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Abstract 

In a previous publication [5] we introduced gauge invariant 

electromagnetic potentials. However the field equations that were 

derived for them turn out to be the Coulomb gauge field equations. This 

raises the question of the nature of these new gauge invariant potentials 

and its relations with Coulomb gauge potentials. In this paper we prove 

that this new potentials are in fact gauge invariant and identical with 

the Coulomb gauge potentials. In other words: the Coulomb gauge 

potentials are gauge invariant potentials that cannot be related to 

Lorenz gauge potentials because, contrary to current ideas, there is not 

anything like a gauge transformation relating both gauges. 

1. Introduction 

At the level of description of the world where Maxwell equations are 

meaningful, it is generally accepted on empirical grounds that signals 

propagate causally through the vacuum and that this causality is 

mathematically reconstructed with the help of retarded potentials arising 

from D’Alembert equations for the field strengths or the potentials. 
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However when potentials are used for the task of giving a mathematical 

representation of the generally accepted world view we face the problem 

of solving a pair of highly complex coupled partial differential equations 

(pde’s). Hence atrick is proposed: we choose a new differential condition 

to decouple the pde’s. This differential condition is known as “gauge” and 

the generally accepted mathematical doctrine around this kind of 

conditions is that they are an arbitrary choice made on the basis of the 

gauge invariance of the coupled pair of differential equations. Of course, 

when we select a gauge we can find a pair of D’Alembert equations for the 

potentials (Lorenz gauge) or a D’Alembert equation for the vector 

potential and a Poisson equation for the scalar one (Coulomb gauge) or 

any other kinds of equations (see, e.g. [1, 2]). According to generally 

accepted wisdom only the Lorenz gauge is physically sound, because in 

that gauge the physically relevant retarded solutions arise, while the 

other gauges are just mathematical devices to obtain a solution, being all 

of them equivalent in the sense that a group of gauge transformations 

can be constructed to go from one to the other. So, the physically sound 

gauge can be obtained from any gauge using a gauge transformation. 

This is the doctrine that we can find on almost any textbook on classical 

electrodynamics. However, as Jackson readily admits (see [2] “... the 

textbooks rarely show explicitly the gauge function ...”. A gap that 

Jackson’s quoted papers are trying to fill. 

There is an extensive literature on the subject matter of Maxwell 

equations space-time symmetries, where almost all philosophical, 

mathematical and physical aspects are worked in detail at every level of 

sophistication. However, as we have seen, its gauge symmetries are 

worth a brief mention in almost any textbook and if worked out in depth 

it is only in relation to gauge field theories like Yang-Mills in the 

framework of the standard model (see [1] for a good example of this and a 

neat Whig history of the subject) where the gauge transformations 

involved are more complex than the gauge transformations usually 

associated to Maxwell equations. 

However gauge symmetries are not trivial at all, indeed they are an 

odd presence because overdetermine the system of differential equations 
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in the sense that every boundary value problem is ill-posed due to the 

addition of an arbitrary continuous function (for its role in quantizing see, 

e.g. [3]). Overdetermination is a feature of any set of covariant and gauge 

invariant differential equations, being the Einstein equations a famous 

instance no less than Maxwell equations. But as we have pointed out 

previously it is not easy to find a treatment of the subject where a 

complete set of consistent differential conditions for a gauge 

transformation for Maxwell equations is given. It looks as if it were an 

obvious thing. Indeed most textbooks give such an idea: it is easy to find a 

gauge transformation to do any kind of job, substantiating the statement 

showing an easy to solve differential equation that the gauge function 

satisfies. This is what Kaku did in [3]. Jackson, in the cited references, is 

certainly clear about this point, offering a more detailed treatment. 

This ideology is annoying when one tries to relate different gauges. A 

natural suspicion about the existence of a gauge transformation that can 

realize such a job arises because of the freedom to choose a set of field 

equations that gauge invariance allows: in the Coulomb gauge the field 

equation for the scalar potential is, in most of the domains, elliptic, while 

in the Lorenz gauge the scalar potential satisfies a hyperbolic equation. 

Hence the typical gauge transformation for the Maxwell equations must 

relate, by adding a continuous function, an elliptic equation solution to a 

hyperbolic equation solution. Even leaving aside the fact that a Cauchy 

problem for an elliptic equation is always ill-posed (see e.g. [4]) while this 

is not the case for an hyperbolic equation (i.e.: we can prescribe Cauchy 

data for the scalar potential in the Lorenz gauge while this is not 

generally possible for the scalar potential in the Coulomb gauge but we 

can still find a function that relates them) the task looks difficult, but it is 

very important for many fields of physics (see e.g. [1] and references 

therein). Therefore one would expect a rigorous proof of this proposition 

at hand in the wide market of mathematical physics. However such a 

proof is not easy to find. Even the Jackson treatment is not really 

complete and a detailed proof of the existence of a gauge transformation 

is missing: he starts from the idea that the gauge function exists and is 

known once a solution to an inhomogeneous D’Alembert equation is 

given. 
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This article emerges from the conviction that a more detailed 

treatment of Maxwell equations gauge symmetries is required, specially 

when different gauges are involved. For that reason, we try to make the 

theory of gauge transformations for Maxwell equations clear using the 

lagrangian formalism and its associated apparatus of jet bundles. 

