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Resumen 

 

En este trabajo usamos el método de la matriz de transferencia para estudiar el tunelamiento de 

los electrones de Dirac a través de superredes aperiodicas en grafeno. Consideramos una hoja de 

grafeno depositada encima de bloques de sustratos de Óxido de Silicio (SiO2) y Carburo de 

Silicio (SiC), en los cuales aplicamos la serie de Cantor. Calculamos la transmitancia para 

diferentes parámetros fundamentales tales como: ancho de partida, energía de incidencia, ángulo 

de incidencia y número de generación de la serie de Cantor. En este caso, la transmitancia como 

función de la energía presenta rasgos autosimilares al variar el número de generación. También 

computamos la distribución angular de la transmitancia para energías fijas econtrando un patrón 

autosimilar entre generaciones. Por último, calculamos los factores de escala para algunos 

espectros de la transmitancia, los cuales efectivamente muestran escalabilidad. 
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Abstract 

 

In this work we use the transfer matrix method to study the tunneling of Dirac electrons through 

aperiodic monolayer graphene superlattices. We consider a graphene sheet deposited on top of 

slabs of Silicon-Oxide (SiO2) and Silicon-Carbide (SiC) substrates, in which we applied the 

Cantor’s series. We calculate the transmittance for different fundamental parameters such as: 

starting width, incident energy, incident angle and generation number of the Cantor’s series. In 

this case, the transmittance as function of energy presents self-similar features as a function of the 

generation number. We also compute the angular distribution of the transmittance for fixed 

energies finding a self-similar patterns between generations. Finally, we calculate the scaling 

factor for some transmittance spectra, which effectively show scalability. 
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1. Introduction: 

Graphene a one-atom thick sheet of carbon atoms with hexagonal structure constitutes the basis 

to build all carbon allotropes: graphite, carbon nanotubes and buckyballs. 

From its discovery in 2004 (Novoselov 2004, 666; Novoselov 2005, 197), graphene has attracted 

a lot of attention due to its unusual properties (Zhang 2005, 201; Katsnelson 2006, 620). Indeed, 

it brings a natural bridge between solid state physics and quantum electrodynamics, as well as 

opens a new avenue to possible applications (Schedin 2007, 652; Geim 2007, 183). Much of 

mentioned comes from its peculiar band structure being a zero bandgap semimetal with linear 

dispersion relation near to the K point in the Brillouin zone (Wallace 1947, 622), allowing that 

the electrons behave like relativistic particles even when they move much slower than light, 

vF = c / 300. The results of this odd behavior are unusual effects such as minimum conductivity 

and Klein tunneling (Zhang 2005, 201; Katsnelson 2006, 620). Effects that from a fundamental 

perspective are very interesting, and now the opportunity to prove them is superb with graphene. 

However, from a technological standpoint are not at all advisable since they impede the 

modulation of the electronic properties of the material. 

One possibility to overcome these technological difficulties is to open a bandgap in 

graphene by means of symmetry-breaking substrates such as SiC and hBN (hexagonal-Boron-

Nitride) (Zhou 2007, 770; Giovannetti 2007,   73103). These substrates break the symmetry of 

the sub-lattices that form the hexagonal structure of graphene creating a bandgap of 0.260 eV and 

0.055 eV for SiC and hBN, respectively. Moreover, in the case of SiC (Zhou 2007, 770) the 

bandgap can be modulated changing the number of graphene layers: 0.144 eV and 0.066 eV for 

two and three layers, respectively. It is important to mention that materials like SiO2 constitute 

non-symmetry-breaking substrates preserving the zero bangap properties of graphene. 

In this work, we study the transmission properties of Dirac electrons through aperiodic 

monolayer graphene superlattices. The aperiodic structure is created by alternating symmetry-

breaking and non-symmetry-breaking substrates. In particular, we analyze the transmittance of 

aperiodic structures built according to the substitution rules of the triadic Cantor set. 
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Figure 1. Schematic representation of the substrate-based monolayer graphene structures. (a) Band 

structure of the graphene for the k-region (zero bandgap) and for the q-region (finite bandgap). (b) 

Potential barrier generated through the growth of graphene on substrates. (c) A graphene layer (solid-

black line) is deposited on alternating substrates such as SiO2-SiC. 

