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Abstract

We introduce a higher-order version of the tangent map of a mor-
phism and find a matrix representation. We then apply this matrix to
solve a conjecture by T. Yasuda regarding the semigroup of the higher
Nash blowup of formal curves. We first show that the conjecture is true
for toric curves. We conclude by exhibiting a family of non-monomial
curves where the conjecture fails.

Keywords: Higher-order tangent map, Nash blowups, Jacobian matrix,
curves.
MSC: 14B05,14M25,32S45.

Introduction

In recent years several authors have introduced higher-order versions of the
Jacobian matrix. In [7], a higher-order Jacobian matrix is studied in relation
with the higher Nash blowup of a hypersurface. More recently, in [2, 3],
a similar matrix is introduced for any finitely generated algebra. In these
articles the matrices are used to study singularities in arbitrary characteristic
or to study algebraic properties of the module of Kähler differentials of
high order. In another but related direction, in [5] it is described a matrix
associated to a relative compactification of the induced map on the main
components of jet schemes of a projective birational morphism.

In this paper we introduce a matrix that represents a higher-order tan-
gent map of a morphism. This matrix involves higher-order derivatives,
making it more suitable for some computations related to jet-spaces. Our
main application of this matrix is the solution of a conjecture by T. Yasuda
related to the higher Nash blowup of formal curves.

The Nash blowup and the higher Nash blowup of an algebraic variety are
modifications that replace singular points by limits of certain vector spaces
associated to the variety at non-singular points. There are several questions
relating these modifications to resolution of singularities ([15, 18, 22]). Those
questions have been treated in [15, 17, 9, 10, 13, 19, 22, 11, 12, 1, 6, 8, 21].
In [22], T. Yasuda proved that the higher Nash blowup solves singularities of
curves. In a subsequent paper, Yasuda gave a conjectural explicit description
of the semigroup of the higher Nash blowup of formal curves. In this paper
we show that the conjecture is true for toric curves but false in general.

To study Yasuda’s conjecture in the case of toric curves we first develop
a combinatorial description for the higher Nash blowup of toric varieties.
This result is based and inspired in the analogous description of the usual
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Nash blowup of toric varieties given in [11, 12]. Our results depend strongly
on the general framework developed in [11] for not necessarily normal toric
varieties. With this general combinatorial description at hand, we are able
to prove Yasuda’s conjecture for toric curves.

Finally, we present a family of non-monomial curves showing that Ya-
suda’s conjecture fails in general. By combining the results we obtained
for monomial morphisms and the general construction of the matrix repre-
senting the higher-order tangent map, we are able to describe a particular
element of the semigroup of the higher Nash blowup of this family of curves
which does not belong to the semigroup suggested by Yasuda.

The present paper is organized as follows. In section 1 we introduce a
higher-order tangent map, find a matrix representation and study its basic
properties. In section 2 we study in detail the higher-order Jacobian matrix
of monomial morphisms. In section 3 we construct a special cover for the
higher Nash blowup of a toric variety. Section 4 is devoted to prove Yasuda’s
conjecture concerning the explicit description of the semigroup of the higher
Nash blowup of a toric curve. Finally, in section 5 we exhibit a family of
non-monomial curves for which Yasuda’s conjecture fails.

Convention: Throughout this paper, K denotes a field of characteristic
zero. In addition, starting at Section 3, we also assume that K is alge-
braically closed.

1 A higher-order Jacobian matrix of morphisms

1.1 A higher-order Jacobian matrix of a morphism of affine
spaces

In this section we study a higher-order derivative of a morphism between
affine varieties and find a matrix representation of this linear map.

Notation 1.1. The following notation will be constantly used in this paper.

• The entries of vectors α ∈ Nt are denoted as α = (α(1), . . . , α(t)).

• α ≤ β ⇔ α(i) ≤ β(i) ∀i ∈ {1, . . . , t}. In particular, α < β if and only
if α(i) ≤ β(i) ∀i ∈ {1, . . . , t} and α(i) < β(i) for some i ∈ {1, . . . , t}.

• |α| = α(1) + · · ·+ α(t).

• α! = α(1)!α(2)! · · ·α(t)!
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• ∂α = ∂α(1)∂α(2) · · · ∂α(t).

• For t, n ∈ N, Λt,n := {γ ∈ Nt|1 ≤ |γ| ≤ n}. In addition, we denote
λt,n := |Λt,n| =

(
n+t
t

)
− 1.

Consider a morphism

ϕ : Kd → Ks,
x = (x1, . . . , xd) 7→ (g1(x), . . . , gs(x)).

Assume that ϕ is regular at some x ∈ Kd and let y = ϕ(x) ∈ Ks. Let
m ⊂ K[X1, . . . , Xd] and n ⊂ K[Y1, . . . , Ys] be the maximal ideals correspond-
ing to x and y, and mx, ny the maximal ideals in (K[X1, . . . , Xd])m and
(K[Y1, . . . , Ys])n, respectively.

Let ϕ∗ : (K[Y1, . . . , Ys])n → (K[X1, . . . , Xd])m be the induced homomor-
phism on local rings, where ϕ∗(ny) ⊂ mx. In particular, there is a homo-
morphism of K−vector spaces for each n ∈ N:

(ϕ̄∗)n : ny/n
n+1
y → mx/m

n+1
x .

Let Ax = {(X − x)α := (X1 − x1)α(1) · · · (Xd − xd)α(d)|α ∈ Λd,n} be a basis
of mx/m

n+1
x as K−vector space. Similarly, let By = {(Y − y)β|β ∈ Λs,n} be

a basis of ny/n
n+1
y . The dual bases of Ax and By are, respectively,

A∨x =
{ 1

α!

∂α

∂Xα

∣∣∣
x
|α ∈ Λd,n

}
,

B∨y =
{ 1

β!

∂β

∂Y β

∣∣∣
y
|β ∈ Λs,n

}
.

Since (ϕ̄∗)n((Y −y)β) = (g1−g1(x))β(1) · · · (gs−gs(x))β(s) =: (ϕ−ϕ(x))β, it
follows that the dual morphism (ϕ̄∗)∨n : (mx/m

n+1
x )∨ → (ny/n

n+1
y )∨ satisfies

(ϕ̄∗)∨n

( 1

α!

∂α

∂Xα

∣∣∣
x

)
=

1

α!

∂α

∂Xα

∣∣∣
x
◦ (ϕ̄∗)n : ny/n

n+1
y → K, (1)

(Y − y)β 7→ 1

α!

∂α(ϕ− ϕ(x))β

∂Xα

∣∣∣
x
.

It follows that the matrix representation of (ϕ̄∗)∨n in these bases is:

[
(ϕ̄∗)∨n

]B∨y
A∨x

=
( 1

α!

∂α(ϕ− ϕ(x))β

∂Xα

∣∣∣
x

)
β∈Λs,n,α∈Λd,n

. (2)

3



Definition 1.2. Let ϕ : Kd → Ks be as before, where ϕ(x) = y. We call
the linear map (ϕ̄∗)∨n the derivative of order n of ϕ at x. In addition, let

Dn
x(ϕ) :=

( 1

α!

∂α(ϕ− ϕ(x))β

∂Xα
|x
)
β∈Λs,n,α∈Λd,n

.

We call Dn
x(ϕ) the Jacobian matrix of order n of ϕ at x or the higher-order

Jacobian matrix of ϕ at x. Notice that Dn
x(ϕ) is a (λs,n × λd,n)-matrix.

We order the rows and columns of this matrix increasingly using graded
lexicographical order on Λs,n and Λd,n. This order is denoted �.

Remark 1.3. Notice that, for each β ∈ Λs,n, the β row of Dn
x(ϕ) cor-

responds precisely to the coefficients of the truncated Taylor expansion of
order n of (ϕ− ϕ(x))β centered at x.

Remark 1.4. A similar higher-order Jacobian matrix of a single polynomial
F was defined in [7] and is denoted Jacn(F ). See also [2, 3] for a further
development of this matrix.

Example 1.5. Let ϕ : K→ K2, t 7→ (t, t2). The usual matrix representation
of the derivative of ϕ at 0 ∈ K is given by the Jacobian matrix:

D0(ϕ) =

( dt
dt |0
dt2

dt |0

)
=

(
1
2t

) ∣∣
0
.

Following the construction of the higher-order Jacobian matrix given previ-
ously, in the case n = 2, we obtain:

D2
0(ϕ) =



dt
dt |0

1
2!
d2t
dt2
|0

dt2

dt |0
1
2!
d2t2

dt2
|0

d(t)2

dt |0
1
2!
d2(t)2

dt2
|0

d(t·t2)
dt |0

1
2!
d2(t·t3)
dt2
|0

d(t2)2

dt |0
1
2!
d2(t2)2

dt2
|0

 =


1 0
2t 1
0 1
0 2t
0 4t2

∣∣
0

.

The higher-order Jacobian matrix satisfies the following basic properties.

Lemma 1.6. Let ϕ : Kd → Ks be as before.

(i) If β ∈ Λs,n is such that |β| = 1 then ∂α(ϕ−ϕ(x))β

∂Xα = ∂αϕβ

∂Xα for every
α ∈ Λd,n.