Another related reason is the set of difficult matters arising from the 

proof [5] that using Helmholtz Theorem we can leave aside any gauge 

transformation. Specifically, as Onoochin and Engelhardt have shown, 

the differential equations deduced using Helmholtz Theorem are 

equivalent to those of the Coulomb gauge, but it is a generally accepted 

doctrine that Coulomb gauge potentials can be the object of a gauge 

transformation while the potentials introduced in [5] cannot. This is 

indeed a result that appears because there is not available a complete 

general treatment of Maxwell equations gauge symmetries. In this paper 

we shall show that Onoochin and Engelhardt are right, but that [5] is 

right too. That is: the use of the Helmholtz Theorem is just another 

representation of the Coulomb gauge, but one where one can prove that 

Coulomb gauge symmetries can be eliminated and the potentials are 

gauge invariant. Besides we are going to give a substantial answer to the 

question of the existence of a gauge transformation that relates the 

Coulomb and Lorenz gauges (see [5]). 

To achieve the goals we have described we use the well known fact 

that Maxwell equations are lagrangian equations, therefore we can 

introduce the invariance ideas directly from the lagrangian formalism to 

work out its gauge symmetries leaving aside the space-time symmetries 

and the most general but cumbersome Lie methods for treating 

symmetries. Indeed, if for us the important concepts are those of s-

equivalence and s-equivariance (see def. 3 and def. 4 below), the Lie 

methods are not really useful, because with them we can build 

symmetries, but when we go from one gauge to another is not a symmetry 

transformation what is involved. Hence, we speak of gauge symmetries 

and s-equivariance when the respective lagrangian is s-equivariant under 

a group of transformations that we can construct, a group that relates 

solutions of the field equations derived from the lagrangian. And we shall 

speak of gauge groups and s-equivalence when we try to relate different 
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lagrangians with the help of a gauge group, a gauge group whose task is 

to relate solutions to different field equations; in our case the most 

important instance is a gauge transformation that relates a solution to a 

Poisson type equation to a solution to an inhomogeneous D’Alembert 

equation. 

The organization of the paper is as systematic as we can, trying at 

every step to make our hypothesis clear. For this reason we have used 

definitions, lemmas and theorems to present our results, even if many of 

them are quite trivial or obvious: it is against obviousness that our 

assault is directed. 

So in section II we present most of the definitions that we found 

useful: we say what a jet bundle is, what are to a section, an equivalence 

problem, the concepts of s-equivariance and s-equivalence to make the 

paper a bit self-contained. We believe that this is almost all the 

mathematical machinery we need. So in section III we leave generality to 

introduce the Maxwell lagrangian and the manifolds that Coulomb and 

Lorenz gauges define with its respective particular lagrangians. Finally, 

we solve the equivalence problems for both, showing its gauge groups by 

giving the explicit equations that the gauge function satisfies. All these 

things are more or less known except the proof that in the Coulomb gauge 

the potentials are gauge invariant; a result that helps us to clarify the 

use of the Helmholtz Theorem as applied in [5]. However with these 

results assured we may advance towards our main result: there is no 

gauge transformation connecting the Lorenz and Coulomb gauges. In the 

conclusions, we present our understanding of this result. 

2. Mathematical Framework and Statement of the Problem 

2.1. The 1-jet bundle 

Let us take a triple MBMB ,,)( π=  as a fiber bundle i.e. a locally 

trivial fibred manifold such that the map MB →π :  between the 

differentiable manifold B and the differentiable base manifold M has a 

surjective tangent map 
*

π  with split kernel on the TB, the tangent space 

to B (see e.g. for general [6, 7, 8] and for short introductions [9, 10]). We 
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shall suppose that there exist differentiable sections BMf →:  of, 

,)(MB  which, of course, satisfy .Midf =πo  We use the symbol )(BS  for 

the space of sections of our fiber bundle. It is in the space of sections that 

we define an equivalence relation 1
pR  in the following way: take two 

sections )(, BSf ∈γ  and say that both are -1
pR related if and only if, 

there is a point Mp ∈  at whose neighborhood we have: 

)()( pfp =γ  

MToverallf p**
=γ  

So we have a quotient space 
1

)( pRBS  for whose elements the symbol 

fjp
1  is used. We shall call each one of these classes “1-jets” of f. Next we 

have the: 

Definition 1. The first jet bundle of )(BS  is the manifold: 

)}(,{)( 11 BSfMpfjBJ p ∈∈=  

We take the local representation: FMBJ ×=)(0  where, as usual, 

)(1 pFp
−π=  is the fiber over ,Mp ∈  such that at each point there is an 

isomorphism of each pF  to F. Higher order jet bundles are defined 

likewise. All this stuff is abstract however we shall work with local 

representatives. For that reason, we introduce on each local chart of 

)(1 BJ  an adapted coordinate system of the form: 

j
i

j
i

m
n

m
n

m
n AAxdefAAAAAAxx ;;...,,...,,,...,;...,,;...,, 1

11
1

1
1 =  

So locally we can write KFMBJ ××=)(1  with Mdim  

.dim,dim, nmKmFn ===  Of course, a local coordinate system for 

)(0 BJ  can be written as .; j
i Ax  For a given local section: 

)(: 11 BJMfj →  we shall have: 
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....,,1....,,1,)(;)(; mjnix
x

f
xfx i

i

j

i
j

i ==
∂

∂
 

Here we have already introduced the shorthand notation we will use 

throughout the article. So we can see that the section f annihilates the 

contact 1-forms: 

i
j
i

j
j dxAdAg −=  

i.e. .0* =jgf  A partial differential equation of the first order is in this 

framework, an immersed submanifold, but we are more interested in 

lagrangian functions. 

