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Abstract. We characterize the k-torsion freeness of the module of dif-
ferentials of order n of a point of a hypersurface in terms of the singular
locus of the corresponding local ring.

1. Introduction

The module of Kähler differentials of a ring is a classical object in com-
mutative algebra. Recall that for a K-algebra R, the module of Kähler
differentials is defined as the quotient Ω1

R/K := IR/I
2
R, where IR is the ker-

nel of the multiplication map R ⊗K R→ R. More generally, the module of

Kähler differentials of order n can be defined as Ω
(n)
R/K := IR/I

n+1
R (see, for

instance, [8, 12, 13]).
It is well-known that the module of differentials can be used to detect

properties of the ring. For instance, under some hypothesis, the regularity
of the localization of a finitely generated algebra is equivalent to the freeness
of its module of differentials. An analogous statement holds for the module
of high order differentials (this was proved for hypersurfaces in [4] and, in a
more general context, in [5]).

We are interested in studying other properties of certain rings that can be
detected through its module of differentials. Let V be an affine variety over
a perfect field K. Suppose that V is locally, at some point P ∈ V , a complete
intersection. Denote as R the corresponding local ring. It was proved by
J. Lipman that V being non-singular at P in codimension 1 (resp. in codi-
mension 2) is equivalent to the torsion freeness (resp. reflexiveness) of Ω1

R/K
(see [10]). It was proved that the first statement of Lipman’s theorem also
holds for the module of high order differentials in the case of hypersurfaces
(see [4]).

There is a general notion of k-torsion freeness for any k ∈ N, k ≥ 1, that
generalizes the notions of torsion freeness and reflexiveness (see [3] or section
3 below). The main goal of this paper is to prove that k-torsion freeness of
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the module of high order differentials of a hypersurface can be characterized
in terms of the singular locus.

Our approach to the problem is essentially the same as Lipman’s. After
making a careful analysis of his proof, we realized that part of the arguments
were valid in a much more general situation. In addition, a key ingredient
in Lipman’s proof is the fact that the projective dimension of the module of
differentials of a reduced locally complete intersection is less or equal than
one. An analogous statement was proved in [4] for the module of high order
differentials of hypersurfaces, allowing us to carry on with Lipman’s strategy.
Finally, the last ingredient we need for our proof is a criterion of regularity
for hypersurfaces in terms of the module of high order differentials.

2. Modules of Kähler differentials

In this paper, all rings we consider are assumed to be commutative and
with a unit element.

Let R be a K-algebra. Denote IR the kernel of the homomorphism R⊗K

R→ R, r⊗s 7→ rs. Giving structure of R-module to R⊗KR by multiplying
on the left, define the R-module

Ω
(n)
R/K := IR/I

n+1
R .

Definition 2.1. [13, Definition 1.5] The R-module Ω
(n)
R/K is called the mod-

ule of Kähler differentials of order n of R over K or the module of high
order Kähler differentials. For n = 1, this is just the usual module of Kähler
differentials of R.

A classical result states that, under some hypothesis, the localization of
a finitely generated algebra R is regular if and only if Ω1

R/K is free (see, for

instance, [7, Chapter II, Theorem 8.8]). Another result in this direction is
the following theorem due to J. Lipman (the statement (1) was also proved
by S. Suzuki in [15]).

Theorem 2.2. [10, Proposition 8.1] Let R be the local ring of a point P on
an affine variety V over a perfect field K. Assume that V is locally, at P , a
complete intersection. Then

(1) Ω1
R/K is torsion free if and only if V is non-singular in codimension

1 at P .
(2) Ω1

R/K is reflexive if and only if V is non-singular in codimension 2

at P .

In the statement of the theorem, non-singular in codimension i at P
means that codim(R/p) ≥ i + 1, for all p ∈ Sing(R), where codim(R/p) =
dimR− dimR/p and Sing(R) = {p ∈ Spec(R)|Rp is not regular}.