(ii) Let α ∈ Λd,n, β ∈ Λs,n be such that |α| < |β|. Then ∂α(ϕ−ϕ(x))β

∂Xα |x = 0.
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(iii) D1
x(ϕ) is the usual Jacobian of ϕ evaluated at x.

(iv) If ϕ : Kd → Kd is the identity then Dn
x(ϕ) is the identity matrix.

(v) Let ψ : Ks → Kr be another morphism. Then Dn
x(ψ◦ϕ) = Dn

y (ψ)Dn
x(ϕ).

Proof. (i) If β ∈ Λs,n is such that |β| = 1 then (ϕ − ϕ(x))β = gi − gi(x)
for some i ∈ {1, . . . , s}. Since gi(x) is a constant, the result follows.

(ii) The hypothesis on α and β means that in ∂α(ϕ−ϕ(x))β

∂Xα the order of
the derivative is less than the number of factors in (ϕ− ϕ(x))β. This

implies that in every summand of ∂
α(ϕ−ϕ(x))β

∂Xα there is a factor gi−gi(x).

Thus ∂α(ϕ−ϕ(x))β

∂Xα |x = 0.

(iii) This follows from the definition of Dn
x(ϕ) and (i).

(iv) If ϕ is the identity then (ϕ̄∗)n : mx/m
n+1
x → mx/m

n+1
x is also the iden-

tity. By choosing the same basis for both vector spaces we conclude
that Dn

x(ϕ) is the identity matrix.

(v) We know that (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗. Thus, ((ψ ◦ ϕ)∗)n = (ϕ̄∗)n ◦ (ψ̄∗)n.
Taking duals ((ψ ◦ ϕ)∗)∨n = ((ϕ̄∗)n ◦ (ψ̄∗)n)∨ = (ψ̄∗)∨n ◦ (ϕ̄∗)∨n . The
result follows.

Now suppose that X ⊂ Kd and Y ⊂ Ks are affine varieties and let
ϕ : X → Y be a morphism which is regular at x ∈ X and let y = ϕ(x).
Denote by m̄x and n̄y the maximal ideals of the corresponding local rings.
Since ϕ is the restriction of a morphism ϕ : Kd → Ks, the diagram

X
ϕ //� _

i
��

Y � _

i
��

Kd ϕ // Ks

induces the diagram

(m̄x/m̄
n+1
x )∨ //
� _

��

(n̄y/n̄
n+1
y )∨
� _

��
(mx/m

n+1
x )∨ // (ny/n

n+1
y )∨
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Taking bases as before we identify (mx/m
n+1
x )∨ ∼= Kλd,n and (ny/n

n+1
y )∨ ∼=

Kλs,n . The commutativity of the diagram

(m̄x/m̄
n+1
x )∨ //
� _

��

(n̄y/n̄
n+1
y )∨
� _

��
Kλd,n

Dnx (ϕ) // Kλs,n

allows us to define a higher-order tangent map of ϕ : X → Y at x ∈ X as
the restriction

Dn
x(ϕ) : (m̄x/m̄

n+1
x )∨ → (n̄y/n̄

n+1
y )∨.

1.2 Higher-order Jacobian matrix and birational morphisms

Let Y ⊂ Ks be an irreducible algebraic variety and y ∈ Y . In this subsection,
we use the higher-order Jacobian matrix to explicitly compute the space
(n̄y/n̄

n+1
y )∨ in some cases.

Lemma 1.7. Let X and Y be irreducible varieties and let ϕ : X 99K Y
be a birational morphism. Let U ⊂ X and V ⊂ Y be isomorphic open
subsets. Let x ∈ U and y = ϕ(x) ∈ V . Then ϕ induces an isomorphism
n̄y/n̄

n+1
y
∼= m̄x/m̄

n+1
x .

Proof. Since ϕ|U : U → V is an isomorphism, there is an induced isomor-
phism on local rings OY,y ∼= OX,x. In particular, ϕ∗(n̄y) = m̄x. The result
follows.

Proposition 1.8. Let ϕ : Kd 99K Y ⊂ Ks be a birational morphism, U ⊂ Kd
and V ⊂ Y isomorphic open subsets, and y = ϕ(x) for some x ∈ U . Then
the vector space (n̄y/n̄

n+1
y )∨ is isomorphic to the image of the linear map

defined by Dn
x(ϕ). In particular, rank(Dn

x(ϕ)) = λd,n.

Proof. We have the following commutative diagram

Kd i◦ϕ //

ϕ
!!

Ks

Y
?�
i

OO
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This diagram induces in turn the following commutative diagram

(mx/m
n+1
x )∨

(i◦ϕ)∗
∨

//

(ϕ̄∗)∨

∼=

''

(ny/n
n+1
y )∨

(n̄y/n̄
n+1
y )∨,
?�

(ī∗)∨

OO

where the isomorphism in the diagonal arrow comes from lemma 1.7. Fix-
ing bases for mx/m

n+1
x and ny/n

n+1
y as in the previous section, we identify

(mx/m
n+1
x )∨ ∼= Kλd,n and (ny/n

n+1
y )∨ ∼= Kλs,n , In addition, from (2), it fol-

lows that (i ◦ ϕ)∗
∨

is the linear map defined by the matrixDn
x(i◦ϕ) = Dn

x(ϕ).
We thus obtain the diagram

Kλd,n
Dnx (ϕ) //

&&

Kλs,n

(n̄y/n̄
n+1
y )∨.
?�

OO

The commutativity of this diagram proves the proposition.

Remark 1.9. Notice that the proofs in this section considers local rings of
points of a variety. Therefore, these results are also valid in the analytic
case. In particular, we can define a higher-order Jacobian matrix for germs
of analytic maps ϕ : (X,x)→ (Y, y).

Example 1.10. Let ϕ : K → C = V(y − x2) ⊂ K2, t 7→ (t, t2). We
computed D2

0(ϕ) : K2 → K5 in the previous section. Let n̄0 be the maximal
ideal of (0, 0) ∈ C. Using proposition 1.8 we obtain

(n̄0/n̄
3
0)∨ = Im(D2

0(ϕ)) = Im


1 0
2t 1
0 1
0 2t
0 4t2

∣∣
0

⊂ K5.
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2 Higher order Jacobian matrix for monomial mor-
phisms

Let a1, . . . , as ∈ Zd. We assume that d ≤ s. In this section we study the
higher-order Jacobian matrix of the monomial morphism

ϕ : (K \ {0})d → Ks (3)

x = (x1, . . . , xd) 7→ (xa1 , . . . , xas),

where xai := x
ai(1)
1 · · ·xai(d)

d .

Notation 2.1. The following notation will be also used constantly.

• A denotes the (d×s)-matrix whose columns are the vectors a1, . . . , as.
By abuse of notation, the set {a1, . . . , as} is also denoted as A.

• Ai := (a1(i), . . . , as(i)), i = 1, . . . , d, denote the rows of A. In parti-
cular, for γ ∈ Ns,

XAγ = XA1·γ
1 · · ·XAd·γ

d ,

where Aγ is a product of matrices and Ai ·γ is the usual inner product
in Rs.

• For β ∈ Ns, we denote

(XA − xA)β := (Xa1 − xa1)β(1) · · · (Xas − xas)β(s).

• For λ, τ ∈ Nt, denote
(
λ
τ

)
:=
(λ(1)
τ(1)

)
· · ·
(λ(t)
τ(t)

)
.

With this notation, the higher-order Jacobian of ϕ at a point x ∈ (K \
{0})d is given by:

Dn
x(ϕ) =

( 1

α!

∂α(XA − xA)β

∂Xα
|x
)
β∈Λs,n,α∈Λd,n

.

We are interested in computing the maximal minors of this matrix. This
will be done in several steps.

Lemma 2.2. Let γ ∈ Ns and α ∈ Nd. Then

1

α!

∂α(XAγ)

∂Xα
=

(
Aγ

α

)
XAγ−α.

Proof. This is a direct computation.
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Lemma 2.3. Let β ∈ Λs,n, α ∈ Λd,n and x ∈ (K \ {0})d. Then

1

α!
∂α(XA − xA)β|x = cβ,αx

Aβ−α,

where cβ,α :=
∑

γ≤β,γ 6=0(−1)|β−γ|
(
β
γ

)(
Aγ
α

)
.

Proof. From the binomial theorem we obtain, for each i ∈ {1, . . . , s}:

(Xai − xai)β(i) =

β(i)∑
γ(i)=0

(−1)β(i)−γ(i)

(
β(i)

γ(i)

)
(Xai)γ(i)(xai)β(i)−γ(i).

Thus, letting γ := (γ(1), . . . , γ(s)),

(XA − xA)β =

β(1)∑
γ(1)=0

· · ·
β(s)∑
γ(s)=0

(−1)|β−γ|
(
β

γ

) s∏
i=1

(Xai)γ(i)(xai)β(i)−γ(i)

=
∑
γ≤β

(−1)|β−γ|
(
β

γ

)
(X

∑
γ(i)ai)(x

∑
β(i)ai−

∑
γ(i)ai)

=
∑
γ≤β

(−1)|β−γ|
(
β

γ

)
(XAγ)(xAβ−Aγ).