2.2. The equivalence problem 

There are many approaches to discussing symmetries of differential 

equations but the lagrangian method and its Hamiltonian counterpart 

are by far the most popular in Physics and sometimes are much better 

adapted than Lie methods, that deals directly with the differential 

equations, to treat matters of symmetry because while using Lie 

methods, it is possible to find symmetries accepted by the differential 

equations that are not symmetries of the lagrangian functional (see, on 

the subject of Lie symmetries e.g. [8]), we can be safe that all symmetries 

accepted by the lagrangian functional are accepted by the Euler-

Lagrange equations of the problem, simplifying its handling because we 

can work directly with the lagrangian functional and not with the 

differential equations themselves. Besides using Noether Theorem, it is 

possible to relate symmetries to conservation laws. Therefore to discuss 

symmetries the lagrangian approach can be invaluable, as we shall see. 

So let us suppose that we have a lagrangian ,)(: 1 RBJL →  with R the 

real number system and a lagrangian functional: 

dVAAxLfjfl j
i

j
i

V
);;()( *1

∫=  (1) 

Where V is a compact subset of M, so we are leaving aside radiation 

problems and dV is the volume element of M which we can write down in 

local coordinates as: ...,,21 ndxdxdxdV =  The variational problem is 
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always around a local section of the 1-jet bundle, so we have written 

Lfj *1  to point out this fact, but we are more interested in questions 

about the invariance properties of the lagrangian functional, so we have 

to deal with local maps )()(: 11 BJBJ →ρ  which are given by: 

);;(,);;(,);;( j
i

j
i

j
i

j
i

j
i

j
i

jjj
i

j
iii AAxAAAAxAAAAxxx ===  (2) 

We can see (2) as a member of a family of transformations that are 

close to a Lie group, but that is not really important at this point. For our 

purposes, a neat statement of the equivalence problem has been given by 

[11]: 

“Equivalence Problem: Given two Lagrangian functions ][uL  and 

][uL  when does there exist a change of variables.. (2).. taking L to L ?. If 

so, how does one explicitly construct the change of variables”? 

In this citation we have inserted the explicit reference to our 

transformation (2). We pretend to solve a particular equivalence problem 

in this article for the case of Maxwell’s equations gauge transformations 

but we shall not use Olver methods but a direct approach. To advance we 

need to define the behavior of the lagrangian under sets of 

transformations. The concept which we shall find useful is the concept of 

s-equivalence. 

Definition 2. Given two lagrangians L and L  we say that they are 

s-equivalent if and only if, there exists a n-vector function 

,)(: nl RBJF →  with an arbitrary entire number, such that 

divFLL +=  where div is the divergence operator in terms of the total 

derivative operators ...+
∂

∂
+

∂

∂
=

Aj
A

x
D j

i
i

i  

Most commonly the vector function F is supposed with a domain in 

,nR  however this doesn’t seems to be a necessary condition. Obviously 

when so defined the total derivative operators reduce to ordinary partial 

derivatives. Olver [11] did not use a name for s-equivalence but calls a 

divergence a “null lagrangian”, however [12] works with def. 2. A slightly 
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different sense is used by [13]. We shall not go into a critical discussion of 

the s-equivalent concept. For us def. 2 is enough. See, however [14] chap. 

V section 2. 

The importance of s-equivalence relies in the fact that two s-

equivalent lagrangians have the same Euler-Lagrange (EL) equations. So 

if a transformation like (2) amounts to s-equivalence of lagrangians there 

is no change in the variational problem and the transformation is a 

symmetry of the EL equations. If lagrangians are not s-equivalents the 

EL equations change in form, showing that the transformation is not one 

of its symmetries. When dealing with transformations like (2) the 

lagrangian is the horizontal n-form: )(*1 LdVfj  however in this paper 

such generality is not required because we shall not consider 

transformations of the base manifold coordinates, therefore we shall work 

with the lagrangian functions only. In definition (3) the lagrangians are 

arbitrary functions, but what we need is invariance, i.e., we need that 

both lagrangians share the same functional form. Hence let us introduce 

the obvious: 

Definition 3. We say that a lagrangian L is s-equivariant if and only 

if, under the action of the group representation )()(: 11 BJBJGH →×  

of the Lie group G it preserves its functional form up to a divergence; i.e. 

.* divFLLH g +=  

This definition will be our working definition. Now we must introduce 

the kind of transformations we are interested in. 

Definition 4. When the transformations involve arbitrary functions 

we call them “gauge transformations”. 

Gauge transformations are not uncommon in pure mathematics, 

indeed many partial differential equations accept gauge symmetries; 

most notably inhomogeneous linear partial differential equations. But 

many others accept these symmetries too. The important set of explicit 

gauge transformations for us is the one given by: 

),;;;(,);;;(, k
i

kj
i

j
i

j
i

j
i

k
i

j
i

j
i

jj
ii FFAAxAAFAAxAAxx ===  (2a) 
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Usually referred to as “internal transformations” because they only 

transform the A coordinates. In the transformation (2a) we have 

explicitly introduced a set of arbitrary functions and its derivatives, but 

we must be clear that, using def. 4, we can say that when a lagrangian 

admits any sort of transformations e.g. (2) the EL equations are not only 

generally covariant, but gauge invariant too. 

