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§1. Introduction. Let U := (Un)n>0 and V := (Vn)n>0 be two linearly
recurrent sequences of integers. Recently, the following variation of a problem
of Pillai has been studied. Find all non-negative integer solutions (n,m, n1,m1)
of the equation

Un − Vm = Un1 − Vm1 , (n,m) 6= (n1,m1). (1)

In particular, find also all integers c which can be written as the difference
between an element of U and an element of V in at least two different ways.
Pillai [12], studied this problem when U and V are the sequences of powers of a,
and powers of b, respectively, where a, b are two given coprime integers different
than 0, ±1. It has been shown in [4] that, under some technical but natural
conditions, equation (1) has only finitely many non-negative integer solutions
and all of them are effectively computable. This version of Pillai’s problem was
initiated in [7] by Ddamulira, Luca and Rakotomalala who studied equation
(1) when U and V are the sequences of Fibonacci numbers and powers of 2,
respectively. Many other particular cases have been studied. See, for example
[3], [6], [8]. We recall that the Fibonacci sequence (Fn)n>0 is given by F0 = 0,
F1 = 1 and the recurrence formula

Fn+2 = Fn+1 + Fn for all n ≥ 0.

Let (Pn)n>0 be the Pell sequence given by P0 = 0, P1 = 1, and the recurrence
formula

Pn+2 = 2Pn+1 + Pn for all n ≥ 0.

Their first terms are,

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, . . .

and
0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, . . . ,
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respectively. In this note, we study another particular case of this problem,
namely equation (1) with Fibonacci and Pell numbers. More precisely, we look
at the equation

Fn − Pm = Fn1 − Pm1 (2)

in integer pairs (n,m) 6= (n1,m1). Since F1 = F2 = 1, we assume that n 6=
1, n1 6= 1. That is, whenever we think of 1 as a member of the Fibonacci
sequence, we think of it as being F2. Our result is then the following

Theorem 1. All solutions non-negative integer solutions (n,m, n1,m1) of (2)
with n 6= 1, n1 6= 1 belong to the set

(2, 1, 0, 0), (2, 2, 0, 1), (3, 1, 2, 0), (3, 2, 0, 0),
(3, 2, 2, 1), (4, 1, 3, 0), (4, 2, 2, 0), (4, 2, 3, 1),
(4, 3, 0, 2), (5, 2, 4, 0), (5, 3, 0, 0), (5, 3, 2, 1),
(5, 3, 3, 2), (6, 3, 4, 0), (6, 3, 5, 2), (6, 4, 2, 3),
(7, 3, 6, 0), (7, 4, 2, 0), (7, 4, 3, 1), (7, 4, 4, 2),
(9, 5, 5, 0), (11, 6, 8, 2), (16, 9, 3, 0), (16, 9, 4, 1)


.

The set of integers c admitting two representations as a difference between a
Fibonacci and a Pell number in at least two different ways is

{−4, −2, −1, 0, 1, 2, 3, 5, 8, 19}.

The representations of the above c are

−4 = F6 − P4 = F2 − P3;

−2 = F4 − P3 = F0 − P2;

−1 = F2 − P2 = F0 − P1;

0 = F5 − P3 = F3 − P2 = F2 − P1 = F0 − P0;

1 = F7 − P4 = F4 − P2 = F3 − P1 = F2 − P0;

2 = F16 − P9 = F4 − P1 = F3 − P0;

3 = F6 − P3 = F5 − P2 = F4 − P0;

5 = F9 − P5 = F5 − P0;

8 = F7 − P3 = F6 − P0;

19 = F11 − P6 = F8 − P2.

§2. Tools. The first one is a lower bound for a linear forms in logarithms
due to Matveev [11]. Let α be an algebraic number of degree d. Let a be the
leading coefficient of its minimal polynomial over Z and let α1 = α, . . . , αd

denote the conjugates of α. The Weil height of α is defined as

h(α) =
1

d

(
log a+

d∑
i=1

log max{|αi|, 1}

)
.
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The height has the following basic properties. For α, β algebraic numbers and
m ∈ Z, we have:

• h(α + β) 6 h(α) + h(β) + log 2.

• h(αβ) 6 h(α) + h(β).

• h(αm) = |m|h(α).