With this formula and the previous lemma now it is easy to compute the
derivative evaluated at x:

1

α!
∂α(XA − xA)β|x =

∑
γ≤β,γ 6=0

(−1)|β−γ|
(
β

γ

)
(xAβ−Aγ)

1

α!
∂α(XAγ)|x

=
∑

γ≤β,γ 6=0

(−1)|β−γ|
(
β

γ

)
(xAβ−Aγ)

(
Aγ

α

)
XAγ−α|x

=
∑

γ≤β,γ 6=0

(−1)|β−γ|
(
β

γ

)(
Aγ

α

)
xAβ−α

=
[ ∑
γ≤β,γ 6=0

(−1)|β−γ|
(
β

γ

)(
Aγ

α

)]
xAβ−α.

Using this lemma it follows that the higher-order Jacobian of ϕ at each
x ∈ (K \ {0})d has the following shape:

Dn
x(ϕ) =

(
cβ,αx

Aβ−α
)
β∈Λs,n,α∈Λd,n

. (4)
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Proposition 2.4. Let J = {β1, . . . , βλd,n} ⊂ Λs,n, where β1 ≺ . . . ≺ βλd,n
(see definition 1.2 for the notation ≺). Let LJ denote the submatrix of
Dn
x(ϕ) formed by the rows β1, . . . , βλd,n and all of its columns α1, . . . , αλd,n.

Then, if x ∈ (K \ {0})d,

det(LJ) =
x
Aβ1+···+Aβλd,n

x
α1+···+αλd,n

det(LcJ),

where LcJ := (cβi,αj )i,j.

Proof. The matrix whose determinant we want to compute is the following:

LJ =


cβ1,α1x

Aβ1−α1 · · · cβ1,αλd,n
x
Aβ1−αλd,n

cβ2,α1x
Aβ2−α1 · · · cβ2,αλd,n

x
Aβ2−αλd,n

... · · ·
...

cβλd,n ,α1x
Aβλd,n−α1 · · · cβλd,n ,αλd,nx

Aβλd,n−αλd,n

 .

Multiply the αjth column by xαj . Then multiply the βith row by x−Aβi .
Let LcJ = (cβi,αj )i,j . Then

det(LJ) =
x
Aβ1+···+Aβλd,n

x
α1+···+αλd,n

det(LcJ). (5)

Remark 2.5. If n = 1 then λd,n = d. Letting βik = eik ∈ Ns for k = 1, . . . , d
and J = {βi1 , . . . , βid} ⊂ Λs,1, it follows that LcJ is the (d×d)-matrix whose
rows are ai1 , . . . , aid . In particular, in view of (5), det(LJ) 6= 0 if and only
if ai1 , . . . , aid are linearly independent. This remark allows a comparison
between the so-called logarithmic Jacobian ideal of a toric variety and an
ideal whose blowup defines the Nash blowup of the variety [9, 15]. This, in
turn, gives place to the fact that the Nash blowup of a toric variety can be
obtained as the blowup of its logarithmic Jacobian ideal (see [9, 14, 11]). As
a result, there is an explicit combinatorial description of the Nash blowup
in this context [9, 11, 12].

3 Higher Nash blowup of toric varieties

In this section we exhibit an open cover for the higher Nash blowup of a toric
variety. The main result is the first step toward our study of a conjecture
proposed by T. Yasuda regarding the higher Nash blowup of formal curves.
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We start by recalling the definition of the higher Nash blowup of an
algebraic variety. Subsection 3.2 is based on the general theory of (not
necessarily normal) toric varieties developed in [11] and also uses some ideas
appearing in [12].

3.1 Higher Nash blowup

Notation 3.1. Given an irreducible algebraic variety X ⊂ Ks of dimension
d and a point x ∈ X, we denote TnxX := (m̄x/m̄

n+1
x )∨. This is a vector space

of dimension λd,n, whenever x is a non-singular point.

Notice that X ⊂ Ks implies TnxX ⊂ TnxKs ∼= Kλs,n . Thus, if x is
a non-singular point, we can see TnxX as an element of the Grassmanian
Gr(λd,n,Kλs,n).

Definition 3.2. [15, 16, 22] Let X ⊂ Ks be an irreducible algebraic variety
of dimension d. Consider the Gauss map of order n:

Gn : X \ Sing(X)→ Gr(λd,n,Kλs,n)

x 7→ TnxX,

where Sing(X) denotes the set of singular points ofX. Denote byNashn(X)
the Zariski closure of the graph of Gn. Call πn the restriction to Nashn(X)
of the projection of X ×Gr(λd,n,Kλs,n) to X. The pair (Nashn(X), πn) is
called the higher Nash blowup of X or the Nash blowup of X of order n.

It was proposed by T. Yasuda ([22]) to solve the singularities of X by ap-
plying once the higher Nash blowup for n sufficiently large. Yasuda himself
proved that his method works for curves ([22, Corollary 3.7]). Moreover,
Yasuda suggested in [24, Remark 1.5] that the A3-singularity might be a
counterexample to his conjecture on the one-step resolution. R. Toh-Yama
recently proved in [21] that Nashn(A3) is singular for every n ≥ 1.

In addition to the previous conjecture, Yasuda also proposed another one
concerning the numerical semigroup associated to the higher Nash blowup
of formal curves (see conjecture 4.2 below). The results we obtain in this
section will be used to study this conjecture in the case of toric curves.

3.2 An explicit open cover of the higher Nash blowup of toric
varieties by affine toric varieties

Let us recall the definition of an affine toric variety (see, for instance, [4,
Section 1.1] or [20, Chapter 4]).
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Definition 3.3. Let A = {a1, . . . , as} ⊂ Zd. Let Γ := NA denote the semi-
group generated by A, i.e., Γ = {

∑
i λiai|λi ∈ N}. In addition, assume that

ZA = {
∑

i λiai|λi ∈ Z} = Zd. Consider the following monomial morphism:

ϕA : (K∗)d → Ks (6)

x = (x1, . . . , xd) 7→ (xa1 , . . . , xas),

where K∗ = K \ {0}. Let XΓ denote the Zariski closure of the image of ϕA.
We call XΓ the affine toric variety defined by Γ.

It is well known that XΓ is an irreducible variety of dimension d, contains
a dense open set isomorphic to (K∗)d and such that the natural action of
(K∗)d on itself extends to an action on the variety. In addition, XΓ does
not depend on the generating set A (see [4, Theorem 1.1.17] for various
equivalent characterizations of affine toric varieties).

Proposition 3.4. [4, Prop. 1.2.12],[11, Prop. 15] Let XΓ ⊂ Ks be an
affine toric variety, σ∨ := R≥0Γ ⊂ Rd the cone generated by Γ, and σ its
dual cone. The following statements are equivalent:

(a) 0 ∈ XΓ.

(b) XΓ has a 0-dimensional orbit.

(c) The cone σ is of dimension d.

(d) The cone σ∨ is strongly convex.

We want to show that the higher Nash blowup of a toric variety having
a 0-dimensional orbit, has a finite open cover given by affine toric varieties
with the same property. The proof of this fact is based on the following
combinatorial construction of blowing ups of monomials ideals in toric vari-
eties (see [11, Section 2.6]).

Combinatorial description of the blowup of a monomial ideal.
Let XΓ ⊂ Ks be an affine toric variety having a 0-dimensional orbit and
σ∨ = R≥0Γ ⊂ Rd (which is strongly convex, by the previous proposition).

(i) Let I = 〈xm|m ∈ B〉 ⊂ K[XΓ] be a monomial ideal.

(ii) Let N (I) be the Newton polyhedron of I, i.e., the convex hull in Rd
of the set {m+ σ∨|m ∈ B}.

(iii) Let m′ ∈ B. Denote Γm′ := Γ + N({m−m′|m ∈ B}).

12



(iv) Given m′,m′′ ∈ B, the affine toric varieties XΓm′ and XΓm′′ can be

glued together along the principal open subsets XΓm′ \ V(xm
′′−m′)

and XΓm′′ \V(xm
′−m′′). There is an isomorphism between these open

subsets which is induced by localizations of coordinate rings:

K[XΓm′ ]xm′′
xm
′

∼= K[XΓm′′ ] xm′
xm
′′
.

(v) The variety resulting from the previous glueing is the blowup of XΓ

along I (see [11, Proposition 32]). We denote it as BlIXΓ.

(vi) Finally, let B′ = {m′ ∈ B|m′ is a vertex of N (I)}. Then

BlIXΓ =
⊔
m′∈B′ XΓm′

/
∼

(see the proof of Proposition 32, [11]). By proposition 3.4, for m′ ∈ B′,
XΓm′ has a 0-dimensional orbit. In particular, BlIXΓ has an open
cover by affine toric varieties having a 0-dimensional orbit.

Remark 3.5. The variety resulting from the previous construction is an
example of an abstract toric variety having a good action (see [11, Section
2.8]). These varieties are characterized by the fact that they can be described
in combinatorial terms by families of semigroups labeled by fans (see [11,
Theorem 44]).

In order to use the previous construction and compare it to the higher
Nash blowup of a toric variety, we need to introduce some monomial ideal. In
addition, we use the Plücker embedding of Gr(λd,n,Kλs,n) into the projective

space P(λs,nλd,n
)−1

. First, some notation.