2.3. The Maxwell’s equations 

Let us now take 4== mn  and introduce Gaussian units for the 

Maxwell’s equations. It is well-known that Maxwell’s equations without 

taking into account constitutive relations are generally covariant for 

transformations of the sort: ,)( iii xxx =  included in (2) (see e.g. [14, 15 

and 16]. But when the Lorentz ether relations are taken into account the 

symmetry group of space-time diffeomorphisms is broken, leading to 

something like the Lorentz symmetry group (on constitutive relations see 

e.g. [16]. So the gauge symmetries of the Maxwell’s equations arising 

from covariance under space-time diffeomorphisms are lost, but there is 

yet another transformation of the general form (2a) that is a gauge 

symmetry not broken when we choose a set of constitutive relations. This 

transformation looks very innocent and quite simple, but it implies a lot 

of consequences in many fields related to electromagnetic theory. Because 

we want to work in the vacuum we suppose that the Lorentz ether 

constitutive relations are applied, therefore the polarization and 

magnetization vectors are zero. That said the transformations we are 

interested in are given by: 

F
c

AAjFAA j
jj

4
44 1

,3...,,1, ∂−==∂+  (3) 

We take the 4 coordinate as time. In these transformations 

RRF →4:  is an arbitrary function. We are not going to consider any 

combinations of (2) with (3) see, e.g., [16]. It is routine to prove that (3) 

are indeed a group but an infinite dimensional one which we call gG  for 

short. This group is a group of contact transformations because an easy 

calculation shows that transformations (3) formally preserve each contact 

form .ig  The equivalence problem becomes now the problem of 
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determining the group, ,gG  i.e. a class of functions F for a given 

lagrangian. This is the final statement of the problem we propose to 

solve: given a lagrangian, how does one explicitly construct the gauge 

transformations (3) that leave it s-equivariant?. These transformations 

are symmetries of the EL equations. This is a very general formulation 

still so at the end of section III.1 we shall give a more refined statement 

of our problem. 

Transformations (3) are not the most general gauge transformations. 

In the theory of gauge fields, as introduced by Yang and Mills, a gauge 

field is required to obtain the invariance of the lagrangian in front of so-

called “local gauge transformations” (see e.g. [3] or [15] chap. 10). Hence 

if we have N fields mϕ  with transformation law 

k
imk

N
k

m xg ϕ=ϕ ∑ = )(1  (3a) 

The lagrangian will be gauge invariant if and only if gauge fields jA  

are introduced with a specific transformation law of which (3) is a special 

case. This general transformation law will not be of our concern here, 

hence we limit the concern of this paper to (3), which we shall call 

“additive gauge transformation”. 

Indeed if we start from the Maxwell’s lagrangian the problem is quite 

trivial because the lagrangian is fully invariant in front of (3), hence (3) is 

a set of gauge symmetries of the EL equations. However, just like when 

we use constitutive relations to break up the general group of 

diffeomorphisms there is a widely-used procedure to break the invariance 

of Maxwell’s equations in front of (3). Such procedure is known as “gauge 

fixing”. As we shall see when we choose a gauge we can solve the 

equivalence problem by specifying a class of functions F that define a 

group of gauge symmetries for our lagrangian, leaving invariant the EL 

equations. 

3. Choosing a Gauge as a Sieve for Gauge Transformations 

3.1. The lagrangians 
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Let us put forth the Maxwell’s lagrangian using the potentials only; 

not the field strengths: 

∑∑∑ 










∂

∂
+

∂

∂∂
−











∂

∂
=

2

4

3

2
4

4
3

24
3 12

x

A

cx

A

x

A

cx

A
L

i

i

i

i
iim  

∑∑∑
π

+πρ−










∂

∂
∈− i

j
i

k

j

ijkjki
JA

c
A

x

A 34
2

33 4
4  (4) 

We have refrained from using Gibbs 3-dimensional notation to write 

down this lagrangian because we want to show the local section on the 

fiber coordinates, which in the lagrangian (4) has been inserted already 

using, as an abuse of notation, the A’s instead of the f used in section II.1; 

the symbol ijk∈  means the Levi-Civita pseudotensor, the indexes run 

from 1 to 3 unless otherwise stated. To simplify even more we shall put: 

AA def=4  and tdex f=4  and instead of subscript 4 we would rather 

use subscript when we refer to a time partial derivative. With this 

notation the lagrangian functional (1) is known as an action functional. A 

straightforward direct calculation shows that (4) is exactly invariant 

under transformations (3) when the matter fields iJ,ρ  are not 

considered and up to a divergence when they are included and satisfy the 

continuity equation. Hence it is clear that charge conservation is a 

constraint deduced not only from field equations, but more fundamentally 

from gauge invariance, as is well known. Our immediate interest is on 

the procedures of symmetry breaking induced by choosing a gauge. For 

that purpose we introduce the following definition: 

Definition 5. A gauge is a submanifold of .)(1 BJ  

Because of the way we defined )(1 BJ  any one of its submanifolds is 

sectionable. Clearly this is not the definition one learns form 

electromagnetic theory textbooks. Hence to break the general gauge 

symmetry of Maxwell’s equations we must include the general lagrangian 

in one of the submanifolds by the gauge defined. Now let us introduce the 
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most important gauges we shall deal with: the Coulomb and Lorenz 

gauges. 