The first statement of the theorem was generalized to the module of high
order Kähler differentials of a hypersurface, following the strategy in [15].
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Theorem 2.3. [4, Theorem 4.3] Let R be the local ring of a point P on an

irreducible hypersurface W over a perfect field K. Then Ω
(n)
R/K is torsion free

if and only if W is normal at P .

In the next section we recall the notion of k-torsion freeness of an R-
module, for any positive integer k. If R is Noetherian and reduced, then
the notions of torsion freeness and reflexiveness correspond, respectively, to
1-torsion freeness and 2-torsion freeness. Our main goal in this paper is to
generalize Theorem 2.3 to apply to k-torsion freeness, for any k ≥ 1.

3. A general theorem on k-torsion freeness

In this section we recall the notion of k-torsion freeness of a module.
Then we give a characterization of this notion for modules having projective
dimension less or equal than 1.

Let R be a Noetherian ring and let M be an R-module. The dual of M ,
denoted by M∗, is the module HomR(M,R). The bidual of M is denoted
by M∗∗. The bilinear map φ : M ×M∗ → R defined by φ(m,ϕ) = ϕ(m)
induces an R-homomorphism f : M → M∗∗, given by f(m) = φ(m, ·). For
a given R-homomorphism ϕ : M → N , we denote as ϕ∗ the induced map
N∗ →M∗.

Let us suppose that M is a finite R-module, i.e., M is finitely generated.
Since R is Noetherian, M is finitely presented, i.e., there exists an exact
sequence

P1
ϕ→ P0 →M → 0,

where P0, P1 are finite free R-modules. Let D(M) := Coker(ϕ∗), which is
known as the Auslander transpose of M . In [2] it is shown that the previous
sequence induces the following exact sequence:

(1) 0→ Ext1
R(D(M), R)→M

f→M∗∗ → Ext2
R(D(M), R)→ 0.

It is proved in [3] that for any i ∈ N, ExtiR(D(M), R) depends only on M
and not on the particular presentation P1 → P0 → M → 0, where P0 and
P1 are projective R-modules.

Remark 3.1. Recall that an R−module M is torsionless if f is injective
and that M is reflexive if f is an isomorphism. Let Q be the total quotient
ring of R. Then M is called torsion free if the natural map θ : M → MQ

is injective, where MQ := M ⊗R Q. It is known that ker(θ) ⊂ ker(f).
Thus, the concept of torsionless implies the concept of torsion free. If R is
Gorenstein and has no embedded primes then the concepts are equivalent
(see [16, Theorem (A.1)]).

In view of (1), torsionless and reflexiveness are respectively equivalent
to Ext1

R(D(M), R) = 0 and Ext1
R(D(M), R) = Ext2

R(D(M), R) = 0. This
leads us to the following general notion of k-torsion freeness.
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Definition 3.2. [3] Let k ∈ N, k ≥ 1. We say that the R-module M is
k-torsion free if ExtiR(D(M), R) = 0, for i ∈ {1, . . . , k}.

We want to study the k-torsion freeness of modules having projective
dimension less or equal than one. For that, we need to recall some results
concerning the grade and depth of modules.

Let R be a Noetherian ring, M be a finite R-module and I be an ideal of
R. Recall that the grade of the ideal I over M , denoted as grade(I,M), is
the maximal size of a M -regular sequence in I. It is known that grade(I,M)
can be computed in the following way (see [6, Theorem 1.2.5]):

grade(I,M) = min{i ∈ N : ExtiR(R/I,M) 6= 0}.

We also define grade(M) := min{i ∈ N : ExtiR(M,R) 6= 0}. In addition,
for a local ring (R,m) we denote depth(M) := grade(m,M). Then, by [6,
Proposition 1.2.10] we have

(2) grade(M) = grade(Ann(M), R) = min{depth(Rp) : p ∈ Supp(M)}.

We also need some facts regarding Cohen-Macaulay rings. If (R,m) is a
finite-dimensional local Noetherian ring, then ht(p) ≥ depth(R)−dim(R/p).
Moreover, if R is Cohen-Macaulay, from this inequality we deduce that

(3) depth(Rp) = dimR− dim(R/p) = codim(R/p).