Notation 3.6. Let A = {a1, . . . , as} ⊂ Zd and Γ = NA a semigroup defining
a toric variety XΓ ⊂ Ks.

• Given J = {β1, . . . , βλd,n} ⊂ Λs,n such that β1 ≺ · · · ≺ βλd,n , we

denote as UJ the affine chart of P(λs,nλd,n
)−1

where the J-coordinate is
non-zero (see definition 1.2 for the notation ≺).

• Let SA := {J = {β1, . . . , βλd,n} ⊂ Λs,n|β1 ≺ · · · ≺ βλd,n , det(LcJ) 6= 0}.
Notice that SA 6= ∅ by propositions 1.8 and 2.4.

• For each J = {β1, . . . , βλd,n} ⊂ Λs,n, denote mJ := Aβ1 + · · ·+Aβλd,n .
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Definition 3.7. Let In := 〈XmJ |J ∈ SA〉 ⊂ K[XΓ]. Following the usual
terminology, we call In the logarithmic Jacobian ideal of order n of XΓ.

Remark 3.8. In the following subsection we show that In does not depend
on the set of generators of Γ.

We want to apply the combinatorial description of the blowup of a mono-
mial ideal to In. To that end, we simplify a little the notation coming from
that description. For XmJ ∈ In, instead of using ΓmJ as in (iii), we simply
write ΓJ .

Now we are ready to prove the main theorem of this section.

Theorem 3.9. Let XΓ ⊂ Ks be an affine toric variety having a 0-dimensional
orbit. Then Nashn(XΓ) is isomorphic to the blowup of the logarithmic Ja-
cobian ideal of order n of XΓ. In particular, Nashn(XΓ) has a finite open
covering given by affine toric varieties having a 0-dimensional orbit.

Proof. We divide this proof into two steps: the first one describes locally
Nashn(XΓ) and the second one is a glueing argument.

Step I: According to proposition 1.8 and (4), for a point p := ϕA(x) ∈ XΓ,
for some x ∈ (K∗)d, we have

Tnp XΓ = Im(Dn
x(ϕA)) = Im

(
cβ,αx

Aβ−α
)
β∈Λs,n,α∈Λd,n

.

Thus, the Plücker coordinates of Tnp XΓ ∈ Gr(λd,n,Kλs,n) ↪→ P(λs,nλd,n
)−1

are

given by the maximal minors of
(
cβ,αx

Aβ−α)
β,α

. According to (5), for a

choice J = {β1, . . . , βλd,n} ⊂ Λs,n, where β1 ≺ . . . ≺ βλd,n , the corresponding
minor is:

det(LcJ)
x
Aβ1+···+Aβλd,n

x
α1+···+αλd,n

.

Fix J0 ∈ SA. It follows that:

1. If J ∈ SA we can make a change of coordinates in UJ0
∼= K

s+(λs,nλd,n
)−1

to turn the non-zero constant
det(LcJ )

det(LcJ0
) into 1. Thus, we can assume

that the J-coordinate of Nashn(XΓ)∩UJ0 comes with the constant 1,
for every J ∈ SA.

2. If J /∈ SA the J-coordinate of Nashn(XΓ) is zero. This implies that
we can embed Nashn(XΓ) ∩ UJ0 in Ks+|SA|−1.
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These two remarks imply that

Nashn(XΓ) ∩ UJ0
∼= {
(
ϕA(x),

x
∑
βi∈J

Aβi

x
∑
β0
i
∈J0

Aβ0
i

)
|J ∈ SA \ {J0}, x ∈ (K∗)d}

= {(ϕA(x), xmJ−mJ0 )|J ∈ SA \ {J0}, x ∈ (K∗)d} (7)

= Im(ϕΓJ0
) ⊂ Ks+|SA|−1.

In particular, this affine chart of Nashn(XΓ) is an affine toric variety.

Step II: By Step I, for each J ∈ SA, XΓJ
∼= Nashn(XΓ) ∩ UJ . Since both

BlInXΓ and Nashn(XΓ) are obtained by glueing XΓJ and Nashn(XΓ)∩UJ ,
respectively, we only need to check that the glueing is the same. The glueing

inNashn(XΓ) ⊂ XΓ×P
(λs,nλd,n

)−1
is given by the usual glueing in P(λs,nλd,n

)−1
, i.e.,

the one induced by the following isomorphisms of localizations of coordinate
rings for each couple J1, J2 ∈ SA:

K[xa1 , . . . , xas , xmJ−mJ1 |J ∈ SA /∈ {J1}]xmJ2

x
mJ1

∼= K[xa1 , . . . , xas , xmJ−mJ2 |J ∈ SA /∈ {J2}]xmJ1

x
mJ2

.

This is exactly the glueing described in the combinatorial description of the
blowup of a monomial ideal.

Remark 3.10. For n = 1, the previous theorem was proved in [9, 14, 11].

Remark 3.11. The previous theorem and its proof show that Nashn(XΓ)
can be covered by open affine varieties which are invariant under the action
of a torus. This statement could be obtained directly using results of [11, 22].
Indeed, by [22, Section 2.2], the higher Nash blowup of a toric variety is an
equivariant morphism; in particular, it is the blowup of some monomial
ideal. Then [11, Corollary 34] implies the statement. We want to emphasize
that the contribution of this section is that one can take the logarithmic
Jacobian ideal of order n as such monomial ideal. In addition, we describe
an explicit method to construct this ideal.

3.3 The logarithmic Jacobian ideal of order n is independent
of the generators of Γ

In this subsection we show that the ideal In does not depend on the set of
generators A of Γ. To that end, we need to modify temporarily the notation
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In. We denote as IC the logarithmic Jacobian ideal of order n, where C is
an arbitrary set of generators of Γ.

Theorem 3.12. Let A = {a1, . . . , as} ⊂ Zd and B = {b1, . . . , bt} ⊂ Zd be
such that Γ = NA = NB. Then IA = IA∪B = IB. In particular, the loga-
rithmic Jacobian ideal of order n of XΓ does not depend on the generators
of Γ.

Proof. It is enough to show IA = IA∪B. Lemma 3.13 states that IA ⊂ IA∪B.
Applying repeatedly lemma 3.14 we obtain the other inclusion.

Lemma 3.13. With the notation of theorem 3.12, IA ⊂ IA∪B.

Proof. For J ∈ SA, define J̄ := {(β, 0, . . . , 0) ∈ Ns+t|β ∈ J}. The submatrix
of Dn

x(ϕA∪B) defined by J̄ is the same as the submatrix of Dn
x(ϕA) defined

by J . Therefore J̄ ∈ SA∪B. Thus, XmJ = XmJ̄ ∈ IA∪B.

Lemma 3.14. Let A be as in theorem 3.12 and b ∈ NA. Let A′ = A ∪ {b}.
Then IA′ ⊂ IA.

Proof. Consider the following partition of SA′ :

S1 := {J̄ ∈ SA′ |β(s+ 1) = 0 for all β ∈ J̄},
S2 := {J̄ ∈ SA′ |β(s+ 1) > 0 for some β ∈ J̄}.

By definition, IA′ = 〈{XmJ̄ |J̄ ∈ S1} ∪ {XmJ̄ |J̄ ∈ S2}〉. As in the proof
of lemma 3.13, {XmJ̄ |J̄ ∈ S1} ⊂ IA. We claim that {XmJ̄ |J̄ ∈ S2} ⊂
〈{XmJ̄ |J̄ ∈ S1}〉, implying the lemma. Now, to prove the claim we show
that for J̄ ∈ S2 there exists J ∈ S1 and γ̄ ∈ Γ such that mJ̄ = mJ + γ̄.
First, we need some notation.

• For γ ≤ βi, let εγ := (−1)|βi−γ|
(
βi
γ

)
. Then, by definition, cβi,αj =∑

γ≤βi,γ 6=0 εγ
(
A′γ
αj

)
(see lemma 2.3).

• cβi :=
(∑

γ≤βi,γ 6=0 εγ
(
A′γ
αj

))
1≤j≤λd,n

(cβi is the βi-th row of Lc
J̄
).

• vγ :=
((

A′γ
αj

))
1≤j≤λd,n

. Notice that by remark 4.3, cβi =
∑

γ≤βi,γ 6=0 εγvγ

(that remark is stated for toric curves but it also holds for toric vari-
eties of any dimension).

Let J̄ = {β1, . . . , βλd,n} ∈ S2. Then det(Lc
J̄
) 6= 0 and we can assume

that β1(s+ 1) > 0. Then the following holds:
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1. There exists γ′ ≤ β1 such that the matrix obtained by replacing the
β1th row of Lc

J̄
by vγ′ has non-zero determinant.

2. There exists δ0 ∈ Ns+1 such that δ0(s+ 1) = 0 and A′δ0 = A′γ′.

3. There exists δ ∈ Ns+1 such that δ ≤ δ0, δ(s + 1) = 0, and the matrix
having as rows cδ, cβ2 , . . . , cβλd,n has non-zero determinant.

4. Let J1 := J̄ \{β1}∪{δ}. Then J1 ∈ SA′ and mJ̄ equals mJ1 plus some
element in Γ.

Notice that by applying 1 - 4 to any element of J̄ whose (s+ 1)-entry is
greater than zero, we obtain J ∈ S1 and γ̄ ∈ Γ with the desired properties.
Now we prove the previous statements.