Definition 6. The Coulomb gauge is a submanifold of )(1 BJ  defined 

by: 

}0)({
3

1

1 ∑ =
=∈=

i

i
iC ABJpS  

Definition 7. The Lorenz gauge is a submanifold of )(1 BJ  defined 

by: 







 =+∈= ∑ =

3

1

1 0
1

)(
i t

i
iL A

C
AMJpS  

Now we know that the Coulomb gauge lagrangian is a function such 

that: ,: RSL cc →  while the Lorenz gauge lagrangian is such that: 

.: RSL LL →  There are two obvious paths to write down the Maxwell’s 

lagrangian on each of the manifolds defined by the gauges, the most 

simple, we believe, is to find the way to introduce the condition within the 

Maxwell’s lagrangian using s-equivalent lagrangians where the condition 

can be inserted, i.e., we use a map to the corresponding submanifold i.e.. 

something like .)(: 1
CSBJu →  The other path involves the use of 

Lagrange multipliers which are useful to make the calculations even 

more laborious. In both cases what is involved is the inclusion map, but 

in the first procedure it is explicitly defined. In this paper we shall follow 

the first path only because with quite simple transformations we can find 

the right lagrangians. Let us show how. 

There are three terms in the Maxwell’s lagrangian that do not change 

under additive gauge transformations: the magnetic term and the 

coupling terms while the continuity equation remains valid. Hence we 

must look at the first three terms only. As a matter of fact the most 

important terms are those that define the electric field strength. 

Let us write the lagrangian (4) as: 



A. CHUBYKALO et al. 
14 

2
33

2
3

2

2
3 1
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∂
∈−











∂

∂
+








∂

∂
= ∑∑∑ ∑

k

j

jk ijki

i

i
i

iM x

A

t

A

cx

A
L  












∂

∂

∂

∂
+

π
+πρ− ∑∑ =

3

1

3 24
4

i
i

i

i i
i

x

A

t
A

c
JA

c
A  (5) 

In this lagrangian we have dropped the divergence terms. This new 

lagrangian is s-equivalent to Maxwell’s lagrangian, hence nothing new is 

involved. But if we look at the last term we can see that the inclusion in 

the set CS  is now an easy task that gives us: 

2

33

2

2
1















∂

∂
+








∂

∂
= ∑∑ t

A

cx

A
L

i
C

ii
i

C
C  

∑∑ ∑
π

+πρ−













∂

∂
∈−

33
2

3 4
4

i i
i
CCi

k

J
c

jk ijk JA
c

A
x

A
 (6) 

In this new lagrangian, which we call “Coulomb lagrangian”, the 

gauge has been taken into account so we have included our original 

Maxwell’s lagrangian on an open subset of the submanifold CS  as 

desired. Following the same path we can arrive at the “Lorenz 

lagrangian”, which is defined on an open subset of LS  and is of the 

explicit form: 

∑ ∑
∂

∂
−














∂

∂
+








∂

∂
=

3 3

2

2

2

2

2

2
21

i i L

i
L

i

L
L

t

AL
A

ct

A

cx

A
L  

∑∑ ∑
π

+πρ−














∂

∂
∈−

33 3 4
4

i i
i
Li L

k

j
L

jk ijk JA
c

A
x

A
 (7) 

The Coulomb and Lorenz lagrangians are not generally gauge 

invariant, hence we can state more precisely our problem: “Given the 

Lorenz and Coulomb lagrangians, how does one construct its groups of 

gauge symmetries if they exist”? Another question that we can solve is if 
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there exists a gauge transformation s-relating the Lorenz and Coulomb 

lagrangians. These are our tasks in the next section. 

3.2. Gauge symmetries for Coulomb and Lorenz lagrangians 

The procedure is going to be direct, we insert the transformations (3) 

on each lagrangian to immediately see that they are not s-equivariant for 

a general additive group of gauge transformations, hence we impose some 

obvious constraints on the gauge function F that produce s-equivariance. 

These constraints give us the class, with trasfinite cardinality, from 

which function F must be taken to maintain s-equivariance. Therefore we 

obtain the class of gauge symmetries of our lagrangian and of our EL 

equations. We are going to enunciate our results as theorems for 

facilitating discussion. In all that follows the functions involved are of 

class ),( mnN RRC  with N as large as desirable with the adequate 

integers n, m and all derivatives at all orders commute. 

We start with a pair of easy lemmas: 

Lemma 1. Under the action of the gauge group gG  the Coulomb 

lagrangian RSL cC →:  is given by: 

FA
c

AAAALLH tiCi i
i
CtCi

i
CCCCF ∂∂∂+∂∂= ∑ =

3

1

2
),,,(*  

23

12

3

12
)(

12
F

C
FA

c i itit
i
Ci t ∑∑ ==

∂∂+∂∂∂−  (8) 

Proof. It is a straightforward direct substitution of the gauge 

transformations (3) in the Coulomb lagrangian (6) making use of the 

Coulomb condition where needed. QED 

Using well-known identities we can find the following s-equivalent 

lagrangian to (8): 

Ct
i
CtCi

i
CCCCF AF

c
AAAALLH ∆∂+∂∂=

2
),,,(*  

kdiv
11
2

3

12
+∂∆∂+∂∂∂− ∑ =

FF
c

AF
c

tt
i
Ci itt  (9) 
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With the 3-vector function K is given by its Cartesian components: 

t

F

x
A

ct

F

xt

F

ct

A

t

F

C ii

i

∂

∂

∂

∂
−

∂

∂

∂

∂

∂

∂
+

∂

∂

∂

∂ 111
K

2i  (10) 

We need one more lemma related to the invariance of the gauge 

submanifolds under the action of the gauge groups, otherwise if the group 

action does not leave invariant the gauge submanifolds we can go away 

from it along a group orbit, hence along this orbit the corresponding field 

equations are not satisfied, so the group is not a symmetry group: 

Lemma 2. The Coulomb gauge manifold cS  is invariant under the 

gauge group action if and only if, F is a time dependent solution to 

Laplace equation. 