Now let L be a real number field of degree dL, α1, . . . , α` ∈ L and b1, . . . , b` ∈
Z\{0}. Let B > max{|b1|, . . . , |b`|} and

Λ = αb1 · · ·αb` − 1.

Let A1, . . . , A` be real numbers such that

Ai > max{dLh(αi), | logαi|, 0.16} for all i = 1, . . . , `.

The following result is due to Matveev in [11] (see also Theorem 9.4 in [2]).

Theorem 2. Assume that Λ 6= 0. Then

log |Λ| > −1.4× 30`+3 × `4.5 × d2
L(1 + log dL)(1 + logB)A1 · · ·A`.

In this paper, we always use ` = 3. Further, L = Q[
√

2,
√

5] has degree dL = 4.
Thus, once for all we fix the constant

C := 5.46696× 1012 > 1.4× 303+3 × 34.5 × 42(1 + log 4).

Matveev’s bound gives us some large bounds on our parameters. In order to
lower such bounds, we use a version of a reduction method of Baker-Davenport
based on Lemma in [1]. We shall use the one given by Bravo, Gomez and Luca
in [5]. For a real number x, we write

‖x‖ = min{|x− n| : n ∈ Z}.

Lemma 3. Let M be a positive integer. Let τ, µ, A > 0, B > 1 be given
real numbers. Assume that p/q is a convergent of τ such that q > 6M and
ε := ‖qµ‖ −M‖qτ‖ > 0. Then the inequality

0 < |nτ −m+ µ| < A

Bw

does not have a solution in positive integers n, m and w in the ranges

n 6M and w >
log (Aq/ε)

logB
.
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This lemma is a slightly variation of the one given by Dujella and Petho in [9].
The following lemma is also useful. It is Lemma 7 in [10].

Lemma 4. If m > 1, T > (4m2)m and T > x/(log x)m, then

x < 2mT (log T )m.

§3. Proof of Theorem 1. We start with some basic properties of our
sequences. Put

α :=
1 +
√

5

2
, β :=

1−
√

5

2
; and γ := 1 +

√
2, δ := 1−

√
2.

We have the well–known Binet’s formulas

Fn =
αn − βn

√
5

and Pn =
γn − δn

2
√

2
(3)

which hold for all n > 0. Further, the inequalities

αn−2 6 Fn 6 αn−1 and γn−2 6 Pn 6 γn−1 (4)

also hold for all n > 1.

Now, we study our equation (2) in non-negative integers (n,m, n1,m1) with
(n,m) 6= (n1,m1). As we said, we assume n 6= 1, n1 6= 1. It could happen
that min{n, n1} = 0. At any rate, max{n, n1} > 2. If in (2) we have m = m1,
then Fn = Fn1 , implies that n = n1, a contradiction. Thus, from now on we
assume m > m1. Rewriting (2) as

Fn − Fn1 = Pm − Pm1 , (5)

we observe the right-hand side is positive. Hence, so is the left-hand side,
therefore n > n1. We now compare the two sides of (5) using (4). We have

αn−4 6 Fn − Fn1 = Pm − Pm1 6 Pm 6 γm−1.

The left–hand side inequality is clear if n1 = 0. It is also clear if n1 6= 0, since
in that case n1 ≥ 2, so n ≥ 3, so Fn − Fn1 ≥ Fn − Fn−1 = Fn−2 ≥ αn−4. Thus,
αn−4 6 γm−1. In a similar way,

αn−1 > Fn > Fn − Fn1 = Pm − Pm1 > Pm−1 > γm−3,

where the right–most inequality is clear (both for m1 = 0 and for m1 > 0).
We thus have

n− 4 6 (m− 1)
log γ

logα
and n− 1 >

log γ

logα
(m− 3). (6)
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Since log γ/ logα = 1.8315709239 . . . it follows that if n 6 300, then m 6 167.
Running a Mathematica program in the range 0 6 n1 < n 6 300 and 0 6
m1 < m 6 167, with our convention, we obtain all the possibilities listed in
Theorem 1.