 

 

Method 

In the case of symmetry-breaking substrates, are found that the substrates not only generate a 

bandgap in the graphene spectrum but also change the linear dispersion relation to parabolic 

(Viana 2008, 325221), see Fig. 1. Moreover, as the electrons in graphene can be treated as 

relativistic particles hereafter we use the Dirac-like equation given by,  

 

                                                  vF s × p( ) + t 's z
éë ùûy(x, y) = Ey(x, y),                                      (1) 

 

where vF  is the Fermi velocity of the Dirac electrons in graphene, t ' =mvF
2  is the mass term, 

s = (s x,s y ) are the Pauli matrix, s z
 is the z component of the Pauli-matrix vector and 

p = (px, py ) is the in-plane momentum operator. To solve this equation one can writte the 

following parabolic dispersion relation, 

 

                                                                E = ± 2vF
2q2 + t '2 ,                                                   (2) 
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where t ' is proportional to the bandgap of value 2t ' (we choose t ' = 0.10 eV for our numerical 

results), q is the two-dimensional wave vector associated with the SiC and hBN substrates termed 

as the q-region (Fig. 1), and "±" states electrons and holes, respectively. The corresponding 

wavefunctions taken the form, 

Figure 2.  Transmittance as a function of electron energy for angles of incidence θ: (a) 0, (b) π/8, (c) π/4 

and (d) 3π/8. The four patterns are calculated using a starting width of 540a and generation 3. 
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with the coefficients of the bispinor (Viana 2008, 325221), 

 

                                                     (4) 

                                                      

 

where qx  and qy  are the components of the two-dimensional wave vector q.  

v± =
E - t '

vF ±qx - iqy( )
,
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In the case of non-symmetry-breaking substrates, the linear dispersión relation is conserved and 

as a consequence not generate a bandgap (Viana 2008, 325221) as is illustrated in Fig. 1. So, the 

massless Dirac equation can be written as, 

 

                                         vF s × p( )éë ùûy(x, y) = Ey(x, y),                                              (5) 

 

the asocciated energy has the linear form, 

 

                                                                E = ± vFk,                                                                 (6) 

 

with k the two-dimensional wave vectors corresponding to the SiO2  substrate denominated as the 

k-region (Fig. 1). The wavefunctions are represented by the expression, 

 Figure 3. Transmittance as a function of electron energy for the same angles of incidence of Fig. 1. 

The starting with and generation are 180a and 4, respectively. 
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 yk
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±ikxx+kyy,   (7) 

with  

 u± = ±se±iq ,   (8) 

 

where s=sign(E) and q = arctan(kx / ky ) (Viana 2008, 325221). 

It is well known that multiple interface problems can be treated readily by the Transfer Matrix 

Approach (Yeh 2005). In this sense, the transmission properties of Dirac electrons in multibarrier 

structures are not the exception. So, if we have a multibarrier structure in which an incident 

electron with energy E and angle of incidence  is trying to pass throughout the structure, we can 

establish a connection between the media to the left and right of the first interface through the 

continuity conditions of the Dirac equation. To this respect, it is sufficient with the continuity of 

the wavefunction in each interface of the system, since the Dirac equation is of first order. So, 

mathematically speaking, 

Figure 4. Transmittance versus electron energy for generations: a) N=3, b) N=4, c) N=5 and d) N=6. 

The starting width and incident angle are 540a and π/4, respectively. 
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                                                       (9) 

                                                    
A0yk

+ +B0yk

- = A1yq

+ +B1yq

-,                                        (10)
 

 

where k (q) states non-symmetry-breaking (symmetry-breaking) substrates and "+" ("-") indicates 

forward (backward) wave functions. Similar equations can be established for the other interfaces 

of the multi-interface system resulting in a set of couple equations for the coefficients Ai and Bi. 

These equations can be solved easily relating the coefficients A0  and B0
 of the first region with 

the coefficients AN  and BN  of the last region, 
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here Diand Pi  represent the dynamic and propagation matrices of the i-th layer of the multilayer 

system, respectively. Defining the transfer matrix of the whole systems as, 

 

 M = D0

-1 DiPiDi
-1

i=1

N

Õ
æ

è
ç

ö

ø
÷D0,  (12) 

 

we can find the transmittance straightforwardly by the standard formula, 

 
Figure 5. Angular distribution of the transmittance for (a) N=4, (b) N=5 and (c) N=6 respectively. The 

parameters used in this case are w=1620a and Ei =0.075 eV. 

yk

±(0) =yq

±(0),
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 T =
1

M11

2
,  (13) 

where M11
 represents the (1,1) matrix element of the transfer matrix. More details about the 

notation and the particular values of the quantities involved can be found in Refs. (Yeh 2005; 

Viana 2008, 325221). 