Proof. When we apply a general element of the gauge group gG  to 

the gauge manifold we obtain: 

FAA
i

i
Ci

i
Ci i ∆+∂=∂ ∑∑ ==

3

1

3

1
 (11) 

Now if the function F is a time dependent solution of Laplace 

equation the Coulomb gauge is invariant and if the Coulomb gauge is 

invariant ,)i.e.(
3

1

3

1∑ ∑= =
∂=∂

i i

i
Ci

i
Ci AA  F must be a time dependent 

solution of Laplace equation as can be seen from (11). QED 

Theorem 1. The Coulomb lagrangian is s-equivariant for two non-

zero solutions C
j
CC

j
C

AAAA ,,,  of the field equations if and only if, its 

gauge group is given by: 

cc
j

cj
C

j
C AA

x

F
AA =

∂

∂
+= ,  (12) 

Where RRFc →3:  is any time independent solution of Laplace 

equation? We shall call this gauge group the “Coulomb Gauge Group” cG  

Proof. We can see that any element of the Coulomb group leaves 

invariant the Coulomb lagrangian, hence, the conditions are sufficient for 

s-equivariance. Now, if any element of the gauge group acts on the 
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Coulomb manifold the Coulomb lagrangian is given by lemma 1, so, if it is 

s-equivariant, the function F must satisfy: 

0
112
2

3

12
=∂∆∂+∂∂∂−∆∂ ∑ =

FF
c

AF
c

AF
c tt

i
Ci ittCt  (13) 

Because of the definition of Coulomb manifold the second term is zero 

and because of lemma 2 the third term is zero too (we suppose F is as 

smooth as desired). Hence just the first term survives. But the laplacian 

of CA  cannot be arbitrarily defined because it is given by the field 

equations, therefore the time derivative of F must be zero. QED 

Hence from Theorem (1) is clear that 0=iK  for all i, so there are not 

Noether charges conserved under the action of the Coulomb gauge group 

.CG  And, probably more important, there are not surface terms to be 

considered when the boundary value problems are considered. This is a 

feature of the Coulomb gauge. 

Now we shall make the same treatment for the Lorenz gauge 

lagrangian. 

Lemma 3. Under the action of the gauge group gG  the Lorenz 

lagrangian RSL LL →:  is given by: 

Pdiv
22

),,,(* 00200
+∂∂−∂+∂∂= FF

c
FA

c
AAAALLH tttL
i
LtLi

i
LLLLF  (14) 

We have used t
c

∂−∆=
2

1  for the D’Alembert operator. The 3-vector 

function P is given by its Cartesian components: 

AF
c

FF
c

AF
c

P ittit
i

tti ∂∂−∂∂∂+∂∂= 000202

212  (15) 

Proof. It is a straightforward direct substitution of the gauge 

transformations (3) in the Lorenz lagrangian (7) making use of the 

Lorenz condition where needed. QED 
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Lemma 4. The Lorenz gauge manifold LS  is invariant under the 

gauge group action if and only if, the function 0F  is solution to 

D’Alembert equation. 

Proof. Again it is straightforward. We apply a general element of the 

gauge group gG  to the Lorenz gauge manifold condition 

0
3

1

3

1

11
FA

c
AA

c
A Li t

i
LiLt

i
Li i +∂+∂=∂+∂ ∑∑ ==

 (16) 

So the condition is sufficient, because if 0F  is a solution to 

D’Alembert equation the Lorenz gauge manifold is invariant and if the 

Lorenz gauge manifold is invariant, then 0F  is a solution to D’Alembert 

equation. QED 

Theorem 2. The Lorenz lagrangian is s-equivariant for two non-zero 

solutions L
j
LL

j
L

AAAA ,,,  of the field equations if and only if, its gauge 

group is given by: 

t

F

c
AA

x

F
AA LL

j

j
L

j
L ∂

∂
−=

∂

∂
+= 00 1

,  (17) 

Where RRF →4
0 :  is any solution to D’Alembert equation? We 

shall call this gauge group the “Lorenz Gauge Group” LG  

Proof. The condition is clearly sufficient using lemma 3. From lemma 

4 we know that 0F  must be a solution to D’Alembert equation, so it is a 

necessary condition for s-equivariance. But, again using lemma 3 we can 

see that if the Lorenz lagrangian is s-equivariant we must have 

0
1222

000020 =∂





 ∂−=∂∂−∂ FF

c
A

c
FF

c
FA

c ttLtttL  

The first factor cannot be zero by hypothesis, so 0F  must be a 

solution to D’Alembert equation. QED 

For the Lorenz gauge there is an explicit non zero conserved Noether 

current with components .iP  
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We can see that the “Coulomb Gauge Group” leaves invariant the 

scalar potential in the Coulomb gauge, while this is not the case for the 

scalar potential of the Lorenz gauge. This is a most unexpected result, 

showing that if the electric and magnetic fields are “real” fields because 

they are gauge invariant, hence the scalar potential in the Coulomb 

gauge must share this ontological status being “real” as well. If this is the 

case there must be physical effects. But if this is correct and the Coulomb 

scalar potential is a “real” physical quantity and the gauge invariant 

criterion of “reality” is right, on these philosophical grounds we can assert 

that there is not any additive gauge transformation relating a “real” 

quantity the gauge invariant Coulomb potential-with a fictitious one like 

the Lorenz non-gauge invariant scalar potential. Now we must prove that 

this is the case within the mathematical framework that we have 

introduced all along this article. As previously we start with a few 

lemmas. 