From now on, n > 300. Further, by (6) we get m > 163 and also n > m. From
Binet’s formulas (3), we obtain∣∣∣∣ αn

√
5
− γm

2
√

2

∣∣∣∣ =

∣∣∣∣αn1 + βn − βn1

√
5

− γm1 − δm1 + δm

2
√

2

∣∣∣∣ 6 αn1 + 2√
5

+
γm1 + 2

2
√

2

6 2 max{αn1+2, γm1+1}. (7)

Dividing through by γm/2
√

2 we get∣∣∣∣ 4√
10
γ−mαn − 1

∣∣∣∣ 6 max{αn1−n+9, γm1−m+1}, (8)

where we have used that αn−4 6 γm−1 as well as the fact that 4
√

2 < λ2 < α4.
Let Λ be the expression inside the absolute value in in the left–hand side above.
Observe that Λ is not zero. Indeed, otherwise 8/5 = γ2m/α2n is both a unit (an
algebraic integer whose reciprocal is also an algebraic integer) and a rational
number, which is false since the only rational units are ±1.
Now we apply Matveev’s inequality with

α1 =
4√
10
, α2 = γ, α3 = α, b1 = 1, b2 = −m, b3 = n.

We have B = n. Further, we have h(α1) = (log 8)/2, h(α2) = (log γ)/2 and
h(α3) = logα/2. Thus, we may take A1 := 4.2, A2 := 1.8 and A3 := 1 we
obtain that

log |Λ| > −C(1 + log n)× 4.2× 1.8.

Comparing with (8) we obtain

min{(n− n1 − 9) logα, (m−m1 − 1) log γ} 6 4.13302× 1013(1 + log n). (9)

We next study each of these two possibilities.

Case 1. min{(n− n1) logα, (m−m1) log γ} = (n− n1) logα.

To this case, we rewrite our equation as follows:∣∣∣∣(αn−n1 − 1√
5

)
αn1 − γm

2
√

2

∣∣∣∣ =

∣∣∣∣βn − βn1

√
5

− γm1 − δm1 + δm

2
√

2

∣∣∣∣
6

2√
5

+
γm1 + 2

2
√

2
< γm1+2.
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Thus, ∣∣∣∣(4(αn−n1 − 1)√
10

)
αn1γ−m − 1

∣∣∣∣ < γm1−m+4. (10)

Let Λ1 be the expression inside the absolute value which is in the left–hand
side. We note that Λ1 6= 0, for if this is not so then we would get

αn − αn1

γm
=

√
10

4
,

which implies that the right–hand side is an algebraic integer, which it isn’t
(it’s square is 5/8). We apply again Matveev’s inequality by taking

α1 =
4(αn−n1 − 1)√

10
, α2 = γ, α3 = α, b1 = 1, b2 = −m, b3 = n1.

Thus, B = n. The heights of α2 and α3 have already been calculated. As for
h(α1), we have

h

(
4(αn−n1 − 1)√

10

)
6 h

(
4√
10

)
+ h

(
αn−n1 − 1

)
6

log 8

2
+ h(αn−n1) + log 2

=
log 32

2
+ (n− n1)

logα

2
6

4.13304× 1013(1 + log n)

2
,

where we have used (9). Thus, we can take A1 := 8.26608 × 1013(1 + log n),
A2 and A3 as in the analysis of Λ, and get

log |Λ1| > −C × (8.26608× 1013(1 + log n)2)× 1.8.

Combining this with (10), we get

(m−m1) log γ < 8.13424× 1026(1 + log n)2.

Case 2. min{(n− n1) logα, (m−m1) log γ} = (m−m1) log γ.

Here, we rewrite our equation as∣∣∣∣ αn

√
5
−
(
γm−m1 − 1

2
√

2

)
γm1

∣∣∣∣ =

∣∣∣∣βn + αn1 − βn1

√
5

− δm − δm1

2
√

2

∣∣∣∣
6

αn1 + 2√
5

+
1√
2
< αn1+5.

Thus, ∣∣∣∣∣1−
(√

10(γm−m1 − 1)

4

)
γm1α−n

∣∣∣∣∣ < αn1−n+7. (11)
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We let Λ2 be the expression inside the absolute value in the left-hand side. As
before, Λ2 6= 0, for otherwise we get that 8/5 is an algebraic integer, which is
false. We apply again Matveev’s inequality by taking

α1 =

√
10(γm−m1 − 1)

4
, α2 = γ, α3 = α, b1 = 1, b2 = m1, b3 = −n.

