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Abstract It is known that the dipole moments of the neutrino lead to important astrophysical
and cosmological effects. In this regard, within the context of a U (1)B−L model, we develop
and present novel analytical formulas to assess the effects of the anomalous magnetic moment
and electric dipole moment of the neutrino on the stellar energy loss rates through some
common physical process of pair-annihilation e+e− → (γ, Z , Z ′) → νν̄. Our results show
that the stellar energy loss rates strongly depend on the effective magnetic moment of the
neutrino, but also on the parameters which characterize the adopted U (1)B−L model.

1 Introduction

At the beginning of the last century, the establishment of the Hertzsprung–Russell (HR)
diagram led quickly to the bases of a stellar evolution theory, which identified mass as the
fundamental parameter to determine the structure, nucleosynthesis, mean lifetime, ways of
production and release of energy, stability mechanisms and the final product of stars. We now
know that massive stars with minimum initial mass of approximately 7M� < M < 9M�
are the potential precursors of different types of supernovae type I (SN I) with subtypes Ia, Ib
and Ic. The former two are mainly linked to single white dwarfs, moderate mass interacting
binaries, whereas the latest of them seems to be linked to massive Wolf–Rayet stars [1].
Supernovae type II (SN II), with subtypes IIn, IIP, IIL IIb and IIe, is associated with massive
stars of initial masses within 10M� < M < 35M�, resulted from red supergiant stars,
most massive white dwarfs and very luminous blue variable stars [2,3]. Each of these SN
populations is potential progenitors of neutron stars and black holes.

In a SN event, the violent outburst triggered by the gravitational collapse of a Fe-core
of mass approximately 1.3–2M� toward a neutron star releases an energy about Eν ≈ (3–
5) ×1053 erg in the form of neutrinos and antineutrinos of the three flavors (νe, νμ, ντ ).
The gravitational binding energy of the resulting neutron star corresponds nearly to (10–
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15%) of the core rest mass. The remaining core-collapsed SN can reach extremely high
surface temperatures and densities, e.g., up to 3 × 108 K and ρ ≤ 105 gr/cm3. Therefore,
contrary to normal stars where photons can be transported to the surface by radiative or
convective processes, neutrinos interact extremely weakly and can easily escape from stellar
interiors taking away such amounts of energy. These stellar energy loss rates, which leads to
cooling by neutrino emission, are mainly due to purely leptonic processes and weak nuclear
reactions. However, although large values of temperatures and densities seem to characterize
well the final stage of stellar evolution, the former are dominant. Under these conditions,
we can identify four main mechanisms of neutrino pair production relevant for the neutrino
luminosity [4–11]:

e+e− → νν̄ (pair-annihilation), (1)

γ + e± → e±νν̄ (ν−pair photoproduction), (2)

γ ∗ → νν̄ (plasmon decay), (3)

e± + Z → e± + Zνν̄ (bremsstrahlung). (4)

Quantifying stellar energy loss rates is recognized as a priority scientific knowledge to set
constraints on the properties and interaction of light particles [5,6,9,12], which give important
advances in astrophysics and cosmology [13–15]. Furthermore, one of the most interesting
possibilities to use stars as particle physics laboratories is to study the backreaction of the
novel energy loss rates implied by the existence of new low-mass particles such as axions
[16,17], which remain as candidates to dark matter.

On the other hand, the weak interaction predicts interactions between the neutrino and
photon through a nonzero magnetic moment induced via loop corrections of gauge boson. In
the minimal extension of the standard model (SM) with massive Dirac neutrinos, the diagonal
magnetic moment of the neutrino mass eigenstate νi is proportional to its mass mi and is
given by [18–21]:

μi i
ν = 3eGFmi

8
√

2π2
= 3.2 × 10−19

(mi

eV

)
μB, (5)

where μB is the Bohr magneton.
Discoveries of new interactions and/or nonstandard properties of neutrinos could modify

the rate at which neutrinos are produced, or they can even carry more, or less energy. In this
respect, for instance, the electromagnetic properties of the neutrino, such as the anomalous
magnetic moment (AMM) and the electric dipole moment (EDM), have given one of the most
sensitive probes of physics beyond the standard model (BSM) [21–23]. These interactions are
expected to generate observable effects in astrophysical environments [24–28]. Furthermore,
they will be of relevance in cosmology [14], and terrestrial neutrino experiments [29].

Bounds on the diagonal magnetic moment of the neutrino have been reported as the
result of different astrophysical and experimental determinations; for example, [30] show
that the absence of high-energy events in the SN1987A neutrino signal puts a higher bound
of μν � 10−12μB at 90%. Supernova energy loss studies lead to an upper limit of μν � (1.1–
2.7) ×10−12μB at 90% according to [31]. Cooling rates of red giants [32] give a comparable
bound of μν � 3 × 10−12μB at 90%, whereas analysis of cooling rates of white dwarfs
[33] puts a limit of μν � 10−11μB at 90%. Recent bounds were also obtained for the
Borexino experiment [34] which explores solar neutrinos μν ≤ 5.4 × 10−11μB at 90%, and
the TEXONO Collaboration [35] gets μν < 2.9 × 10−11μB at 90%, etc. All these bounds
are reasonably compatible.
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Concerning the simplest extensions to the SM, the U (1)B−L model [36–40] takes into
account an extra U (1) local gauge symmetry [41], where B and L denote the baryon number
and lepton number, respectively. The B–L model [42] is attractive due to its relatively simple
theoretical structure, as it contains an extra gauge boson Z ′ corresponding to B–L gauge
symmetry and an extra SM singlet scalar (heavy Higgs boson H ). The mass of the additional
boson Z ′ is given by the relation MZ ′ = 2v′g′