Lemma 5. There exists an invertible additive gauge transformation 

(3) such that 

,: Lc SS →µ  

given explicitly by: 

,
1

, F
c

AAFAA tLCi
i
L

i
C

∂−=∂+=  (18) 

if and only if the gauge function F satisfies 

CtLt A
c

FA
c

F ∂=∂=∆
1

...
1  (19) 

Proof. It is a straightforward calculation using the conditions 

defining the Coulomb and Lorenz gauge manifolds. So let’s suppose that 

F exists, therefore we can substitute (18) in the Lorenz gauge condition to 

get: 

Ct
i
Ci iLt

i
Lii

A
c

FAA
c

A ∂+−∂=∂+∂ ∑∑ ==

11 3

1

3

1
 (20) 

And in the Coulomb gauge condition to obtain: 
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F
c

AA
i

i
Li

i
Ci i ∆+∂=∂ ∑∑ ==

13

1

3

1
 (21) 

Hence if F exists and relates both gauges when the transformation 

acts on the manifolds, it must transform one manifold into another, this 

can be done if (19) are satisfied as can be seen by direct substitution of 

(19) in (20) and (21). Hence (19) is sufficient. Now, if the condition is 

necessary its violation implies that no gauge transformation exists 

between the manifolds. If we see at (20) and (21) we discover that if the 

conditions are not satisfied the gauge transformation transforms the 

Coulomb (or Lorenz) manifold into another one. So (19) is necessary. QED 

Conditions (19) are formal conditions on the gauge function F, a 

function that must be able to take us from the Lorenz gauge manifold to 

the Coulomb gauge manifold and conversely. Jackson deduced the 

condition for the transformation from the Lorenz to the Coulomb gauge 

(see [2] Eq. 3.8) using explicit solutions to the differential equations, but 

he did not deduce the conditions for the inverse transformation. These 

conditions define a gauge group of transformations which we shall call 

LCG  for short. But these conditions are not the whole set of conditions: a 

few more are added when we impose the condition that the Lorenz 

lagrangian is s-equivalent to the Coulomb lagrangian through the same 

gauge function F. 

Lemma 6. Under the action of the group LCG  the Coulomb 

lagrangian becomes (the magnetic term is clearly gauge invariant, while if 

we want charge conservation the coupling terms are invariant too, so we 

can omit them from the analysis): 

FA
ct

A

cx

A
LH tiLi i i

i
L

i
i

L
CF ∂∂∂−














∂

∂
+








∂

∂
= ∑ ∑∑ =

3 3

1

2

2

3
2

* 21
 

...
2

)(
2 3

12

3

1

2

2
+∂∂∂+∂∂+ ∑∑ ==

FA
c

F
c

ii
i
Li ti ti  (22) 

Proof. Straightforward direct substitution of (18) in the Coulomb 

lagrangian. QED 
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Up to a divergence we can write down (22) as follows: 

2
3

2

2
3* 1

∑∑ 













∂

∂
+








∂

∂
=

i

i
L

i
i

L
CF t

A

cx

A
LH  

Odiv...
212 2

3
++∂∂+∂∆








∂

∂
−+ LtttL AF

c
F

t

F

c
A

c
 (23) 

Where the 3-vector O has Cartesian components: 

i
LttttittiLi AF

c
F

c
FF

c
FA

c
O ∂∂+∂+∂∂∂+∂∂−=

222

2222  (24) 

Theorem 3. There is no gauge function F, for non-zero non-trivial 

(trivial means )LC AA =  solutions in each gauge, such that the Coulomb 

lagrangian becomes s-equivalent to the Lorenz lagrangian. 

Proof. Directly inspecting (23) we can see that if such a function 

exists we must have: 

Ltt AFF −=∂=∂∆ ,0  (25) 

hence: 

0=∆ LA  (26) 

However, conditions (25) are in open contradiction to lemma 5 and 

condition (26) is contradictory with the field equations of the Lorenz 

gauge. Hence no such a function exists. QED 

Lemma 7. Under the action of the group LCG  the Lorenz lagrangian 

becomes (same caveat that in lemma 6): 

CtC
i

i
C

i i

C
LF AA

Ct

A

Cx

A
LH 2

3

2
3

2

3 2
* 21

∂−














∂

∂
+








∂

∂
= ∑∑  

∑∑
==

∂∂+∂∂∂−
3

1

2

2

3

1

)(
22

i
ti

i
tiCi F

C
FA

C
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FA
C

FA
C

tCii
i
C

i
t

3

4

3

1
2

22
∂+∂∂∂+ ∑

=

 

FF
C

AF
C

ttctt
3

5

2

4

22
∂∂−∂∂+  (27) 

Proof. Just like before: a straightforward direct substitution of (18) 

in the Lorenz lagrangian. QED 

We can find an s-equivalent lagrangian to (27) given by: 

FF
c

A
ct

A

cx

A
LH ttC

i

i
C

i i

C
LF ∂∆






 ∂−+















∂

∂
+








∂

∂
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121
3

2

2

3 2
*  

FF
c

A
c

AF
c

A
C

ttCCttC
32

2

1212
∂






 ∂−+∂






 ∂−−  (28) 

The Noether current is quite the same as (24). To get (28) the 

Coulomb gauge condition is used. 

