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Abstract: The indoor location of individuals is a key contextual variable for commercial and assisted
location-based services and applications. Commercial centers and medical buildings (e.g., hospitals)
require location information of their users/patients to offer the services that are needed at the correct
moment. Several approaches have been proposed to tackle this problem. In this paper, we present the
development of an indoor location system which relies on the human activity recognition approach,
using sound as an information source to infer the indoor location based on the contextual information
of the activity that is realized at the moment. In this work, we analyze the sound information to
estimate the location using the contextual information of the activity. A feature extraction approach
to the sound signal is performed to feed a random forest algorithm in order to generate a model to
estimate the location of the user. We evaluate the quality of the resulting model in terms of sensitivity
and specificity for each location, and we also perform out-of-bag error estimation. Our experiments
were carried out in five representative residential homes. Each home had four individual indoor
rooms. Eleven activities (brewing coffee, cooking, eggs, taking a shower, etc.) were performed to
provide the contextual information. Experimental results show that developing an indoor location
system (ILS) that uses contextual information from human activities (identified with data provided
from the environmental sound) can achieve an estimation that is 95% correct.

Keywords: indoor location; human activity recognition; context information; CAD; random forest;
machine learning algorithms

1. Introduction

The physical indoor location of a user has become an important context variable because it
is fundamental information that is needed to increase the capabilities of other systems to offer
location-based services (LBSs) and improve the user’s situation [1]. Therefore, the research topic
of indoor location systems (ILSs) has been constantly improved, especially with the availability of
mobile devices such as smartphones, which include sensors that can be used to develop indoor location
estimator (ILE) systems with different technologies [2].

Several approaches have been proposed to develop ILEs, depending on the availability of
technological devices and/or indoor location conditions. For instance, the use of radio waves that
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include technologies such as Bluetooth, radio frequency identification (RFID), ultrasonic sensors,
and Zigbee, among others [3–5], which uses available radio signals generated by other devices in
the environment [6]. These approaches have also been combined to develop robust ILS, taking
advantage of devices that include more than one sensor (e.g., smartphones, as mentioned in [7,8]).
The combination of these technologies has also been considered [7,8]. These technologies have allowed
the development of well-accepted proposals based on these technologies, such as Active Badge [9],
Active bat [10], Cricket [11], LANDMARC [12], Bluepos [13], LOSNUS [14], and CLIPS [15]. However,
these approaches require a dedicated infrastructure, and in most of them the position of the devices is
used to calculate the final indoor location. Thus, they are impractical for deployment in the real world.
Additionally, the lack of scalability is another disadvantage, because the dedicated infrastructure
requires devices to be added in order to increase the coverage of these systems.

To solve this issue, other approaches make use of signals that are naturally in the environment [6].
These natural signals (e.g., sound, light, geomagnetic, etc.) can be used without deploying dedicated
infrastructure or ILSs. One example is geomagnetic signal, which can be detected by smartphones
using the built-in magnetometer sensor [16,17]. Haverinen et al. [18] propose that the position should
be identified using the Monte Carlo localization approach. For this dynamic localization in an indoor
environment (corridors in a building), magnetic field observations from an unknown position, the
comparison between the magnetic field variations, and the known patterns are used. Gozick et al. [19]
propose another approach using the variations in the geomagnetic field caused by structural steel
building elements. These variations can be modeled to estimate the user location. Other approaches
use light as an information source to estimate the location of the user. Randall et al. [20] proposed
the use of solar cells, and recorded the patterns as a fingerprint to recognize the location of the user.
The deployment of this proposal needs no infrastructure changes; however, location estimation is
calculated as a trajectory and not as a punctual location, and standard solar cells are used to register
luminosity (intensity of light) as well as their typical use to collect energy. Finally, environmental
sound is proposed as another information source in several works. One well-known example of this is
presented by Vildjiounaite [21], who proposed the use of 10 s of the environmental sound and using
this as a “fingerprint”. Then, they calculate the spectrum for each fingerprint and use some spectral
frequencies features. Delgado-Contreras et al. [22] presented an approach for location classification
that does not need to have an explicit information about locations to be identified. Instead, they
propose the use of 62 audio features grouped in temporal, frequency, and statistical features to describe
the signal. They obtained 91.42% accuracy using a support vector machine (SVM) algorithm to estimate
the location.