1. It follows immediately from:

0 6= det(LcJ̄) = det


cβ1

cβ2

...
cβλd,n

 = det


∑

γ≤β1,γ 6=0 εγvγ
cβ2

...
cβλd,n



=
∑

γ≤β1,γ 6=0

εγ det


vγ
cβ2

...
cβλd,n

 .

2. If γ′(s + 1) = 0, let δ0 := γ′. Now suppose that γ′(s + 1) = k > 0.
Since b ∈ NA, b =

∑s
l=1 λlal. Let δ0(l) := γ′(l) + kλl for l < s+ 1 and

δ0(s+ 1) = 0. Then

A′δ0 =
s∑
l=1

δ0(l)al =
s∑
l=1

(γ′(l) + kλl)al =
s∑
l=1

γ′(l)al + kb = A′γ′.

3. Let M denote the matrix whose rows are cδ0 , cβ2 , . . . , cβλd,n , in this

order. If det(M) 6= 0 let δ := δ0. Suppose that det(M) = 0. Then

0 = det(M) =
∑

γ<δ0,γ 6=0

εγ det


vγ
cβ2

...
cβλd,n

+ det


vδ0
cβ2

...
cβλd,n

 .
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On the other hand, A′δ0 = A′γ′ implies vγ′ = vδ0 and so

0 6= det


vγ′

cβ2

...
cβλd,n

 = det


vδ0
cβ2

...
cβλd,n

 .

Therefore

0 6=
∑

γ<δ0,γ 6=0

εγ det


vγ
cβ2

...
cβλd,n

 .

Thus there exists δ1 < δ0 such that det(vδ1 cβ2 · · · cβλd,n ) 6= 0. If

det(cδ1 cβ2 · · · cβλd,n ) 6= 0, let δ := δ1. Otherwise repeat the previous

process. This leads to a sequence δ0 > δ1 > · · · . Since this sequence
cannot decrease infinitely many times, we conclude that there exists
k ≥ 0 such that δ0 > δ1 > · · · > δk =: δ and det(cδ cβ2 · · · cβλd,n ) 6= 0.

In addition, since δ ≤ δ0 and δ0(s+ 1) = 0, we have δ(s+ 1) = 0.

4. To show that J1 ∈ SA′ we only need to show that |δ| ≤ n because we
already know that det(LcJ1

) 6= 0. If |δ| > n then, by lemma 1.6 (ii),
cδ = 0, which contradicts that det(LcJ1

) 6= 0. On the other hand, we
know that δ ≤ δ0 and γ′ ≤ β1. Let δ0 = δ+ δ′ and β1 = γ′+ γ′′. Then

A′β1 = A′γ′ +A′γ′′ = A′δ0 +A′γ′′ = A′δ +A′δ′ +A′γ′′.

This implies that mJ̄ equals mJ1 plus an element from Γ.

4 Higher Nash blowup of toric curves

In this section we study in detail the higher Nash blowup of toric curves.
In this section we use the following notation: A = {a1, . . . , as} ⊂ N, where
0 < a1 < . . . < as and gcd(a1, . . . , as) = 1. Let Γ = NA ⊂ N. We assume
that A is the minimal generating set of Γ. Let XΓ ⊂ Ks be the corresponding
toric curve.

According to theorem 3.9, Nashn(XΓ) is isomorphic to the blowup of
the ideal In. Since Γ ⊂ R≥0, it follows that the Newton polyhedron of In
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has only one vertex mJ0 = min{mJ |J ∈ SA}. In particular, Nashn(XΓ) is
determined by a single semigroup. We denote it as:

Nashn(Γ) := Γ + N({mJ −mJ0 |J ∈ SA \ {J0}}).

Let us show how this semigroup looks like for n = 1. In this case,
S = {e1, . . . , es}, where the e′is denote the canonical basis of Ns, mei = ai,
and so mini{mei} = a1. Therefore

Nash1(Γ) = Γ + N({ak − a1|k > 1}).

Remark 4.1. The previous description is a particular case of the combina-
torial description of the Nash blowup of toric varieties given in [11, 12] (see
also [8], where the Nash blowup of toric curves is studied in detail).

We may ask the question: is there an explicit description for Nashn(Γ)
as in n = 1? T. Yasuda made the following conjecture in a more general
context.

Conjecture 4.2. [23, Conjecture 5.6] Let X be a formal curve with asso-
ciated semigroup Γ = {0 = s0 < s1 < · · · }. Let Nashn(Γ) be the associated
semigroup of Nashn(X). Let Γ(n) be the semigroup generated by sm − sl,
where l ≤ n < m. Then Nashn(Γ) = Γ(n).

In what follows we prove that this conjecture is true for toric curves.
However, in the final section we show that it fails in general.

In order to prove the conjecture in the toric case, first we need to study
carefully some maximal minors of the higher-order Jacobian matrix. In
section 2 we defined, for J = {β1, . . . , βn} ⊂ Λs,n, the matrix LcJ = (cβi,j)i,j ,
where

cβi,j =
∑

γ≤βi,γ 6=0

(−1)|βi−γ|
(
βi
γ

)(
A · γ
j

)
.

Notice that in this case A is a vector in Ns and A ·γ is the usual dot product.

Remark 4.3. (a) For a fixed i, every entry of the i-th row of LcJ has the

same amount of summands and the same coefficients (−1)|βi−γ|
(
βi
γ

)
.

In other words, for a fixed row of LcJ , the amount of summands and
coefficients of its entries do not depend on j.

(b) Fix i ∈ {1, . . . , n}. We rewrite the sums cβi,j as follows:

cβi,j =

(
si,1
j

)
+ ti,2

(
si,2
j

)
+ · · ·+ ti,ki

(
si,ki
j

)
,
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where si,1 := A · βi, si,l ∈ {A · γ|γ ≤ βi, 0 6= γ 6= βi} for 1 < l ≤ ki,
and ti,l ∈ Z. Assume that si,1 > si,2 > . . . > si,ki > 0. By (a), {si,l}l,
{ti,l}l and ki do not depend on j. Therefore, the i-th row of LcJ can
be written as:( (

si,1
1

)
+ ti,2

(
si,2
1

)
+ · · ·+ ti,ki

(si,ki
1

)
, . . . ,

(
si,1
n

)
+ ti,2

(
si,2
n

)
+ · · ·+ ti,ki

(
si,ki
n

) )
.

Now we define some elementary operations on a matrix having the same
shape as LcJ . Given ki ∈ N for i ∈ {1, . . . , n}, and si,l ∈ N\{0}, ti,l ∈ Q\{0}
for l ∈ {1, . . . , ki}, consider a matrix

D =
(
ti,1
(si,1
j

)
+ ti,2

(si,2
j

)
+ · · ·+ ti,ki

(si,ki
j

) )
1≤i≤n
1≤j≤n

.

Notice that if we fix i, the terms ki, si,l, ti,l do not depend on j. Assume
that si,1 > si,2 > · · · > si,ki for all i ∈ {1, . . . , n}. Finally, let Ri denote the
i-th row of D.

Definition 4.4. We say that D satisfies (?) if there exist i, i′ ∈ {1, . . . , n}
such that si,1 = si′,1.

Using the following algorithm we show that, under some assumptions,
we can perform elementary operations on the rows of D to obtain a matrix
that does not satisfy the property (?).

Algorithm 4.5. Assume detD 6= 0 and that D satisfies (?).

1. Replace the row Ri by ti′,1Ri − ti,1Ri′ .

2. Since detD 6= 0 the new row cannot be the vector 0̄. Write this new
vector as:

R′i :=
(
t′i,1
(s′i,1
j

)
+ ti,2

(s′i,2
j

)
+ · · ·+ t′i,k′i

(s′
i,k′
i

j

) )
1≤j≤n

,

where t′i,l 6= 0 for all l ∈ {1, . . . , k′i} and s′i,1 > · · · > s′i,k′i
. Notice that

si,1 > s′i,1 > 0.

3. Let

D′ :=


R1
...
R′i
...
Rn

 .
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(i) If there exists i′′ ∈ {1, . . . , n} \ {i} such that s′i,1 = si′′,1, then
apply step 1 to R′i. As before, we obtain a new element s′′i,1 ∈ N
such that si,1 > s′i,1 > s′′i,1 > 0.

(ii) If there is no i′′ ∈ {1, . . . , n} \ {i} such that s′i,1 = si′′,1 then stop.

Because of the decreasing sequence si,1 > s′i,1 > s′′i,1 > · · · , this algorithm
must stop and it produces a new row that looks like(

ui,1
(ri,1
j

)
+ ui,2

(ri,2
j

)
+ · · ·+ ui,mi

(ri,mi
j

) )
1≤j≤n

,

where ui,l 6= 0 for all l ∈ {1, . . . ,mi}, ri,1 > · · · > ri,mi > 0 and ri,1 6= sl,1
for all l ∈ {1, . . . , n} \ {i}.