Theorem 4. There is no gauge function F for non-zero non-trivial 

solutions, such that the Lorenz lagrangian becomes s-equivalent to the 

Coulomb lagrangian. 

Proof. In the expression (28) we factorize ,
12







 ∂− F

c
A

c tC  a term 

that cannot be zero, to obtain the condition of s-equivalence: 

0
11 23

2
* =∂−∂+∂∆ Cttt A

c
F

c
F  (29) 

a condition in conflict with lemma 5. Let us elaborate on this point. We 

can add the time derivative of the equation CtAc
F ∂=

1  to (29) to obtain: 

Ctt A
c

F 22
∂=∂∆  (30) 
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Hence we can write down taking into account lemma 5: 

.0)2(2 =−∂ LCt AA  If we remember that: F
c

AA tLC ∂−=−
1  we can 

get: 0)(22 =−∂+∂ LCtCt AAA  in the form: 

Ctt A
c

F
c

23

2

11
∂=∂  (31) 

Now we insert equation (31) in (29) to obtain: 0=∂∆ Ft  which is in 

obvious conflict with the equation: Ltt A
c

F 21
∂=∂∆  except in case: 

,02 =∂ Lt A  but in that case there is nothing to prove, because the field 

equations of the Lorenz gauge coincide with those of the Coulomb gauge. 

QED 

In this way we have showed that there is not an additive gauge 

transformation relating the Coulomb gauge manifold and the Lorenz 

gauge manifold. Taking a close look at the proofs we can identify the 

reason: the gauge function F is clearly overdetermined by the set of 

conditions that arise from (19) and the s-equivalence of the lagrangians 

involved. But Maxwell’s equations are lagrangian equations and its 

symmetries can be treated at this level of abstraction. A clue to the result 

must have been seen in the fact that an elliptic partial differential 

equation like the equation for the scalar potential in the Coulomb gauge 

cannot be equivalent to a hyperbolic partial differential equation the 

equation for the scalar potential in the Lorenz gauge as was pointed out 

by [18 and 19] in his treatment of the question. Another clue was the 

proof that there exist potentials invariants in front of gauge 

transformations, where a prominent role was played by Helmholtz 

Theorem [5]. However, as can be easily showed, from the point of view of 

the lagrangian formalism the lagrangian obtained using the Helmholtz 

Theorem is s-equivalent to the Coulomb lagrangian as was showed 

directly by [20] for that reasons no new things can arise from its use, 

except the proof of gauge invariance of the potentials. Here we have 

obtained the exact group of gauge transformations that leave invariant 

the Coulomb lagrangian, a group that cannot give rise to any 

overdetermination of the boundary value problem for the potentials 
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because the scalar potential is invariant, while the arbitrary function 

added to the vector potential is a harmless time independent solution of 

the Laplace equation; which is like adding a solution of the homogeneous 

problem: i.e. we obtained a subset of the general solution of the 

inhomogeneous D’Alembert equation. However, as we showed in [5] using 

the Helmholtz Theorem we can eliminate even this gauge symmetry 

using the solenoidal component of the vector potential. Hence we have 

proved that in the Coulomb gauge we can leave aside all gauge 

symmetries from the differential equations. 

Conclusions 

If our result is quite correct and can be extended to any gauge, it does 

not mean that some empirically well-established results e.g. special 

relativity are flawed. It means that some suppositions related to 

mathematical matters were not seriously considered in the past. An 

analogy that could be useful is as follows: no one believes that any 

solution to Einstein equations is a physically relevant model of the actual 

universe, however it does not mean that Einstein equations are flawed or 

that our universe is the Godel universe. We think that our result shows 

that Maxwell equations with a gauge included represents different 

mathematical models of the world that can be used in different 

situations. In a situation where the velocity of the particles or the field 

propagation is at play the Lorenz gauge is the correct choice. So radiation 

theory is fully worked in the Lorenz gauge. However when the 

phenomena are static or quasistatic the Coulomb gauge could be the right 

choice. What Maxwell equations cannot give us is a unitary 

representation of the world able to accommodate all our prejudgments. 

In this paper we have achieved the following results: 

(i) We have calculated the explicit gauge groups for the Lorenz and 

Coulomb gauges solving an equivalence problem for each of them. 

(ii) We have proved that there is not any gauge transformation 

relating the Coulomb and the Lorenz gauges. 
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(iii) We made clear the role of the Helmholtz Theorem in classical 

electrodynamics: it provides a way to eliminate the gauge symmetry of 

the Coulomb gauge. 

Therefore we have extended and refined the results of [5]. Hence 

Onoochin and Engelhardt are right: the Helmholtz Theorem is not 

different from the Coulomb gauge, its role is to provide a way to show 

how to leave aside gauge symmetries. So, indeed, we have proved that in 

the Coulomb gauge we can obtain gauge invariant potentials, which is 

reason enough to review our criteria of “reality”, because the potentials in 

the Coulomb gauge are as real as the field strengths according to 

generally accepted ideas. 
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