Thus, B = n. The heights of α2 and α3 have already been calculated. As for
h(α1), we have

h

(√
10(γm−m1 − 1)

4

)
6 h

(√
10

4

)
+ h

(
γm−m1 − 1

)
6

4.13304× 1013(1 + log n)

2
,

Thus, we can take the same A1 as in Case 1, and so we get the same lower
bound for log |Λ2|. Therefore,

(n− n1) log γ < 8.13424× 1026(1 + log n)2.

So, we have proved that

max{(n− n1) logα, (m−m1) log γ} 6 8.13424× 1026(1 + log n)2. (12)

We now get a bound on n. Using Binet’s formulas (3), we write our equation
as follows:∣∣∣∣αn−n1 − 1√

5
αn1 − γm−m1 − 1

2
√

2
γm1

∣∣∣∣ =

∣∣∣∣βn − βn1

√
5

− δm − δm1

2
√

2

∣∣∣∣ < 2√
5

+
1√
2
< 2.

Dividing across by (γm − γm−1)/2
√

2, we obtain∣∣∣∣( 4√
10

(
αn−n1 − 1

γm−m1 − 1

))
γ−m1αn1 − 1

∣∣∣∣ < 4
√

2

γm − γm1
<

8
√

2

γm
<

1

αn−8
, (13)

where we used αn−4 < γm−1, as well as the fact that 8
√

2 < α4γ. We let
Λ3 be the expression inside the absolute value in (13). We apply Matveev’s
inequality with

α1 =
4√
10

(
αn−n1 − 1

γm−m1 − 1

)
, α2 = γ, α3 = α, b1 = 1, b2 = −m1, b3 = −n1.

Thus, we take B = n. We need to show that Λ3 6= 0. To do this we take the
Q-automorphism σ of L given by σ(

√
5) = −

√
5 and σ(

√
2) =

√
2. Under this
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automorphism, we have σ(α) = β, σ(γ) = γ and σ(
√

10) = −
√

10. Thus, if
Λ3 = 0, then σ(L3) = 0, which implies, in particular, that

√
10

4
=

∣∣∣∣ βn − βn1

γm − γm1

∣∣∣∣ < 2

γm(γ − 1)
<

1

2
,

since m > 163, which is a contradiction. As before, the heights of α2 and α3

have already been calculated. For h(α1), we have

h

(
4√
10

(
αn−n1 − 1

γm−m1 − 1

))
6 h

(
4√
10

)
+ h

(
αn−n1 + 1

)
+ h

(
γm−m1 + 1

)
6

log 128

2
+ (n− n1)

logα

2
+ (m−m1)

log γ

2
6 8.13425× 1026(1 + log n)2.

Thus, we can take A1 := 3.25368 × 1027(1 + log n)2, and A2, A3 as before.
Therefore, we get

log |Λ3| > −C(1 + log n)× (3.25368× 1027(1 + log n)2)× 1.8

> −3.20181× 1040(1 + log n)3,

which, upon comparing it to (13) and applying Lemma 4, we obtain

n < 3.77669× 1048. (14)

Now, we will reduce the upper bound of n. To do this, let Γ be defined as

Γ = n logα−m log γ + log

(
4√
10

)
.

Assume first that min{n − n1,m −m1} > 20. We note that Λ = eΓ − 1 6= 0,
so Γ 6= 0. If Γ > 0 then

0 < Γ < eΓ − 1 = Λ = |Λ| < max{αn1−n+9, γm1−m+1}.

On the other hand, if Γ < 0, we then have 1 − eΓ = |eΓ − 1| < 1/2 which
implies e|Γ| < 2. Thus,

0 < |Γ| < e|Γ| − 1 = e|Γ||Λ| < 2 max{αn1−n+9, γm1−m+1}.

So, in both cases we have

0 < |Γ| < 2 max{αn1−n+9, γm1−m+1}. (15)

Dividing through by log γ in the above inequality, we get

0 < |nτ −m+ µ| < max

{
175

αn−n1
,

6

γm−m1

}
,
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where

τ :=
logα

log γ
, µ :=

log
(
4/
√

10
)

log γ
.