1 [39,40,42]. This boson Z ′ interacts with the
leptons, quarks, heavy neutrinos and light neutrinos with interaction strengths proportional to
the B–L gauge coupling g′

1. The U (1)B−L model becomes mostly attractive that can account
for dark matter abundance [43].

It is important to point out that, in the early Universe, from a few femtoseconds after the
Big Bang up to the electroweak scale, period in which the last positrons disappeared, the
relevant degrees of freedom are pressure, the energy density, entropy density and number
density. Then, in the B–L model neutrinos are not produced in purely left-handed states,
and probably the thermally excited degrees of freedom in the early universe would increase,
providing constraints on the alternative model. A review of the fundamentals of the minimal
B–L model adopted in this paper can be read in [21] and references therein.

The priority objective of this paper is to study the combined effects of (a) the AMM and the
EDM of the neutrino, and (b) the parameters of the U (1)B−L model on the determination of
stellar energy loss rates through the process of pair-annihilation e+e− → (γ, Z , Z ′) → νi ν̄i
with νi = νe, νμ, ντ . We shall present analytical exact formulas for this purpose, and we get
the relative emission compared with those of the SM.

With these goals, the paper is organized as follows: Within the context of the U (1)B−L

model, in Sect. 2 we perform the calculations of the transition amplitude, the total cross
section and the exact determination of the stellar energy loss rates. The relative correction for
the stellar energy loss rates with the SM is also shown. In Sect. s3, we present a discussion
and our results. Finally, we give our main conclusions in Sect. 4.

2 Stellar energy loss rates through the process e+e− → νν̄

It is already well known that during the later phases of stellar evolution, once the core bounces
and a proton–neutron star forms at the center of the SN explosion, the huge amount of energy
of the order of 1053 ergs is realized in the form of pairs neutrinos and antineutrinos. Evidently,
neutrinos of the three flavors with extra freedom degrees such as AMM and EDM would be
able to take away more amounts of energy. This is the case of the neutrino involved in the
pair-annihilation process e+e− → νν̄ given by Eq. (1) which would be an important agent
for cooling the collapsed core by neutrino emission.

In our calculations, we incorporate the AMM and the EDM of the neutrino. We also
quantify the dependence on these momenta of the stellar energy loss rate through the process
of pair-annihilation e+e− → (γ, Z , Z ′) → νν̄ and on the parameters associated with the
U (1)B−L model.

2.1 Amplitudes calculation

We focus now on the calculation of the amplitude for the pair-annihilation:

e+ (p1) e
− (p2) → (γ, Z , Z ′) → νi (k1, λ1) ν̄i (k2, λ2) , (6)
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Fig. 1 The Feynman diagrams contributing to the process e+e− → (γ, Z , Z ′) → νν̄. The dot represents an
interaction arising from a effective operator

with γ , Z , Z ′ exchanges and νi = νe, νμ, ντ , respectively. Here, the ki and pi are the
particles quadrimoment and λi is the neutrino helicity. The Feynman diagrams contributing
to the process given by Eq. (6) are shown in Fig. 1.

For neutrinos, the electric charge is zero and there are no electromagnetic interactions
at tree level between the neutrino field ν(x) and the electromagnetic field Aμ(x). However,
such interactions can arise at the quantum level from loop diagrams at higher order of the
perturbative expansion of the interaction. In the one-photon approximation, the electromag-
netic interactions of a neutrino field ν(x) can be described by an effective interaction. In this
regard, the electromagnetic properties of any fermion appear in quantum field theory through
its interaction with the photon. Thus, the most general expression for the effective vertex of
the interaction νν̄γ is given by [44,45]:

�α = eF1(q
2)γ α + ie

2mν

F2(q
2)σαμqμ + e

2mν

F3(q
2)γ5σ

αμqμ

+eF4(q
2)γ5

(
γ α − q

/
qα

q2

)
, (7)

where qμ is the photon momentum, and F1,2,3,4(q2) are the electromagnetic form factors
of the neutrino. Strictly, the F1,2,3,4(q2) form factors are not physical quantities, but in the
limit q2 → 0, they become quantifiable and related to the static quantities corresponding
to charge radius, AMM, EDM and the anapole moment (AM), respectively [28,46]. In this
analysis, we are interested in the AMM and the EDM of the neutrino, which are defined in
terms of the F2

(
q2 = 0

)
and F3

(
q2 = 0

)
form factors as follows [47]:

μν = me

mν

F2
(
q2 = 0

)
, dν = e

2mν

F3
(
q2 = 0

)
. (8)
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Throughout the rest of the paper, the form factors corresponding to charge radius and the
anapole moment are not considered.