 

Results 

Our starting system to build the triadic Canto structures is a very thick potential barrier of width 

"w" and height t’. To us this system represents the first generation, N = 1, of our triadic Cantor 

graphene structures. So, applying successively the triadic Cantor set rules and appropriately the 

transfer matrix approach we calculate the transmittance for different combinations of our system 

parameters: starting width, angle of incidence and Cantor generation. In all our calculations we 

have maintained the barrier height of the q regions at 0.10 eV. We find self-similar patters in the 

transmission spectra as a function of the energy and of the angle even when we change the 

generation. 

 

In Fig. 2 we can see that the transmittance presents small structures in both sides of the point E = 

0 that are similar, we have called this apparent similarity "local". The parameters used are w = 

540a, N = 3 and  = (a) 0, (b) /8, (c) /4 and (d) 3/8. Here "a" represents the  

 

   

Figure 6. Scalability of transmission spectra for triadic Cantor graphene structures. (a) The central part 

of (3,5) magnified by a factor of 9. (b) The central part of (3,4) magnified by a factor of 3. (c) The full 

period of (3,3). All the structures are calculated for the same width and the same angle of incidence: 

180a and θ =0. 

 

 



Transmission properties of Dirac electrons through Cantor monolayer graphene superlattices 

Revista Electrónica Nova Scientia, Nº 13 Vol. 7 (1), 2014. ISSN 2007 - 0705. pp: 20 - 31 

- 29 - 

carbon-carbon distance in graphene. Fig. 3 shows the transmission spectrum for w = 180a and N 

= 4. In this case we analyzed angles of incidence: (a) 0, (b) /8, (c) /4 and (d) 3/8. The spectra 

have identical structures, but when we increase the angle of incidence this structure magnified 

respect to the axis of the energy. A peculiar feature of the transmittance is that it has the same 

value irrespective of the angle of incidence at E = 0, which means that at this energy the 

transmittance is determined basically by the effective width of the multilayer structure. For 

comparison, see Fig. 4 for which the minimum of transmittance at E = 0 is changing according to 

the generation number, or in other words depending on the effective width of the system. 

 

Fig. 4 represents self-similarity between generations, this is, transmission spectra are quite similar 

for different numbers of generation. Here, the transmission spectra correspond to w = 540a and  

=/4 for generations (a) N = 3, (b) N = 4, (c) N = 5 and (d) N = 6, respectively. We can notice that 

the transmission spectra present similar envelopings that nicely obey the well known scaling rules 

of the triadic Cantor set, see Fig. 6. 

 

We compute the angular distribution of the transmittance finding apparent self-similar patters 

between different generations. This self-similarity appears when the generations have the same 

incident energy (Ei) and the same starting width. Fig. 5 displays the transmission spectrum for 

generations (a) 4, (b) 5 and (c) 6, respectively. The three curves are calculated for the same 

parameters: w =1620a and Ei = 75 meV. We can see that the spectra for each case have the same 

shape. 

 

Finally, we studied the scalability of triadic Cantor multilayers. We have found that the spectrum 

of all Cantor structures show evident scalability. This is, the total spectrum of a (G, N2) structure 

appears as a part of a (G, N1) structure, where the scaling factor is: GN2-N1  with N1>N2. Thus, if 

we magnify the central part of a (G, N1) structure by the corresponding scaling factor we obtain 

that the resultant spectrum match up almost perfectly with the spectrum of (G, N2). Here G is the 

generator and N is the number of generation. Moreover, the period is equal to the total number of 

peaks that is equivalent to the number of layers (Lavrinenko 2002, 036621). As we can see from 

Fig. 6 Dirac electrons fulfill with these well known properties. 
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Conclusions 

In summary, we have studied the tunneling properties of Dirac electrons in aperiodic systems 

based on graphene, particularly the triadic Cantor structures. The system is generated using a 

single-layer of graphene on alternating substrate, such as SiC and SiO2, which are capable of 

breaking and no-breaking the symmetry of the graphene structure, or in other words, capable of 

induce and non-induce a gap, respectively. We have implemented the transfer matrix method to 

calculate the transmittance for a finite number of barriers arranged according to the triadic Cantor 

sequence. We have varied some parameters as the starting width, generation number of the 

sequence, energy and angle of incidence. For the case of the transmittance as function of the 

energy we obtain that the spectra manifest self-similar characteristic between generations. 

Moreover, when we choose a starting width and a fixed generation we can see similar structures 

for both negative and positive energies. On the other hand, self-similar spectra are obtained when 

we have calculated the angular distribution of the transmittance for different generations. Finally, 

the scaling factor of the Cantor structures is computed resulting that the transmittance spectra 

show scalability patterns. In general, we have found that the transmittance spectra of Cantor 

structures have two fundamental properties: self-similarity and scalability, this as result of the 

geometrical characteristics of the triadic Cantor sequence. 
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