With these tools at hand, now we can give a characterization of k-torsion
freeness for modules having projective dimension less or equal than one.
This characterization is based on part of the proof of Lipman’s theorem 2.2.

Lemma 3.3. Let M be an R-module and Q be the total quotient ring of R.
If MQ = 0, then Ext0

R(M,R) = 0.

Proof. Let Z(R) be the set of zero divisors of R, i.e., Z(R) = ∪P∈Ass(R)P . As

MQ = 0, we have MP = 0 for every P ∈ Ass(R), which implies Ann(M) *
Z(R). Thus, there exists x ∈ Ann(M) such that x /∈ Z(R). Therefore
0 < grade(Ann(M), R) = grade(M) = min{i ∈ N : ExtiR(M,R) 6= 0}. We
conclude Ext0

R(M,R) = 0. �

Theorem 3.4. Let R be a Noetherian local ring with total quotient ring Q.
Let M be a finite R-module with a finite projective resolution

0→ P1
ϕ→ P0 →M → 0.

Let k be a positive integer. Then M is k-torsion free if and only if depth(Rp) ≥
k + 1, for any p ∈ Supp(D(M)). Moreover, if R is Cohen-Macaulay, M is
k-torsion free if and only if codim(R/p) ≥ k + 1, for any p ∈ Supp(D(M)).

Proof. Using the projective resolution ofM and the definition of Ext1
R(M,R),

it follows that Ext1
R(M,R) = D(M). As the functor Ext1

R(·, ·) commutes
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with localization, we obtain

D(M)⊗R Q = Ext1
R(M,R)⊗R Q

∼= Ext1
R⊗RQ(M ⊗R Q,R⊗R Q)

= Ext1
Q(MQ, Q).

Since Q is the total quotient ring of R, any non-unit of Q is a zero divisor
of Q, so depth(Q) = 0. Moreover projdim(MQ) ≤ projdim(M) ≤ 1, the last
inequality is by hypothesis. Using the Auslander-Buchsbaum formula

0 = depth(Q) = projdim(MQ) + depth(MQ),

we conclude projdim(MQ) = 0, so MQ is projective. It follows that 0 =

Ext1
Q(MQ, R) ∼= D(M)⊗R Q = D(M)Q. By lemma 3.3, Ext0

R(D(M), R) =

0. It follows that M is k-torsion free if and only if ExtiR(D(M), R) = 0 for
every i ∈ {0, . . . , k}.

On the other hand, ExtiR(D(M), R) = 0 for every i ∈ {0, . . . , k} if and
only if grade(D(M)) ≥ k + 1. By (2), grade(D(M)) ≥ k + 1 if and only if
depth(Rp) ≥ k + 1 for every p ∈ Supp(D(M)). If, in addition, R is Cohen-
Macaulay, by (3), depth(Rp) ≥ k + 1 if and only if codim(R/p) ≥ k + 1 for
every p ∈ Supp(D(M)). �

4. A characterization of k-torsion freeness

Now we are ready to generalize Theorem 2.3 for any k ≥ 1. Throughout
this section we use the following notation:

• K is a perfect field.
• A = K[x1, . . . , xs]/〈f〉, where f ∈ K[x1, . . . , xs] is irreducible.
• W = Spec(A).
• R is the local ring of a closed point P ∈W .

Our first goal is to describe the support of the module Ext1
R(Ω

(n)
R/K, R) in

terms of the singular locus of R. First we need the following criterion of
regularity for hypersurfaces in terms of the module of differentials of high
order.

Proposition 4.1. Let p ∈ W . Then Ap is a regular ring if and only if

Ω
(n)
Ap/K is a free Ap-module. In addition, in this case the rank of Ω

(n)
Ap/K is

L− 1, where L =
(
s−1+n
s−1

)
.

Proof. The “only if” part is well-known and holds in full generality (see,
for instance, [9, Section 4.2]). We include the proof here for the sake of
completeness.