Using the couplings between the Z , Z ′ bosons with those of the SM fermions given in
Table 1 of “Appendix A,” the respective transition amplitudes are thus given by:

iMγ = ū (k2, λ2) �αυ (k1, λ1)
−igμν

(p1 + p2)
2 ῡ (p1) ieγμu (p2) , (9)

iMZ = ū (k2, λ2)

( −ig

cos θW

)
γ μ 1

2

(
gν
V − gν

Aγ 5

)
υ (k1, λ1)

× −i(gμν − pμ pν/M2
Z )[

(p1 + p2)
2 − M2

Z − iMZ�Z
] ῡ (p1)

( −ig

cos θW

)
γ ν 1

2

(
geV − geAγ 5

)
u (p2) ,

(10)

iMZ ′ = ū (k2, λ2)

( −ig

cos θW

)
γ μ 1

2

(
g′ν
V − g′ν

A γ 5

)
υ (k1, λ1)

× −i(gμν − pμ pν/M2
Z ′)[

(p1 + p2)
2 − M2

Z ′ − iMZ ′�Z ′
] ῡ (p1)

( −ig

cos θW

)
γ ν 1

2

(
g′e
V − g′e

Aγ 5

)
u (p2) ,

(11)

where u and v are the usual Dirac spinors, and the electron and positron helicity indexes have
been suppressed since they will be averaged over. The constants geV , geA, gν

V and gν
A depend

only of the parameters of the U (1)B−L model, that is θB−L and g′
1 (see Table 1 of “Appendix

A”).
The squared transition amplitude is derived by the use of Eqs. (9)–(11), resulting:

∑
s

|Mνν̄ |2 = 4 (4πα)2

sin4 2θW

{
sin4 2θW

(4πα)

(
μ2

ν + d2
ν

) ((
p1 · p2 + m2

e

) (
p1 · k2 + m2

e

)

(p1 + p2)
2

)

+
[(

1

M2
Z

(
geV − geA

)(
gν
V + gν

A

) + 1

M2
Z ′

(
g′e
V − g′e

A

)(
g′ν
V + g′ν

A

))2

+
(

1

M2
Z

(
geV + geA

)(
gν
V − gν

A

) + 1

M2
Z ′

(
g′e
V + g′e

A

)(
g′ν
V − g′ν

A

))2]
(p1 · k1) (p2 · k2)

+
[(

1

M2
Z

(
geV + geA

)(
gν
V + gν

A

) + 1

M2
Z ′

(
g′e
V + g′e

A

)(
g′ν
V + g′ν

A

))2

+
(

1

M2
Z

(
geV − geA

)(
gν
V − gν

A

) + 1

M2
Z ′

(
g′e
V − g′e

A

)(
g′ν
V − g′ν

A

))2]
(p1 · k2) (p2 · k1)

+ 2

[
1

M4
Z

( (
geV

)2 − (
geA

)2
)( (

gν
V

)2 + (
gν
A

)2
)

+ 1

M4
Z ′

( (
g′e
V

)2 − (
g′e
A

)2
)

×
( (

g′ν
V

)2 + (
g′ν
A

)2
)

+ 2

M2
Z M

2
Z ′

(
geV g

′e
V − geAg

′e
A

)(
gν
V g

′ν
V + gν

Ag
′ν
A

)] (
m2

e

)
(k1 · k2)

}
,

(12)

where s = (p1 + p2)
2, t = (p1 − k1)

2, u = (p2 − k2)
2 and s + t + u = 2m2

e are the
Mandelstam variables. The coupling constants of Eq. (12) are redefined as presented in
“Appendix B.”
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The SM expression for the squared transition amplitude of the same process can be recov-
ered in the decoupling limit when θB−L = 0, g′

1 = 0, MZ ′ → ∞ and μν = dν = 0. In this
case, the terms that depend on θB−L, g′

1, MZ ′ , μν and dν in Eq. (12) are zero and Eq. (12) is
reduced to the SM case [5,12,48–50].

2.2 Stellar energy loss rates

The expression for the stellar energy loss rates for our pair-annihilation process e+e− →
(γ, Z , Z ′) → νν̄ is determined by [24,27,48,49]:

QB−L
νν̄ = 4

(2π)6

∫ ∞

me

d3p1[
e(E1−μ)/T + 1

] d3p2[
e(E2+μ)/T + 1

] (E1E2)υrelσ
B−L
Tot , (13)

as a function of the total spin-averaged cross section of the process σ B−L
Tot , the Fermi–Dirac

distribution functions
[
exp

((
E1,2 ± μ

)
/T

) + 1
]−1 for e±, the chemical potential, μ, for

the electron, the stellar temperature T , and υrel is the electron–positron relative velocity
1
2 [s(s − 4m2

e)]1/2 [51].
The quantity E1E2υrelσ

B−L
Tot is Lorentz invariant and is given by [27]

E1E2υrelσ
B−L
Tot = 1

4

∫
d3k1d3k2

(2π)3 2ω1 (2π)3 2ω2
|Mνν̄ |2 (2π)4 δ4 (p1 + p2 − k1 − k2) .