Applying this process every time that the new matrix satisfies (?), we
finally get a matrix D

D =
(
ui,1
(ri,1
j

)
+ ui,2

(ri,2
j

)
+ · · ·+ ui,mi

(ri,mi
j

) )
1≤i≤n
1≤j≤n

,

such that ri,1 > · · · > ri,mi for each i and ri,1 6= ri′,1 for all i 6= i′.

Example 4.6. Consider the following matrix:

D =


(

2
1

) (
2
2

) (
2
3

)(
6
1

)
− 2
(

3
1

) (
6
2

)
− 2
(

3
2

) (
6
3

)
− 2
(

3
3

)(
6
1

)
− 3
(

4
1

)
+ 3
(

2
1

) (
6
2

)
− 3
(

4
2

)
+ 3
(

2
2

) (
6
3

)
− 3
(

4
3

)
+ 3
(

2
3

)
 .

Notice that D satisfies (?). Applying algorithm 4.5 to the third row we
obtain the matrix:

D =


(

2
1

) (
2
2

) (
2
3

)(
6
1

)
− 2
(

3
1

) (
6
2

)
− 2
(

3
2

) (
6
3

)
− 2
(

3
3

)
−3
(

4
1

)
+ 2
(

3
1

)
+ 3
(

2
1

)
−3
(

4
2

)
+ 2
(

3
2

)
+ 3
(

2
2

)
−3
(

4
3

)
+ 2
(

3
3

)
+ 3
(

2
3

)
 .

4.1 A partial description of Nashn(XΓ)

The first step towards proving conjecture 4.2 for toric curves is to determine
minJ∈SA{mJ}. Recall that for J = {β1, . . . , βn} ⊂ Λs,n, we defined mJ = A·
β1+· · ·+A·βn. On the other hand, A·βi ∈ Γ since A is the vector formed by
the generators of Γ. Therefore, it is natural to expect that minJ∈SA{mJ} =∑n

i=1 si. The goal of this subsection is to prove that this is indeed the case.

Proposition 4.7. Let J ⊂ Λs,n, |J | = n, then minJ∈SA{mJ} =
∑n

i=1 si.

21



Proof. This is proved in lemmas 4.9 and 4.13.

This proposition gives the following partial description of Nashn(Γ).

Corollary 4.8. Nashn(Γ) = Γ + N({mJ −
∑n

i=1 si|J ∈ SA}).

Lemma 4.9. Let J ∈ SA. Then mJ ≥ s1 + · · · + sn. In particular,
minJ∈SA{mJ} ≥

∑n
i=1 si.

Proof. Let J = {β1, β2, . . . , βn}. Using (b) of remark 4.3 we have

LcJ =
( (si,1

j

)
+ ti,2

(si,2
j

)
+ · · ·+ ti,ki

(si,ki
j

) )
1≤i≤n
1≤j≤n

,

where si,l ∈ Γ for each l, si,1 = A · βi, and si,1 > si,2 > · · · > si,ki . If
si,1 6= si′,1 for all 1 ≤ i 6= i′ ≤ n then the statement follows.

Now suppose that there exist βi, βi′ ∈ J , i 6= i′, such that si,1 = si′,1, i.e.,
LcJ satisfies (?). Since J ∈ SA, i.e., det(LcJ) 6= 0, we can apply algorithm 4.5
to obtain some elements r1,1, . . . , rn,1 ∈ Γ satisfying ri,1 6= ri′,1 for all i 6= i′

and si,1 > ri,1 for some i ∈ {1, . . . , n}. Under these conditions we have

mJ =
n∑
i=1

A · βi =
n∑
i=1

si,1 >
n∑
i=1

ri,1 ≥
n∑
i=1

si.

To show that minJ∈SA{mJ} =
∑n

i=1 si we need to show that, if J =
{β1, . . . , βn} ⊂ Λs,n is such that A ·βi = si, then J ∈ SA. In other words, we
need to study J ’s such that det(LcJ) 6= 0. We do not have a characterization
of such J ’s. However, in the following definition and lemma we give sufficient
conditions for J to be in SA.

Definition 4.10. Let J ⊂ Ns be a finite subset. We say that J satisfies (∗)
if the following conditions hold:

1) For all β, β′ ∈ J such that β 6= β′, it holds A · β 6= A · β′.

2) For all β ∈ J and 0 6= γ < β, there exists β′ ∈ J such that A·γ = A·β′.

Example 4.11. (i) Let J = {ej , 2ej , . . . , nej}, where ej is a basic vector.
Then J satisfies (∗). Indeed, 1) follows by definition and 2) by the
definition of <.
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(ii) Let J = {β1, β2, . . . , βn} be such that A · βi = si. Then J satisfies (∗).
Indeed, 1) follows by definition and 2) follows from the fact that γ < β
implies A · γ < A · β.

Remark 4.12. Let β ∈ Ns be such that |β| ≥ n+1. Then A ·β > na1 ≥ sn.
This implies that for J = {β1, . . . , βn} ⊂ Ns such that A · βi = si for each i,
we have J ⊂ Λs,n.

Lemma 4.13. Let J ⊂ Λs,n, |J | = n. If J satisfies (∗) then J ∈ SA. In
particular, minJ∈SA{mJ} ≤

∑n
i=1 si.

Proof. The last statement follows from (ii) of example 4.11 and remark 4.12.
Let J = {β1, . . . , βn} satisfies (∗). In particular, A ·βi 6= A ·βi′ for all i 6= i′.
Assume A · β1 < · · · < A · βn. By (b) of remark 4.3, we can rewrite the
matrix LcJ as(

cβi,j
)

1≤i≤n
1≤j≤n

=
( (si,1

j

)
+ ti,2

(si,2
j

)
+ · · ·+ ti,ki

(si,ki
j

) )
1≤i≤n
1≤j≤n

,

where si,1 = A · βi, si,1 > si,2 > · · · , and si,l = A · γ for some γ ≤ βi.
Now we do some elementary operations on the n-th row of LcJ :( (sn,1

j

)
+ tn,2

(sn,2
j

)
+ · · ·+ tn,kn

(sn,kn
j

) )
1≤j≤n

.

We know that sn,2 = A ·γ for some γ < βn. Since J satisfies (∗), there exists
βj0 ∈ J such that A ·βj0 = A · γ = sn,2. Then we sustract tn,2-times the row
j0 to the row n, thus obtaining( (s′n,1

j

)
+ t′n,2

(s′n,2
j

)
+ · · ·+ t′n,k′n

(s′
n,k′n
j

) )
1≤j≤n

,

where s′n,1 = sn,1, s′n,2 > s′n,3 > · · · , and sn,2 > s′n,2. Now we have s′n,2 =
A·γ′ for some γ′ < βn or some γ′ < βj0 . Once again, by (∗) we can repeat the
previous process to obtain a new element s′′n,2 such that sn,2 > s′n,2 > s′′n,2.
Because of this decreasing sequence of natural numbers, the iteration of this
process must stop turning the n-th row into( (sn,1

j

) )
1≤j≤n

.

Applying this process to the other rows of LcJ in an ascending way we
obtain the matrix ( (si,1

j

) )
1≤i≤n
1≤j≤n

.
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Notice that si,1 = A · βi 6= A · βi′ = si′,1 for all i 6= i′. The following
lemma shows that this matrix has non-zero determinant, thus concluding
that J ∈ S.

Lemma 4.14. Let 0 < c1 < c2 < · · · < cn be natural numbers. Consider

the matrix L =
( (

ci
j

) )
1≤i≤n
1≤j≤n

. Then detL 6= 0.

Proof. For j ∈ {1, . . . , n}, consider the polynomial bj(x) = x(x−1)···(x−j+1)
j! .

Notice that if x ∈ N, bj(x) =
(
x
j

)
and deg bj(x) = j. Thus

L =
( (

ci
j

) )
1≤i≤n
1≤j≤n

=
(
bj(ci)

)
1≤i≤n
1≤j≤n

.

Now we show that the columns of this matrix are linearly independent. Let
α1, . . . , αn ∈ R be such that

∑n
j=1 αjbj(ci) = 0, for each i ∈ {1, . . . , n}. Let

f(x) =
∑n

j=1 αjbj(x). Then {c1, . . . , cn} are roots of f(x). But we also have
f(0) = 0. Since deg f(x) ≤ n it follows that f(x) = 0. As deg bj(x) = j for
each j, we conclude that αj = 0 for all j. In particular, detL 6= 0.

4.2 Proof of conjecture 4.2 for toric curves and some conse-
quences

Now we are ready to prove the main theorem of this section. Recall that by
definition and corollary 4.8:

Γ(n) = N({sm − sl|m > n, l ≤ n}),

Nashn(Γ) = Γ + N({mJ −
n∑
l=1

sl|J ∈ SA}).

Theorem 4.15. Γ(n) = Nashn(Γ).

Proof. This is proved in propositions 4.16 and 4.18.

Proposition 4.16. Nashn(Γ) ⊂ Γ(n).

Proof. By corollary 4.8, it is enough to show that ai ∈ Γ(n) for each i ∈
{1, . . . , s} and mJ −

∑n
l=1 sl ∈ Γ(n) for each J ∈ SA.