Now we apply Lemma 3. To do this, we take M := 3.77669 × 1048 (a bound
on m and n by (14)) our τ and, with a Mathematica program, we find that
the denominator of the convergent

p112

q112

=
111842821415068814601069451383096958405345992106163812

204848059751598401563305907296432335323118859258712413

of τ satisfies q112 > 6M and that ε = ||qµ|| −M ||qτ || = 0.105822 > 0. This
implies, with (A,B) = (175, α) or (6, γ), that either

n− n1 6 271, or m−m1 6 144.

We now look at each one of these two cases. First, we assume that n−n1 6 271
and m−m1 > 20. In this case, we consider

Γ1 = n1 logα−m log γ + log

(
4(αn−n1 − 1)√

10

)
.

As before, eΓ1 − 1 = Λ1 6= 0, so Γ1 6= 0. We go to (10). With an argument
similar to a previous one, we have that

0 < |Γ1| <
2γ4

γm−m1
.

Dividing through by log γ we obtain

0 < |n1τ −m+ µ| < 78

γm−m1
,

where τ is the same one as above and

µ :=
log
(
4(αn−n1 − 1)/

√
10
)

log γ
.

We apply again Lemma 3 noting that n1 > 0, for otherwise we would have
that n 6 271 which contradicts our hypothesis that n > 300. Consider

µk :=
log
(
4(αk − 1)/

√
10
)

log γ
, for k = 1, . . . , 271.

We ran a Mathematica program and found that the same convergent p112/q112

satisfies q112 > 6M . Further, εk ≥ 0.00119532 for all 1 6 k 6 271. For each of
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the values of εk and with (A,B) = (78, γ), we calculate log (78q112/εk) / log γ
and found that each of them is at most 152. Thus, m−m1 6 152.

Now let us look at the other case. Assume that m−m1 6 144 and n−n1 > 20.
We consider

Γ2 = n logα−m1 log γ + log

(
4√

10(γm−m1 − 1)

)
.

We note that 1− e−Γ2 = Λ2 6= 0, so Γ2 6= 0. We go to (11). With an argument
similar to one above, we obtain

0 < |Γ2| <
2α7

αn−n1
.

Dividing through by log λ, we get

0 < |nτ −m1 + µ| < 66

αn−n1
,

where τ is the same one as above and

µ :=
log
(
4/(
√

10(γm−m1 − 1))
)

log γ
.

Now we use again Lemma 3 noting that m1 > 0, which is the case, since
otherwise we have m 6 144, which contradicts our hypothesis m > 163. As
above, by considering now

µ` :=
log
(
4/(
√

10(γ` − 1))
)

log γ
, for all ` = 1, . . . , 144

and running a Mathematica program, we find that q112 > 6M , and that for
this convergent ε` ≥ 0.0000620747 for all 1 6 ` 6 144. For each of these ε`
and with (A,B) := (66, α), we calculated log (66q112/ε`) / logα and found that
all these numbers are at most 156. Thus n− n1 6 156.

So, we got that either n − n1 6 271 or m − m1 6 144. Assuming the first
one we deduced m − m1 6 152, and assuming the second one, we deduced
n−n1 6 156. Altogether, we have n−n1 6 271, m−m1 6 152. So, it remains
to study this case. We consider

Γ3 = n1 logα−m1 log γ + log

(
4√
10

(
αn−n1 − 1

γm−m1 − 1

))
.

We note that eΓ3 − 1 = Λ3. Again, since Λ3 6= 0, we have that Γ3 6= 0. Since
n > 300, we get

0 < |Γ3| <
2α8

αn
.
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Dividing through by log γ, we get

0 < |n1τ −m1 + µ| < 107

αn
,

where τ is as above and

µ :=
log
(
4(αn−n1 − 1)/

√
10(γm−m1 − 1)

)
log γ

.

We apply for the last time Lemma (3). As above, we have that n1,m1 > 0.
Thus, we consider

µk,` :=
log
(
4(αk − 1)/

√
10(γ` − 1)

)
log γ

, k = 1, . . . , 271, ` = 1, . . . , 152.

Running a Mathematica program, we find again that the same convergent
works namely q112 > 6M and εk,` ≥ 0.0000307768 for all 1 6 k 6 271 and
1 6 ` 6 152. For each of these values εk,`, with (A,B) := (107, α), we
calculated log (107q112/εk,`) / logα and found that the maximum value of them
is 6 157. Thus, n 6 157, which contradicts our assumption on n.
This finishes the proof of our theorem.
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