(14)

For process (6)

E1E2υrelσ
B−L
Tot = πα2

3 sin4 2θW

{
sin4 θW

2πα

(
μ2

ν + d2
ν

) (
2m2

e + p1 · p2
) +

(
g[B−L]

1

)[
m4

e

+ 3m2
e (p1 · p2) + 2 (p1 · p2)

2
]

+ 12
(
g[B−L]

2

)[
m4

e + m2
e (p1 · p2)

]}
,

(15)

where the coefficients g[B−L]
1,2 contain the couplings of the U (1)B−L model and are given in

“Appendix B.”
The calculation of the stellar energy loss rates given by Eq. (13) can be easily performed

by expressing the latest integrals in terms of the Fermi integral, defined as

G±
n (λ, η, x) = λ3+2n

∫ ∞

λ−1
x2n+1

√
x2 − λ−2

e(x±η) + 1
dx, (16)

where we have defined the dimensionless variables

λ = kBT

me
, η = μ

kBT
,

and we take kB = 1 for the Boltzmann constant. With these definitions, Eq. 16 becomes

G±
s (λ, η, E) = 1

m3+2s
e

∫ ∞

me/T
E2s+1

√
E2 − m2

e

e(E±μe)/T + 1
dE . (17)

Therefore, the final expression for the stellar energy loss rates in the context of the
U (1)B−L model is given by:
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QB−L
νν̄

(
μν, dν, θB−L, g′

1, MZ ′ , η
) = α2m9

e

9π3 sin4 2θW

{
3 sin4 2θW

2παm2
e

(
μ2

ν + d2
ν

)

×
[

2
(
G−

−1/2G
+
0 + G−

0 G
+
−1/2

)
+ G−

0 G
+
1/2 + G−

1/2G
+
0

]

+ 4
(
g[B−L]

1

)[
5
(
G−

−1/2G
+
0 + G−

0 G
+
−1/2

)
+ 7

(
G−

0 G
+
1/2 + G−

1/2G
+
0

)

− 2
(
G−

1 G
+
−1/2 + G−

−1/2G
+
1

)
+ 8

(
G−

1 G
+
1/2 + G−

1/2G
+
1

)]

+ 36
(
g[B−L]

2

)[
G−

−1/2G
+
0 + G−

0 G
+
−1/2 + G−

0 G
+
1/2 + G−

1/2G
+
0

]}
. (18)

Note, that the weak and electromagnetic diagrams given in Fig. 1 do not interfere. This
equation is valid whether or not the electrons are degenerate or even relativistic, that is valid
for all values of the λ and η. Additionally, one can once again recover the SM stellar energy
loss rates in the decoupling limit [5].

We emphasize that while the dependence of mixing angle θB−L between Z − Z ′ and the
coupling constant g′

1 of the U (1)B−L model are contained in the new coupling constants g f
V ,

g f
A , g′ f

V and g′ f
A (see “Appendix A”), also the dependence on the η degeneration parameter

is contained in the Fermi integrals G±
n (λ, η). Thus, to quantify the combined effects of the

AMM and the EMM of the neutrino, with the free parameters θB−L, g′
1 and MZ ′ , of the

U (1)B−L model, we define the relative correction for the stellar energy loss rates as:

δQB−L
νν̄

QSM
νν̄

= QB−L
νν̄

(
μν, dν, θB−L, g′

1, MZ ′ , η
) − QSM

νν̄ (η)

QSM
νν̄ (η)

. (19)

However, given the mathematical impossibility of solving these integrals for all the values
of λ and η in general, we proceed to evaluate Eq. (18) in different interesting limits represented
by their respective densities and temperatures. We shall do this next.

2.2.1 Region I: λ 
 1, η 
 1
λ

This corresponds to the nonrelativistic and nondegenerate case, where temperature and den-
sities can vary between 3 × 108 ≤ T ≤ 3 × 109K and ρ ≤ 105 gr/cm3, respectively. In this
regime, the Fermi integral is simplified as:

G±
n ≈

(π

2

) 1
2
λ

3
2 e−1/λe∓η, (20)

which allows us to get:

QB−L
I

(
μν, dν, θB−L, g′

1, MZ ′
) = 2α2m6

e

π2 sin4 2θW
(T )3 e−2me/T

×
[

sin4 2θW

4παm2
e

(
μ2

ν + d2
ν

) + 4
(
g[B−L]

1 + g[B−L]
2

)]
. (21)

Therefore, the relative correction gives:

δQB−L
I

QSM
I

=
M4

Z

[(
g[B−L]

1 + g[B−L]
2

)
+ sin4 2θW

(
μ2

ν + d2
ν

)

16παm2
e

]

(
gSMV

)2 − 1. (22)
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The result is independent of the stellar temperature, and Eq. (22) only depends on the AMM
(μν) and the EDM (dν) of the neutrino, and on the parameters of the U (1)B−L model,
explicitly the coupling constant g′

1 and the gauge boson mass MZ ′ .