If Ap is a regular ring then Ω1
Ap/K is free of rank s − 1. In addition, in

this case, Sn(IAp/I
2
Ap

) = InAp
/In+1

Ap
, where Sn(·) denotes the nth-symmetric

product. It follows that InAp
/In+1

Ap
is free of rank

(
s−1+n−1

s−2

)
. Using the exact
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sequences
0→ InAp

/In+1
Ap
→ IAp/I

n+1
Ap
→ IAp/I

n
Ap
→ 0,

it follows by induction that Ω
(n)
Ap/K is free of rank L− 1.

Now assume that Ω
(n)
Ap/K is a free Ap-module. We first show that the rank

of this module is L − 1. Let Ω
(n)
W/K be the sheaf of Kähler differentials of

order n of W . By the assumption, there exists an open subset U ⊂ W

such that p ∈ U and Ω
(n)
W/K|U is free. In particular, (Ω

(n)
W/K|U )q ∼= Ω

(n)
Aq/K

is a free Aq-module for all q ∈ U . Since W is irreducible, U is irreducible

as well, and so the rank of Ω
(n)
Aq/K is constant in U . Let q′ ∈ U ⊂ W be a

non-singular point (it exists because W is irreducible and so U and the open
subset of non-singular points of W are dense). By the “only if” part of the

proposition, Ω
(n)
Aq′/K

is free of rank L− 1. It follows that the rank of Ω
(n)
Ap/K

is also L− 1.
Now we show that Ω

(n)
Ap/K free implies that Ap is regular. We can assume

that U = D(g) ∼= Spec(Ag) is a principal open set. Since Ag is commutative
with unit, there exists m ⊂ Ag a maximal ideal such that p ⊂ m [1, Corollary
1.4]. Then Ap

∼= (Ag)p ∼= ((Ag)m)p ∼= (Am)p. Since m ∈ U , it follows that

Ω
(n)
Am/K is free of rank L− 1. By [4, Theorem 3.1], m being a maximal ideal

implies that Am is a regular ring . We conclude that Ap
∼= (Am)p is also a

regular ring. �

Remark 4.2. It was proved in [5, Theorem 10.2] that the previous criterion
of regularity holds more generally for local domains (R,m,K) with pseudo-
coefficient field K such that Frac(R) is separable over K and K is perfect.
In particular, it holds for arbitrary irreducible varieties. In addition, an
algebraic proof of the second part of the proposition can also be deduced
from [5, Proposition 2.20].

Lemma 4.3. Let S be a Noetherian local ring and M a finite S-module such
that projdim(M) ≤ 1. Then Ext1

S(M,S) = 0 if and only if M is free.

Proof. Suppose that Ext1
S(M,S) = 0, so Ext1

S(M,F ) = 0 for any S-free
module F . As projdim(M) ≤ 1 there exists an exact sequence

(4) 0→ F1
ϕ→ F0 →M → 0,

where F0 and F1 are finite free S-modules. Thus,

(5) 0 = Ext1
S(M,F1) = Coker

(
Hom(F0, F1) → Hom(F1, F1)

f 7→ fϕ

)
.

Therefore, there exists f ∈ Hom(F0, F1) such that fϕ = idF1 ; then ϕ splits
and F0

∼= M ⊕ F1. Thus M is projective and since S is a Noetherian local
ring we conclude that M is free.

The converse of this lemma is immediate, because M is projective if and
only if Ext1

S(M,N) = 0 for every S-module N . �
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The next corollary follows the line of the proof of [10, Proposition 5.2].

The crucial additions are proposition 4.1 and the fact that Ω
(n)
R/K has pro-

jective dimension less or equal than 1.

Corollary 4.4. With the established notation,

Supp(Ext1
R(Ω

(n)
R/K, R)) = Sing(R).