We first prove ai ∈ Γ(n). For ai ≤ sn there exists m ∈ N such that
mai ≤ sn < (m + 1)ai. Then ai = (m + 1)ai −mai ∈ Γ(n). If ai ≥ sn then
ai + a1 > sn, and ai = (ai + a1)− a1 ∈ Γ(n).
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Now we prove that mJ −
∑n

l=1 sl ∈ Γ(n) for each J ∈ SA. Consider
J = {β1, β2, . . . , βn} ∈ SA, let si,1 := A · βi and assume s1,1 ≤ · · · ≤ sn,1.
Let k := max{l ∈ {1, . . . , n}|sl,1 ≤ sn}.
Case I: Suppose that s1,1 < s2,1 < · · · < sk,1 ≤ sn. Let ψ = {s1, . . . , sn} \
{s1,1, · · · , sk,1}. Write ψ = {rk+1, . . . , rn}. By definition of k and ψ we
obtain:

mJ −
n∑
l=1

sl =

n∑
l=1

sl,1 −
n∑
l=1

sl =

n∑
l=k+1

sl,1 −
n∑

l=k+1

rl ∈ Γ(n).

Case II: Suppose that there exist i, i′ ≤ k such that si,1 = si′,1. We
claim that for all j ≤ k there exist rj,1 ∈ Γ such that sj,1 − rj,1 ∈ Γ(n)

and rj,1 6= rj′,1 for all j 6= j′. Assume this claim for the moment. For the
elements sm,1 with m > k, we have that sm,1 > sn and so sm,1−sl ∈ Γ(n) for
any l ≤ n. Let ψ = {s1, . . . , sn} \ {r1,1, . . . , rk,1}. Write ψ = {rk+1, . . . , rn}.
As in the previous case, we conclude that

mJ −
n∑
l=1

sl =
( k∑
l=1

sl,1 −
k∑
l=1

rl,1

)
+
( n∑
l=k+1

sl,1 −
n∑

l=k+1

rl

)
∈ Γ(n).

Now we prove the claim. Since J ∈ SA, we can apply algorithm 4.5 to
any pair of rows of LcJ , i, i′ ≤ k such that si,1 = si′,1, to get a matrix

D =
(
ui,1
(ri,1
j

)
+ ui,2

(ri,2
j

)
+ · · ·+ ui,mi

(ri,mi
j

) )
1≤i≤n
1≤j≤n

,

where ri,1 6= ri′,1 for all i, i′ ≤ k. Let us show that si,1 − ri,1 ∈ Γ(n) for all
i ∈ {1, . . . , k}. We can assume that si,1 6= ri,1.

In the first run of the algorithm we obtain an element s′i,1 ∈ Γ such that
si,1 > s′i,1 ≥ ri,1 and s′i,1 = A · γ for some γ < βi or some γ < βi′ . This
implies that si,1 − s′i,1 ∈ Γ.

On the other hand, we know that s′i,1 ≥ ri,1 and ri,1 ∈ Γ. Therefore
si,1 − s′i,1 + ri,1 ∈ Γ and si,1 − s′i,1 + ri,1 ≤ sn. Consider the following set
φi := {sl ∈ Γ\{0}|sl+ri,1 ≤ sn}. This set is not empty since si,1−s′i,1 ∈ φi.
Let st := maxφi. If si,1 + st ≤ sn, we have that (si,1 − s′i,1 + st) + ri,1 =
si,1+st−(s′i,1−ri,1) ≤ si,1+st ≤ sn and si,1−s′i,1+st > st, which contradicts
the maximality of st. Thus si,1 + st > sn and

si,1 − ri,1 = (si,1 + st)− (st + ri,1) ∈ Γ(n).
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We need the following lemma to prove the remaining inclusion in theorem
4.15.

Lemma 4.17. Let sm, si ∈ Γ be such that m > n ≥ i and sm − si /∈ Γ. Let
βm ∈ Ns be such that A · βm = sm. Then there exists β0 ≤ βm such that
A · β0 > sn and |β0| ≤ n.

Proof. If |βm| ≤ n then βm satisfies the conditions of β0. Assume that
|βm| > n.

Suppose first that a2 ≤ sn. The set {a1, 2a1, . . . , (n − 1)a1, a2} has n
different elements of Γ implying na1 > sn. Let β be such that |β| = n.
Then A · β ≥ ns1 = na1 > sn. In particular, any β ≤ βm such that |β| = n
satisfies the conditions on the lemma.

Now suppose sn < a2. Then sk = ks1 for all k ≤ n. Notice that if
βm(j) = 0 for all j > 1, then sm − si = |βm|a1 − ia1 ∈ Γ which contradicts
the hypothesis. Thus there exists j > 1 such that βm(j) 6= 0. Consider
β0 = ej , then A · β0 = A · ej = aj ≥ a2 > sn and |β0| = 1 ≤ n.

Proposition 4.18. Γ(n) ⊂ Nashn(Γ).

Proof. Throughtout this proof we fix m, i ∈ N such that m > n ≥ i. Let
sm − si ∈ Γ(n).
Case I: Suppose that sm− si ∈ Γ. Then sm− si ∈ Nashn(Γ) by definition.
Case II: Suppose that sm − si /∈ Γ. Fix βm ∈ Ns such that A · βm = sm.

We claim that there exist β0 ∈ Ns, J0 = {β1, . . . , βn} ⊂ Ns, and i ≤ l ≤ n
such that:

(1) β0 ≤ βm.

(2) A · βj = sj for each j ∈ {1, . . . , n}.

(3) sl − si ∈ Γ.

(4) J := (J0 \ {βl}) ∪ {β0} satisfies (∗). In particular,

A · β0 − sl = mJ −
n∑
i=1

si ∈ Nashn(Γ).

Assume this claim for the moment. Let δ ∈ Ns be such that βm = β0 +δ. In
particular, sm = A · βm = A · β0 +A · δ. Then, since A · δ ∈ Γ, we conclude

sm − si = (A · β0 − sl) +A · δ + (sl − si) ∈ Nashn(Γ).
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Now we prove the claim. We first show that there is a β0 ∈ Ns satisfying
(1) and some extra conditions needed for the proof of (4). Let T := {γ ∈
Ns|γ ≤ βm}. We write this set as T = T≤ t T>, where

T≤ := {γ ∈ T |A · γ ≤ sn},
T> := {γ ∈ T |A · γ > sn}.

Notice that βm ∈ T>. Let β0 ≤ βm be a minimal element in T> such that
β0 ∈ Λs,n (such an element exists by lemma 4.17). By construction, β0 has
the following properties:

a) For all γ < β0, γ ∈ T≤.

b) For all β̄i such that A · β̄i = si it holds β0 ≯ β̄i (this is true because
βm ≥ β0 and sm − si /∈ Γ implies that βm ≯ β̄i).

Now we prove the existence of J0 = {β1, . . . , βn} ⊂ Ns, and i ≤ l ≤ n
satisfying (2) and (3) and some extra conditions needed for the proof of (4).
Define the set (recall that i is fixed):

Ω := {sj ∈ {s1, . . . , sn}|∀β′ such that A·β′ = sj , ∃γ ≤ β′ such that A·γ = si}.

If sj ∈ {s1, . . . , sn} \ Ω, consider βj ∈ Ns such that A · βj = sj and for all
γ ≤ βj , A ·γ 6= si. If sj ∈ Ω, consider any βj ∈ Ns such that A ·βj = sj . Let
J0 := {β1, . . . , βn} ⊂ Ns. By remark 4.12, we have that J0 ⊂ Λs,n. Notice
that Ω 6= ∅, since si ∈ Ω. Let sl := max{Ω}. In particular, sl ∈ Ω and so
sl − si ∈ Γ.

It remains to prove that J := (J0\{βl})∪{β0} satisfies (∗) (see definition
4.10). By construction and since A · β0 > sn, we have 1) in the definition of
(∗).

Now let βk ∈ J0 \ {βl}. We want to show that if γ < βk then there
exists β′ ∈ J such that A · β′ = A · γ. If k < l this condition is satisfied (see
example 4.11). Suppose k > l (in particular, sk /∈ Ω). If γ < βk is such that
A · γ = sj 6= sl then by making β′ = βj the condition is satisfied. Suppose
that A · γ = sl. Since sl ∈ Ω there exists γ′ ≤ γ such that A · γ′ = si. Since
γ < βk, it follows that γ′ < βk. This is a contradiction since βk was chosen
so that for all δ < βk we have A ·δ 6= si. Therefore, for all γ ≤ βk, A ·γ 6= sl.
This shows that every element of J0 \ {βl} satisfies 2) in the definition of
(∗).

Now consider γ < β0. By property a) above, we have that A · γ ≤ sn. If
γ < β0 is such that A · γ = sj 6= sl then, as before, by making β′ = βj the
condition is satisfied. Suppose that A ·γ = sl. As before, there exists γ′ ≤ γ
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such that A · γ′ = si. Since γ < β0, it follows that γ′ < β0. This contradicts
property b) above. We conclude that J satisfies (∗).

Theorem 4.15 has two immediate consequences. The first one is about
solving toric curves by applying once the higher Nash blowup for n suffi-
ciently large. This gives a combinatorial proof of Yasuda’s theorem on one-
step resolution of curves by higher Nash blowups in the case of toric curves.
The second result is the analogous of Nobile’s theorem for the higher Nash
blowup of toric curves.