2.2.2 Region II: λ 
 1, 1
λ


 η 
 2
λ

Such a nonrelativistic and mildly degenerate case represents temperatures T ≤ 108K and
densities between 104gr/cm3 ≤ ρ ≤ 106gr/cm3. Then, Fermi integrals satisfy that G−

0 �
G+

0 and G−
n ≈ G−

0 , and thus,

G+
n ≈ G+

0 =
(π

2

) 1
2
λ

3
2 e−1/λe−η, G−

n ≈ G−
0 =

(
ρ

μe

)
π2

m3
e
NA. (23)

With this, we assess:

QB−L
I I

(
μν, dν, θB−L, g′

1, MZ ′
) = 2

√
2πα2

π sin4 2θW

(
ρ

μe
NA

) (
T

me

)3/2

m6
e e

−(me+μe)/T

×
[

sin4 2θW

4παm2
e

(
μ2

ν + d2
ν

) + 4
(
g[B−L]

1 + g[B−L]
2

)]
, (24)

and the corresponding relative correction results:

δQB−L
I I

QSM
I I

=
M4

Z

[(
g[B−L]

1 + g[B−L]
2

)
+ sin4 2θW

(
μ2

ν + d2
ν

)

16παm2
e

]

(
gSMV

)2 − 1, (25)

which is exactly equal as in region I, extending this equality in the dependence on the
bunch of parameters just listed above. Consequently, the indistinguishability of treating with
nondegenerate or mildly degenerate electrons becomes clear.

2.2.3 Region III: λ 
 1, 1 
 λη

This region represents the relativistic and degenerate case and is valid for temperatures
T > 6 × 107K and densities ρ > 107 gr/cm3. Fermi integrals result:

G+
n ≈ G+

0 =
(π

2

) 1
2
λ

3
2 e−1/λe−η, G−

n =
(

3

2n + 3

)
(λη)2n G−

0 . (26)

Then, the energy loss rates for this region to highest power in λη are:

QB−L
I I I

(
θB−L, g′

1, MZ ′
) = 8

√
2πα2

5π sin4 2θW

(
ρ

μe
NA

)(
T

me

)3/2 (
μe

me

)2

× m6
e e

−(me+μe)/T
(
g[B−L]

1

)
, (27)

and consequently, the relative correction is given by:

δQB−L
I I I

QSM
I I I

=
2(M4

Z )
(
g[B−L]

1

)

[(
gSMV

)2 +
(
gSMA

)2] − 1. (28)

The typical approximation for this region only considers the terms of dominant powers,
so there is no dependence on the AMM and/or EDM of the neutrino.
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2.2.4 Region IV: λ � 1, η 
 1

The relativistic and nondegenerate case holds for densities ρ > 107 gr/cm3. In this region,
we may ignore the chemical potential. Considering the dominance of the highest orders in λ

G±
n ≈ λ2n+3� (2n + 3)

∞∑
S=1

(−1)S+1

S2n+3 . (29)

Then, the stellar energy loss rates for this region are:

QB−L
I V

(
θB−L, g′

1, MZ ′ , μν, dν

) = 28πζ(5) α2 (T )9

3 sin4 2θW

(
g[B−L]

1

)
, (30)

, and thus, the relative correction is the same as in the previous region:

δQB−L
I V

QSM
IV

=
(M4

Z )
(
g[B−L]

1

)
[ (

gSMV
)2 + (

gSMA
)2

] − 1. (31)

2.2.5 Region V: λ � 1, η � 1

This degenerate relativistic region holds for densities greater than ρ > 108 gr/cm3 with
temperatures of T ≈ 1010K at the lowest density, extendable to a range between 1010K and
1011K at a density of ρ > 1010 gr/cm3. Here, G−

n � G+
n , and then,

G+
n ≈ λ2n+3 (2n + 2)!e−η G−

n ≈
(

3

2n + 3

)
(λη)2n

(
ρ

μe

)
π2

m3
e
NA. (32)

Restricting the calculation to the higher powers in λη, the stellar energy loss rates result:

QB−L
V

(
θB−L, g′

1, MZ ′ , ρ
) = (8α)2

5π sin4 2θW

(
ρ

μe
NA

)(
T

me

)4 (
μe

me

)2

× m6
e e

−μe/T
(
g[B−L]

1

)
, (33)

, and thus, the relative correction is:

δQB−L
V

QSM
V

=
2(M4

Z )
(
g[B−L]

1

)

[(
gSMV

)2 +
(
gSMA

)2] − 1, (34)

resulting equal as in region III. Again, it becomes clear that there is an indistinguishability
of treating with nondegenerate or degenerate electrons.

3 Results

In this paper, in the context of the SU (3)C × SU (2)L ×U (1)Y ×U (1)B−L model [36–42] we
develop and present novel analytical formulas to assess the effects of the anomalous magnetic
moment and the electric dipole moment of the neutrino, in addition of the parameters of the
B–L model on the stellar energy loss rates through the physical process of pair-annihilation
e+e− → (γ, Z , Z ′) → νν̄. This is one of the main mechanisms of neutrino pair production
relevant for the neutrino luminosity.
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For nonvanishing AMM and/or EDM of neutrinos, the pair production process via the
channel of Eq. (6) would receive an additional electromagnetic contribution from the inter-
action with a virtual photon. Consequently, new channels for neutrino production are possible
and the additional electromagnetic pair production would lead to an increase in the stellar
neutrinos. In here, our analytical result on the stellar energy loss rates of neutrino pair produc-
tion is obtained through the process e+e− → (γ, Z , Z ′) → νν̄ and expressed as a function
of the μν and the dν of the neutrino, the mixing angle θB−L, the mass of a new gauge boson
MZ ′ , which at the time strongly depends on g′

1 and the degeneration parameter η.
The stellar energy loss rates for the process of pair-annihilation e+e− → (γ, Z , Z ′) → νν̄

as a function of the degeneration parameter η are presented in Fig. 2, corresponding to
input parameters g′

