
emerges when the heavy gauge boson mass approximately
equals𝑀

𝑍
󸀠 = 1500, 1450, 1300GeV, respectively. Thus, in a

sizeable parameter region of the 𝐵 − 𝐿model, the new heavy
gauge boson 𝑍󸀠 can produce a significant signal, which can
be detected in future ILC and CLIC experiments.
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Figure 7: The relative correction 𝛿𝜎/𝜎SM as a function of 𝑀
𝑍
󸀠 .

Starting from the bottom the curves are for 𝑔󸀠1 = 0.2, 0.5, 0.8GeV
and√𝑠 = 1500GeV, respectively.

We plot the total cross section of the reaction 𝑒+𝑒− →

𝑍ℎ in Figure 8 as a function of the center-of-mass energy,
√𝑠 for the values of the heavy gauge boson mass of 𝑀

𝑍
󸀠 =

1500, 2000, 2500GeV and 𝜃
𝐵−𝐿

= 10−3, 𝑔󸀠1 = 0.2, respectively.
In this figure we observed that, for √𝑠 = 𝑀

𝑍
󸀠 , the resonant

effect dominates the Higgs particle production. A similar
analysis was performed in Figure 9, but in this case 𝜃

𝐵−𝐿
=

10−3 and 𝑔󸀠1 = 0.5. In both figures we show that the cross
section is sensitive to the free parameters. Comparing Figures
8 and 9, we observe that the height of the resonances is the
same in both figures, but the resonances are broader for larger
𝑔
󸀠

1 values, as the total width of the𝑍
󸀠 boson increases with 𝑔󸀠1,

as it is shown in Figure 2.
Finally, in Figure 10 we use the currents values of 𝑀

𝑍
󸀠

and 𝜃
𝐵−𝐿

, as well as the value of the coupling constant 𝑔󸀠1 and
center-of-mass energy √𝑠 of the collider to obtain contour
plot 3D for the total cross section 𝜎tot = 𝜎tot(√𝑠,𝑀𝑍󸀠 , 𝑔

󸀠

1) of
the process 𝑒+𝑒− → 𝑍ℎ for𝑀

ℎ
= 125GeV and 𝜃

𝐵−𝐿
= 10−3.

In this figure the resonance peaks for the boson𝑍󸀠 are evident
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Figure 8: The total cross sections of the production processes
𝑒
+
𝑒
−
→ 𝑍ℎ as a function of the collision energy. The curves are

for SM (solid line) and 𝑀
𝑍
󸀠 = 1500, 2000, 2500GeV (dashed line,

dot-dashed line, and dotted line). The resonance corresponds to the
𝑍
󸀠 new gauge boson.
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Figure 9: The same as Figure 8 but for 𝑔󸀠1 = 0.5.

for the entire range of allowed parameters of the 𝑈(1)
𝐵−𝐿

model.
From Figures 5–10, it is clear that the total cross section

is sensitive to the value of the gauge boson mass𝑀
𝑍
󸀠 , center-

of-mass energy √𝑠, and 𝑔󸀠1; the new 𝑈(1)
𝐵−𝐿

gauge coupling
increases with the collider energy, reaching amaximumat the
resonance of the𝑍󸀠 gauge boson. As an indicator of the order
of magnitude, we present the𝑍ℎ number of events in Table 1,
for several gauge boson masses, center-of-mass energies, and
𝑔
󸀠

1 values and for a luminosity of L = 500, 1000, 2000 fb−1.
We find that the possibility of observing the process 𝑒+𝑒− →
(𝑍,𝑍
󸀠
) → 𝑍ℎ is very promising as shown in Table 1, and

it would be possible to perform precision measurements for
both the 𝑍󸀠 and the Higgs boson in the future high-energy
linear 𝑒+𝑒− colliders experiments.We observed in Table 1 that
the cross section rises once the threshold for𝑍ℎ production is
reached, with the energy, until the 𝑍󸀠 is produced resonantly
at √𝑠 = 1500, 2000, and 2500GeV, respectively, for the three
cases. Afterwards it decreases with rising energy due to the𝑍
and𝑍󸀠 propagators. Another promising productionmode for
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Table 1: Total production of ZH in the 𝐵 − 𝐿 model for𝑀
𝑍
󸀠 = 1500, 2000, 2500GeV, L = 500, 1000, 2000fb−1 (1st, 2nd, and 3rd numbers,

respectively, in the last 3 columns),𝑀
𝐻
= 125GeV, 𝑔󸀠

1
= 0.5, and 𝜃

𝐵−𝐿
= 10−3.

L = 500, 1000, 2000fb−1

√𝑠 𝑀
𝑍
󸀠 = 1500GeV 𝑀

𝑍
󸀠 = 2000GeV 𝑀

𝑍
󸀠 = 2500GeV

500 85 131; 170 263; 340 526 44 609; 89 219; 178 439 34 747; 69 493; 138 987
1000 155 482; 310 964; 621 928 33 523; 67 047; 134 094 15 339; 30 678; 61 355
1500 1 234 000; 2 460 000; 4 930 000 75 192; 150 384; 300 768 18 004; 36 008; 72 016
2000 92 640; 185 282; 370 564 396 490; 792 980; 1 580 000 42 224; 84 449; 168 899
2500 20 276; 41 534; 83 069 52 144; 104 288; 208 577 163 538; 327 076; 654 151
3000 8 243; 16 487; 32 974 12 721; 25 442; 50 885 32 173; 64 346; 128 693
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Figure 10: Contour plot 3D for the total cross section 𝜎tot =

𝜎tot(√𝑠,𝑀𝑍󸀠 , 𝑔
󸀠

1) of the process 𝑒
+
𝑒
−
→ 𝑍ℎ for𝑀

ℎ
= 125GeV and

𝜃
𝐵−𝐿

= 10−3.

studying the𝑍󸀠 boson and Higgs boson properties is 𝑒+𝑒− →
(𝛾, 𝑍, 𝑍

󸀠
) → 𝑡𝑡ℎ [57].