Corollary 4.19. Nashn(XΓ) is non-singular if and only if sn + 1 ∈ Γ. In
particular, Nashn(XΓ) is non-singular for n� 0.

Proof. Notice that for all m > n and i ≤ n, we have that sn+1 + si ≤
sm + sn, then sn+1 − sn ≤ sm − si. Thus, sn+1 − sn = min{Γ(n) \ {0}} =
min{Nashn(Γ) \ {0}}. Then Nashn(XΓ) is non-singular if and only if
Nashn(Γ) = N({1}) if and only if 1 = sn+1 − sn if and only if sn + 1 =
sn+1 ∈ Γ.

Corollary 4.20. Nashn(XΓ) ∼= XΓ if and only if XΓ is non-singular.

Proof. Suppose that XΓ is singular, i.e., 1 < a1. We are going to show that
Γ ( Nashn(Γ), which implies Nashn(XΓ) 6∼= XΓ.

Let a2 = qa1 + r, where 0 < r < a1 and q ≥ 1. With this notation we
have s1 = a1, . . . , sq = qa1, sq+1 = a2. If n ≤ q then sn ≤ sq = qa1 < a2 and
so a2−a1 ∈ Γ(n) = Nashn(Γ). But we also have a2−a1 = (q−1)a1 +r /∈ Γ.

Suppose that n > q. Consider the following subset of Γ:

{sq+1 = qa1 + r, (q + 1)a1, (q + 1)a1 + r, (q + 2)a1, (q + 2)a1 + r, . . .}.

The elements on this subset are not necessarily consecutive elements in Γ.
Therefore, for p > q it follows sp+1−sp ≤ max{a1−r, r} < a1. In particular,
sn+1 − sn < a1. Thus, sn+1 − sn ∈ Nashn(Γ) but sn+1 − sn /∈ Γ.

5 Counterexample to the conjecture

In section 4 we stated and proved a conjecture by T. Yasuda for toric curves.
In this section we exhibit a family of non-monomial curves showing that the
conjecture is false in general.

Example 5.1. Consider the plane curve C ⊂ C2 parametrized by

t 7→ (t4, t6 + t7).
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The associated semigroup of C is Γ = {0, 4, 6, 8, 10, 12, 13, 14,m|m ≥ 16}.
Yasuda’s conjecture states that the semigroup of Nash1(C) is Γ(1) = N(2, 9).
However, the Nash blowup of order 1 of C is parametrized by

t 7→
(
t4, t6 + t7,

6

4
t2 +

7

4
t3
)
.

Using the first and third terms of the parametrization we obtain Nash1(Γ) =
N(2, 5). We conclude that Nash1(Γ) 6= Γ(1).

We may still ask whether the conjecture holds for n� 0. In what follows
we construct a family of plane curves {Cn}n≥1, with numerical semigroup
Γn, such that Nashn(Γn) 6= (Γn)(n).

Fix n ≥ 1. Consider the plane curve Cn with parametrization

ϕ(t) = (t4, t4n+2 + t4n+3).

Let Γn be the corresponding semigroup. Notice that the first n non-zero
terms of Γn is the set {4, 8, . . . , 4n}. In addition, the first odd number that
appears in Γn is 8n+5 (it appears as the order of (t4n+2+t4n+3)2−(t4)2n+1).
In particular, the first odd number that appears in (Γn)(n) is 8n+ 5− 4n =
4n+ 5. We claim that 5 ∈ Nashn(Γn) implying that Nashn(Γn) 6= (Γn)(n).

To prove the claim we need to compute some maximal minors of the
matrix ( 1

α!

∂α(ϕ− ϕ(t))β

∂Tα
|t
)
β∈Λ2,n,α∈Λ1,n

Let J1 = {e1, 2e1, . . . , ne1} and J2 = {e1, 2e1 . . . , (n − 1)e1, e2}. We first
show that the minors of the submatrices defined by J1 and J2 are not zero.

Let LJ1 be the submatrix defined by J1. Notice that the rows of LJ1

only consider the first term of ϕ(t), which is a monomial. Therefore, by
example 4.11 and lemma 4.13, detLJ1 6= 0. In addition, by proposition 2.4,

detLJ1 = c · t
∑n
k=1 4k−k = c · t

3n(n+1)
2 , with c a non-zero constant.

Now, for J2, notice that the first n − 1 rows of LJ2 only consider the
monomial term of ϕ(t). Using lemma 2.3 we obtain that the (i, j)-entry of
LJ2 is cie1,jt

4i−j , for 1 ≤ i < n and 1 ≤ j ≤ n. On the other hand, the nth
row of LJ2 can be described as follows. Since |e2| = 1, by lemma 1.6 we
obtain

1

j!

∂j(ϕ− ϕ(t))e2

∂T j
|t =

(
4n+ 2

j

)
t4n+2−j +

(
4n+ 3

j

)
t4n+3−j .
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Summarizing, the matrix LJ2 is:
ce1,1t

4−1 · · · ce1,nt
4−n

...
...

c(n−1)e1,1t
4(n−1)−1 · · · c(n−1)e1,nt

4(n−1)−n(
4n+2

1

)
t4n+2−1 +

(
4n+3

1

)
t4n+3−1 · · ·

(
4n+2
n

)
t4n+2−n +

(
4n+3
n

)
t4n+3−n

 .

Multiply the jth column by tj . Then, for 1 ≤ i < n multiply the ith row by
t−4i. Finally, multiply the nth row by t−4n−2 to obtain

detLJ2 =
(
t

3n(n+1)
2

+2
)

det


ce1,1 · · · ce1,n

...
...

c(n−1)e1,1 · · · c(n−1)e1,n(
4n+2

1

)
+
(

4n+3
1

)
t · · ·

(
4n+2
n

)
+
(

4n+3
n

)
t

 .

Applying the same method of the proof of proposition 4.13 in the first n− 1
rows and using basic properties of determinants, we get that

detLJ2 = t
3n(n+1)

2
+2 det


(

4
1

)
· · ·

(
4
n

)
...

...(
4(n−1)

1

)
· · ·

(
4(n−1)
n

)(
4n+2

1

)
· · ·

(
4n+2
n

)


+ t
3n(n+1)

2
+3 det


(

4
1

)
· · ·

(
4
n

)
...

...(
4(n−1)

1

)
· · ·

(
4(n−1)
n

)(
4n+3

1

)
· · ·

(
4n+3
n

)
 .

The determinants appearing in the sum are non-zero by lemma 4.14. There-
fore detLJ2 6= 0.

Now we need to prove that detLJ1 has the minimum order over all non-
zero minors of the higher-order Jacobian matrix of ϕ.

Consider β = (a1, a2) ∈ N2 and suppose that a2 > 0. Notice that if the
polynomial

1

m!

∂m(T 4 − t4)a1(T 4n+2 + T 4n+3 − t4n+2 − t4n+3)a2

∂Tm
∣∣
t

is non-zero, then its order is greater or equal than 4n + 2 − m. Let J =
{β1, . . . , βn} ⊂ Λ2,n be such that J 6= {e1, . . . , ne1}. In particular, the
second entry of βi is non-zero, for some i. Reorder J in such a way that
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βi(2) 6= 0 for 1 ≤ i ≤ k and βj(2) = 0 for k < j ≤ n. Then, if j > k,
βj = mje1 with 1 ≤ mj ≤ n and if j > i > k, mj 6= mi.

Let us show that if detLJ 6= 0 then ord(det(LJ)) > 3n(n+1)
2 . To begin

with,

detLJ =
∑
σ∈Sn

sgn(σ)

n∏
i=1

ai,σ(i) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

1

σ(i)!

∂σ(i)(ϕ− ϕ(t))βi

∂T σ(i)
|t,

where Sn is the symmetric group. Let Aσ =
∏n
i=1

1
σ(i)!

∂σ(i)(ϕ−ϕ(t))βi

∂Tσ(i) |t. The

claim follows if we can prove that, for all σ such that Aσ 6= 0, ord(Aσ) >
3n(n+1)

2 . But this is true since:

ord(Aσ) =
n∑
i=1

ord
(∂σ(i)(ϕ− ϕ(t))βi

∂T σ(i)
|t
)

≥
k∑
i=1

(4n+ 2− σ(i)) +
n∑

j=k+1

(4mj − σ(j))

= 2k + 4(nk +
n∑

j=k+1

mj)−
n(n+ 1)

2
≥ 2k + 4

n∑
j=1

j − n(n+ 1)

2

= 2k +
3n(n+ 1)

2
>

3n(n+ 1)

2
.

Using all previous claims we see that the Plücker coordinates of Tnϕ(t)Cn,
for t 6= 0, look like:

(· · · : ct
3n(n+1)

2 : c1t
3n(n+1)

2
+2 + c2t

3n(n+1)
2

+3 : · · · ),

with c, c1, c2 non-zero constants. Since the coordinate defined by J1 has
the minimum order, Nashn(Cn) ⊂ UJ1 , i.e., the affine chart obtained from

dividing over ct
3n(n+1)

2 . In particular, the parametrization of Nashn(Cn) has
the term

c1

c
t2 +

c2

c
t3.

Now proceed as in example 5.1 to show that 5 ∈ Nashn(Γn).
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