1 = 0.435, MZ ′ = 3000 GeV, θB−L = 10−3, μν = 2.70 × 10−12μB

[31] and dν = 1.21 × 10−21 ecm [21]. In this figure, we consider the following scenarios,
QB−L

(
μν, dν, θB−L, g′

1, MZ ′ , η
)

the stellar energy loss rates as a function of the dipole
moments of the neutrino, the parameters of the B–L model and the degeneration parameter η,
that is to say theQB−L correspond to the B–L model with electromagnetic properties. Another
case corresponds to QB−L

(
θB−L, g′

1, MZ ′ , η
)

the stellar energy loss rates as a function of the
parameters of the B–L model and the degeneration parameter η, that is the QB−L correspond
to the U (1)B−L model and without electromagnetic properties of the neutrino. The third
case corresponds to Qem (μν, dν, η) the stellar energy loss rates as a function of the dipole
moments of the neutrino and the degeneration parameter η, and this case refers to the minimal
extension of the SM with electromagnetic properties of the neutrino. Finally, the QSM (η)

corresponds to the case of SM. These results show that both the dipole moments and the
parameters of the B–L model have an important effect on the stellar energy loss rates. For
instance, the difference between the cases with and without electromagnetic properties for
the B–L model is 2 orders of magnitude. For the cases of the SM and the minimally extended
SM with electromagnetic properties, the difference is up to 3 orders of magnitude. Figure 2
reveals that emissivity becomes larger with the contribution of the AMM and of the EDM of
the neutrino, as well as with the parameters of the B–L model.

Variation of QB−L (μν, dν, η) as a function of μν and dν with g′
1 = 0.435, MZ ′ = 3000

GeV, θB−L = 10−3 and degeneration parameter η = 2, respectively, is shown in Fig. 3.
This clearly shows a strong dependence of QB−L (μν, dν, η) with respect to the AMM of the
neutrino, and it is almost independent of the EDM, in agreement with a previous analysis
presented in Ref. [24].

The dependence of Q (μν, η) with respect to μν is displayed in Fig. 4, with degeneration
parameters η = 2, 4, 8. From this figure, we see that the stellar energy loss rates depend
significantly on both the AMM and the degeneration parameter η. The stellar energy loss
rates also decrease as increasing η, which is due to the reduction in the number of positrons
involved in the collisions.

The dependence of Q (θB−L, η) on the pair of parameters (θB−L, η) is shown in Fig. 5.
The stellar energy loss rates decrease when η increases. This behavior is due to the reduction
in the number of positrons available to cause the collision. Besides, the stellar energy loss
rates keep nearly constant for any value of the mixing angle θB−L.

Figure 6 shows the variation of the stellar energy loss rates as a function of the new gauge
boson mass MZ ′ from the U (1)B−L model with g′

1 = 0.145, 0.290, 0.435. A dependance on
both MZ ′ and g′

1 is observed for Q (
MZ ′ , g′

1, η
)
. This result comes directly from the relation

MZ ′ = 2v′g′
1 [39,40,42]. In Fig. 7, we show the stellar energy loss rates for the annihilation

process e+e− → (γ, Z , Z ′) → νν̄ with contribution weak and electromagnetic. The high-
temperature enhancement of the electromagnetic annihilation channel discussed in section
II is evident. For an AMM of 10−12μB and an EDM of 10−21 ecm, the electromagnetic
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Fig. 2 The stellar energy loss rates as a function of the degeneration parameter η for stellar temperature
of 5 × 108K and 5 × 109K. The solid line is for QB−L

(
μν, dν , θB−L, g′

1, MZ ′ , η
)
, the tiny dashes line is

for QB−L
(
θB−L, g′

1, MZ ′ , η
)
, the large dashes line is for Qem (μν, dν , η), and the dot-dashes line is for

QSM (η)

annihilation rates dominate over the rates for an AMM of 10−12μB and an EDM of 10−21

ecm, respectively. Clearly, magnetic and electric dipole moments of order minor that of
10−12μB and 10−21 ecm have less influence on the annihilation channel.

A simple comparison of the SM and the U (1)B−L model for pair production e+e− →
(γ, Z , Z ′) → νν̄ is obtained using the full expressions of QB−L

(
μν, dν, θB−L, g′

1, MZ ′
)

given by Eq. (18) and the corresponding of the SM which is obtained in the decoupling limit
when θB−L = 0, g′

1 = 0, MZ ′ → ∞ and μν = dν = 0.
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Fig. 3 The stellar energy loss rates as a function of the AMM and the EDM (μν, dν) for η = 2

Fig. 4 The stellar energy loss rate as a function of the AMM of the neutrino. The solid line is for η = 2, the
dashes line is for η = 4, and the dot-dashes line is for η = 8

In this regard, Fig. 8 shows the contour plot of the ratio
QB−L(μν,dν ,θB−L,g′

1,MZ ′ )
QSM

in the
(T, ρ/μe) parameter space, where the input parameters are g′

1 = 0.435, MZ ′ = 3000 GeV,
θB−L = 10−3, μν = 2.70 × 10−12μB and dν = 1.21 × 10−21 ecm, respectively. This
figure shows the contours of the ratio QB−L