Proof. Let p ∈ Spec(R) be such that Rp is regular. Then Ω1
Rp/K is a free Rp-

module and so the same is true for Ω
(n)
Rp/K. Since the module of differentials

of high order commutes with localization ([12, Theorem II-9]), lemma 4.3
implies

0 = Ext1
Rp

(Ω
(n)
Rp/K, Rp) =

(
Ext1

R(Ω
(n)
R/K, R)

)
p
.

This shows that Supp(Ext1
R(Ω

(n)
R/K, R)) ⊂ Sing(R).

Now let p ∈ Spec(R) be such that (Ext1
R(Ω

(n)
R/K, R))p = 0. This implies

Ext1
Rp

(Ω
(n)
Rp/K, Rp) = 0. By [4, Theorem 4.3], projdim(Ω

(n)
R/K) ≤ 1. Thus,

by lemma 4.3, Ω
(n)
Rp/K is a free Rp-module. On the other hand, by the cor-

respondence of prime ideals in R and A, we have Rp
∼= Ap. In particular,

Ω
(n)
Ap/K is a free Ap-module. By proposition 4.1, Ap is a regular ring. Thus

Rp is regular and so Sing(R) ⊂ Supp(Ext1
R(Ω

(n)
R/K, R)). �

Theorem 4.5. Let k ≥ 1. Then Ω
(n)
R/K is k-torsion free if and only if W is

non-singular in codimension k + 1 at P .

Proof. As before, projdim(Ω
(n)
R/K) ≤ 1. Consider the following projective

resolution of Ω
(n)
R/K:

0→ F1
ϕ→ F0 → Ω

(n)
R/K → 0.

Since R is Cohen-Macaulay, we can apply theorem 3.4 to obtain that Ω
(n)
R/K is

k-torsion free if and only if codim(R/p) ≥ k+1 for any p ∈ Supp(Coker(ϕ∗)).

In addition, using the previous exact sequence we obtain Ext1
R(Ω

(n)
R/K, R) =

Coker(ϕ∗). By corollary 4.4 we conclude that Ω
(n)
R/K is k-torsion free if and

only if codim(R/p) ≥ k + 1 for any p ∈ Sing(R). �

Remark 4.6. Notice that the entire strategy to prove theorem 4.5 can also
be used to generalize Lipman’s theorem 2.2 for k-torsion, for any k ≥ 1.

Remark 4.7. One of the key ingredients of the proof of Theorem 4.5 was

the fact that projdim(Ω
(n)
R/K) ≤ 1, where R is a local ring of an irreducible

hypersurface. If this fact were also true for reduced complete intersections,
then exactly the same strategy would give the analogous statement of The-

orem 4.5 in this case. In this regard, an explicit presentation of Ω
(n)
R/K was
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recently given in [4, Theorem 2.8] for any finitely generated K-algebra R.
Using this presentation one could try to compute the projective dimension

of Ω
(n)
R/K , at least in some examples of complete intersections. Unfortunately,

due to the size of the matrix giving the presentation, we did not succeed
in computing any example for n > 1, even with the help of a (modest)
computer.

Remark 4.8. Even though the main goal of this paper was to generalize
theorem 2.3, the results presented in section 3 apply to more general modules
satisfying, among other hypothesis, that their projective dimension is less
or equal than one. Families of modules satisfying this hypothesis can be
constructed as in [17, Remark 2.1], [11, Lemma 1], or [14, Proposition 1.6].

Acknowledgements

We want to thank the referee for her/his comments that improved the
presentation of the paper and for the suggestions to simplify some of our
proofs.

References

[1] M. Atiyah, I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley
Series in Mathematics, 1969.

[2] M. Auslander; Coherent Functors, Proceedings of the Conference Categorical Alge-
bra, La Jolla 1965, Springer Verlag, 1966.

[3] M. Auslander, M. Bridger; Stable Module Theory, Memoir of the American Math-
ematical Society, 94. American Mathematical Society, Providence, Rhode Island,
1969.

[4] P. Barajas, D. Duarte; On the module of differentials of order n of hypersurfaces, J.
Pure Appl. Algebra, 224(2), (2020), 536-550.
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