5.2.TheHiggs Signal Strengths in the𝐵−𝐿Model. Considering
the Higgs boson decay channels, the Higgs signal strengths
can be defined as

𝜇
𝑖
=

𝜎
𝐵−𝐿

× BR (ℎ → 𝑖)
𝐵−𝐿

𝜎SM × BR (ℎ → 𝑖)SM
, (21)

where 𝑖 denotes a possible final state of theHiggs boson decay,
for example, 𝑏𝑏,𝑊+𝑊−, 𝑍𝑍, 𝑔𝑔, and 𝛾𝛾.

Fixing the Higgs boson mass to the measured value and
considering the decays ℎ → 𝛾𝛾, ℎ → 𝑍𝑍, ℎ → 𝑊

+
𝑊
−,

ℎ → 𝑏𝑏, and ℎ → 𝜏
+
𝜏
−, the ATLAS collaboration reports

[58] a signal strength of

𝜇 = 1.18+0.15
−0.14. (22)

The corresponding CMS collaboration result [59] is

𝜇 = 1.00 ± 0.13. (23)

Good consistency is found, for both experiments, across
different decay modes and analyses categories related to
different production modes.

In the 𝐵 − 𝐿 model, the modifications of the ℎ𝑓𝑓 (the
SM fermions pair) and ℎ𝑉𝑉 (𝑉 = 𝑊,𝑍) couplings can
give the extra contributions to the Higgs boson production
processes. On the other hand, the loop-induced couplings,
such as ℎ𝛾𝛾 and ℎ𝑔𝑔, could also be affected. Finally, besides
the effects already seen in the Higgs-strahlung channel due to
the couplings equations (13) and (14) and the functions given
by (16), the exchange of 𝑠-channel heavy neutral gauge boson
𝑍
󸀠 also affected the production cross section. All effects can

modify the signal strengths in a way that may be detectable at
the future ILC/CLIC experiments.

In Figure 11, we show the dependence of the Higgs signal
strengths 𝜇

𝑖
(𝑖 = 𝑏𝑏, 𝛾𝛾) on the parameters 𝑔󸀠1 and 𝜃𝐵−𝐿 for

the Higgs-strahlung process 𝑒+𝑒− → (𝑍,𝑍
󸀠
) → 𝑍ℎ, where

(a) and (b) denote the Higgs signal strengths 𝜇
𝑏𝑏

and 𝜇
𝛾𝛾
,

respectively.
Using 𝜃

𝐵−𝐿
= 103 for themixing angle and𝑀

ℎ
= 125GeV

for the Higgs boson mass, the following bound on the signal
strength is obtained:

𝜇 = 1.2+0.12
−0.16, (24)

which is consistent with that obtained for theATLAS [58] and
CMS [59] collaborations, (22) and (23), respectively.

In conclusion, we consider the 𝑍󸀠 heavy gauge boson of
the 𝐵−𝐿model as a Higgs boson factory, through the Higgs-
strahlung process 𝑒+𝑒− → (𝑍,𝑍

󸀠
) → 𝑍ℎ. We find that

the future linear 𝑒+𝑒− colliders experiments such as the ILC
and CLIC could test the 𝐵 − 𝐿model by measuring the cross
section of the process 𝑒+𝑒− → 𝑍ℎ, and it would be possible
to perform precision measurements of the 𝑍󸀠 gauge boson
and of the ℎ Higgs boson, as well as of the parameters of
the model 𝜃

𝐵−𝐿
and 𝑔󸀠1, complementing other studies on the

𝐵 − 𝐿 model and on the Higgs-strahlung process. The SM
expression for the cross section of the reaction 𝑒+𝑒− → 𝑍ℎ

can be obtained in the decoupling limit; that is to say, when
𝜃
𝐵−𝐿

= 0 and 𝑔󸀠1 = 0, in this case the terms that depend
on 𝜃
𝐵−𝐿

and 𝑔󸀠1 in (18) are zero and (18) is reduced to the
expression given in [39, 43] for the standard model. We also
studied the dependence of the Higgs signal strengths (𝜇) on
the parameters 𝑔󸀠1 and 𝜃

𝐵−𝐿
of the 𝑈(1)

𝐵−𝐿
model for the

Higgs-stralung process 𝑒+𝑒− → 𝑍ℎ. We obtain a bound on
(𝜇), which is consistent with that obtained for theATLAS [58]
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Figure 11: Higgs signal strengths 𝜇
𝑖
(𝑖 = 𝑏𝑏, 𝛾𝛾) for the process 𝑒+𝑒− → 𝑍ℎ as a function of 𝑔󸀠1. The dashed lines represent the experimental

precision limits and the solid and dot-dashed lines correspond to the 𝑈(1)
𝐵−𝐿

model with 𝑀
ℎ
= 125GeV and √𝑠 = 500, 1500GeV,

respectively.

and CMS [59] collaborations. In addition, the analytical and
numerical results for the total cross section have never been
reported in the literature before and could be of relevance for
the scientific community.
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