(
μν, dν, θB−L, g′

1, MZ ′
)
/QSM of nonstandard

over standard energy loss via neutrino pair production as a function of temperature (T ) and
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Fig. 5 The stellar energy loss rates as a function of degeneration parameter and the mixing angle (η, θB−L)

Fig. 6 The stellar energy loss rates as a function of the mass of the new gauge boson MZ ′ . The solid line is
for g′

1 = 0.145, the dashes line is for g′
1 = 0.290, and the dot-dashes line is for g′

1 = 0.435
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Fig. 7 The stellar energy loss rates as a function of the stellar temperature T . The solid line is for g′
1 = 0.145,

the dashes line is for g′
1 = 0.290, and the dot-dashes line is for g′

1 = 0.435

matter density (ρ) in the region of interest defined by 101 ≤ (ρ/μe)(gcm−3) ≤ 1012 and
107 ≤ T (0K ) ≤ 1010. The results show that indeed theU (1)B−L model loss does not exceed
25% of the SM one.

Starting from the expression for QB−L
I I given by Eq. (24), we show the contours plot

in the (T, ρ/μe) plane for different QB−L
I I

(
μν, dν, θB−L, g′

1, MZ ′
)
, as shown in the color

code for QB−L
I I

(
μν, dν, θB−L, g′

1, MZ ′
)
, and the AMM of the neutrino is fixed at μν =

2.70 × 10−12μB. Our results are shown in Fig. 9.
To visualize and quantify the effects of the dipole moments μν and dν of the neutrino, as

well as of the parameters g′
1, θB−L and MZ ′ of the U (1)B−L model on the stellar energy loss

rates, we plot the relative correction
δQB−L

νν̄

QSM
νν̄

for the regions I–II given by Eqs. (22) and (25)

in Fig. 10. From this figure, we observed that the relative correction
δQB−L

I−I I
QSM is of the order of

22–46% to the interval of −10−3 ≤ θB−L ≤ 10−3. While for the regions III–V, the relative

correction
δQB−L

I I I−V
QSM given by Eqs. (28), (31) and (34) is of the order of 1–25%, as shown in

Fig. 11.
To show the consistency of our model with the minimally extended standard model, as

well as with the role in cosmology and astrophysics we estimated a sensitivity measure on
the magnetic moment of the neutrino. Our obtained sensitivity measure is as follows. From
Eqs. (21) or (24) corresponding to regions I and II where there is dependence on the AMM
(μν) and considering the ratio:

QB−L
I

QSM
I

=
M4

Z

[(
g[B−L]

1 + g[B−L]
2

)
+ sin4 2θW

(
μ2

ν+d2
ν

)
16παm2

e

]

(
gSMV

)2 , (35)

123



Eur. Phys. J. Plus         (2020) 135:481 Page 15 of 20   481 

Fig. 8 Contour plot of the ratio
QB−L(μν ,dν ,θB−L,g′

1,MZ ′ )
QSM

as a function of temperature (T ) and matter

density (ρ)

it is possible to estimate sensitivity measure on the magnetic dipole moment of the neutrino
which is competitive with other bounds reported in different astrophysical, cosmological
and experimental approaches, as the ones mentioned in Introduction. For instance, for the
following values of θB−L = 10−3, g′

1 = 0.435 and MZ ′ = 3000 GeV we obtain the following
sensitivity measure for the AMM:

|μν | ≤ 2.020 × 10−12μB. (36)

Our sensitivity measure for the AMM given by Eq. (36) is consistent with that obtained
through the supernova energy loss studies leading to an upper limit of μν � (1.1 − 2.7) ×
10−12μB [31]. In addition to the limits reported through the cooling rates of red giants,
μν � 3×10−12μB [32], and in the analysis of cooling rates of white dwarfs, μν � 10−11μB

[33], etc.
We show that the stellar energy loss rates significantly depend on the effective magnetic

moment of the neutrino, as well as on the parameters of the U (1)B−L model, that is the
mass of the new gauge boson M ′

Z , the mixing angle θB−L between Z − Z ′ and the coupling
constant g′

1. Furthermore, our analytical formulas for the stellar energy loss rates in the B–L
model approach are novel and are more general than the corresponding ones for the SM.
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Fig. 9 Contours in the plane (T, ρ/μe) for the region II. The AMM of the neutrino is fixed at μν =
2.70 × 10−12μB

Fig. 10 The relative correction
δQI−I I

B−L

QI−I I
SM

as a function of the mixing angle θB−L with and without dependence

of the AMM and the EDM (μν, dν) for regions I and II
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Fig. 11 The relative correction
QI I I−V

B−L
(
μν, dν , θB−L, g′

1, MZ ′ , η
) − QI I I−V

SM (η)

QI I I−V
SM (η)

as a function of the

mixing angle θB−L

In the B–L model approach, we estimated a sensitivity measure on the neutrino mag-
netic moment which is competitive with those obtained from astrophysical and experimental
approach. See Eq. (36) about our sensitivity measure on the AMM.

For all the aforementioned, QB−L
νν̄ increases if one introduces new interactions that change

the neutrino annihilation cross section. This is the case if the neutrino has a diagonal magnetic
moment, because a magnetic moment would increase ν − ν̄ annihilation (creation) into (by)
e±, keeping the neutrinos in equilibrium below the canonical (including only weak processes)
neutrino decoupling temperature. In addition, as neutrino mass is sufficiently small, that is
mν 
 me and remains coupled to electrons, while the electrons annihilate, the neutrino
number density will be increased because part of the electrons entropy will be shared with
the neutrinos.

Until now, SN 1987A is the only supernova from which neutrinos have been detected.
However, new generations of detectors of neutrinos will increase the capability detection of
the order of ten thousand neutrinos from Via Lactea supernovas up to one more order of
magnitude. As we just did, it will be possible to relate our results with data from observations
or measurements such as supernova energy loss, cooling rates of red giants, cooling rates
of white dwarfs, Borexino Experiment, TEXONO Collaboration, etc., through the neutrino
magnetic moment.

4 Conclusions

We have developed and presented exact analytical formulas to assess the stellar energy
loss rates involved in the process of emission of neutrinos driven by the channel e+e− →
(γ, Z , Z ′) → νν̄. Thus, the stellar energy lost rates must be assessed completely with (18).
The validity of such an equation extends to the cases whether or not electrons are degenerated
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or relativistic ones, a fact that is properly reflected in all the range of values considered for
λ and η. A fiduciary result is that the stellar energy lost rates increase and are considerably
dependent on the electromagnetic dipole moments of the Dirac neutrinos and of theU (1)B−L

parameters. The comparison QB−L
(
μν, dν, θB−L, g′

1, MZ ′
)
/QSM in the region of interest

for T and ρ/μe shows that the U (1)B−L model loss does not exceed 25% of the SM one.
Also, we find that the sensitivity estimated on magnetic dipole moment of the neutrino is
of the order of |μν | ≤ 2.020 × 10−12μB, and it is competitive with other limits reported

in the literature [30–35]. The relative correction of
δQB−L

νν̄

QSM
νν̄

, given by
δQB−L

I−I I
QSM is of 22–46%

for the regions I–II. For regions III–V, the relative correction is of the order of 1–25%. The
comparison QB−L

(
μν, dν, θB−L, g′

1, MZ ′
)
/QSM in the region of interest for T and ρ/μe

shows that the U (1)B−L model loss does not exceed 25% of the SM one.
With our results, the process of pair-annihilation e+e− → (γ, Z , Z ′) → νν̄ opens a

number of opportunities to further study the stellar energy loss rates combining both the effects
of the AMM and the EDM of the neutrino and the U (1)B−L parameters, with the inclusion
of other potentially important channels such as γ + e± → e±νν̄ (ν- photoproduction),
γ ∗ → νν̄ (plasmon decay) and e± + Z → e± + Zνν̄ (bremsstrahlung on nuclei). These
processes are the dominant cause of the stellar energy loss rates in different regions present
within the density–temperature plane. These new calculations could contribute to a better
understanding of the neutrino physics, and of new physics BSM [52].
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Appendix A: Lagrangian of the U(1)B−L model

For the Lagrangian of the U (1)B−L model, the terms for the interactions between neutral
gauge bosons Z , Z ′ and a pair of fermions of the SM can be written as [21,39,40]:

LNC = −ig

cos θW

∑
f

f̄ γ μ 1

2

(
g f
V − g f

Aγ 5
)
f Zμ + −ig

cos θW

∑
f

f̄ γ μ 1

2

(
g′ f
V − g′ f

A γ 5
)
f Z ′

μ.

(A1)

Thus, the expressions for the new couplings between the Z , Z ′ bosons and the SM fermions
are presented in Table 1. As usual, the SM couplings are recovered in the limit when θB−L = 0
and g′

1 = 0,

Table 1 New couplings of the Z , Z ′ bosons with the SM fermions

Particle Couplings

f f̄ Z g f
V = T f

3 cos θB−L − 2Q f sin2 θW cos θB−L + 2g′1
g cos θW sin θB−L,

g f
A = T f

3 cos θB−L

f f̄ Z ′ g′ f
V = −T f

3 sin θB−L − 2Q f sin2 θW sin θB−L + 2g′
1

g cos θW cos θB−L ,

g′ fA = −T f
3 sin θB−L

g = e/ sin θW and θB−L is the Z − Z ′ mixing angle
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Appendix B: Couplings constants

In Eq. (18), we have redefined the coupling constants of the U (1)B−L model as:

g[B−L]
1 =

[
1

M4
Z

( (
geV

)2 + (
geA

)2
)( (

gν
V

)2 + (
gν
A

)2
)

+ 1

M4
Z ′

( (
g′e
V

)2 + (
g′e
A

)2
)

×
( (

g′ν
V

)2 + (
g′ν
A

)2
)

+ 2

M2
Z M

2
Z ′

(
geV g

′e
V + geAg

′e
A

)(
gν
V g

′ν
V + gν

Ag
′ν
A

)]
, (B1)

g[B−L]
2 =

[
1

M4
Z

( (
geV

)2 − (
geA

)2
)( (

gν
V

)2 + (
gν
A

)2
)

+ 1

M4
Z ′

( (
g′e
V

)2 − (
g′e
A

)2
)

×
( (

g′ν
V

)2 + (
g′ν
A

)2
)

+ 2

M2
Z M

2
Z ′

(
geV g

′e
V − geAg

′e
A

)(
gν
V g

′ν
V + gν

Ag
′ν
A

)]
. (B2)
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