Other approaches propose the merge of signals with contextual information; for instance,
Chun Zu et al. [23] proposed an approach to indoor human daily activity recognition which combines
motion data and location information, where location is a context information and an accelerometer
provides raw data from the user movements using Bayes’ theorem to fuse the context and accelerometer
data. In their work, Avgoustinos Filippoupolitis et al. [24] designed and evaluated an activity
recognition system composed of a smart watch, enhanced by contextual location information acquired
from Bluetooth Low Energy (BLE) beacons. They claimed a classification accuracy ranging from 92%
to 100%. An interesting work aimed at indoor location using contextual information was put forth
by Sheng Guo et al. [25]; they proposed location estimation combining pedestrian dead reckoning,
human activity recognition (HAR), and landmarks to acquire accurate indoor localization information.
Xiaomu Luo et al. [26] proposed an indoor tracking and activity recognition using a wireless sensor
network (WSN), where the sensor nodes within the WSN consist of pyroelectric infrared (PIR) sensor
arrays. The approach uses a two-layer random forest (RF) classifier to identify the user movements and
activity. They claimed an error of about 0.85 meters and a 92% HAR. Nevertheless, these approaches
keep the main constraint that depends on dedicated infrastructure (for instance BLE beacons) and/or
specific proposed devices to track the user movements (accelerometers, pyroelectric sensors, and smart
watch among others), which implies that they cannot be deployed in many environments.
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There are approaches that instead of measuring distance in terms of coordinates in a plane
x, y, they propose the use of labels to identify certain rooms; for instance, Ghourchian et al. [27]
proposed an approach that utilizes WiFi-enabled devices inside of different rooms to describe it on
the basis of these WiFi devices such as laptops, smartphones, smart TV, and others. In their scenario,
they labeled the rooms with a consecutive number, i.e., “Room 1”, “Room 2”, and so on; however,
several devices can be moved easily to modify the WiFi description of a room. Crespo et al. [28]
proposed a semantic navigation in indoor environments, describing rooms as “places” that have
particular objects or tasks that will help to identify each room; this proposal uses two main elements:
an ontology proposed and environment information included in a relational database. Room semantics
identification using acoustic monitoring Mel-frequency cepstral coefficients (MFCCs) to model the
environmental sound is presented by Ahmed Shah et al. [29], who propose the use of support
vector machines (SVMs) to classify the MFCCs that describe room semantics; nevertheless, a Fourier
depending feature such as MFCC combined with an SVM algorithm can lead to a high computational
cost. These approaches identify rooms to offer indoor location systems; however, current user activity
is not relevant to these proposals. Therefore, in this paper, we propose a context information ILS which
relies on the human activity recognition (HAR) process and how it can describe the location with
environmental sound as information source, based on contextual information to estimate the user’s
location in an indoor environment. In this approach, the main goal is to find the user’s location in
terms of descriptive location “labels” (e.g., “kitchen”), and not a particular point in a coordinate system.
However, this location description is enough to provide location based services (LBSs). Therefore,
instead of measuring the error in distance from the current location and the estimated one, this is
measured as in a classification problem—estimated room against the actual room (true positives and
true negatives). This allows the performance of the ILS to be expressed in several numerical metrics,
such as sensitivity, specificity, and recall. A confusion matrix can be calculated and other visualization
figures can be developed, such as a receiver operating characteristic (ROC) curve.

There are two important goals in our study: to provide evidence that human activity as context
information can describe the location of the user in an indoor environment, and secondly, to find
statistical features that explain the behavior of the signals to develop an indoor location system based
on context information about the activity that is performed, with low computational cost that allows
us to implement our system in portable devices such as smartphones without the need of adding
infrastructure to the environment. This ILS must be a general model (i.e., a model that does not depend
on a particular user [30,31], device, or specific characteristics of the signal that feeds the model), with
the aim of avoiding a costly training phase in order to be an easily-implemented development.

In order to perform the context information extraction, using HAR with sound as information
source, statistical features presented by Galván-Tejada et al. [32] were used. In our proposal,
we construct a context sound fingerprint with 10 s of HAR that is carried out in an indoor environment.
With this context, the sound fingerprint can be inferred in the indoor room where a certain activity is
performed. This approach allows us to be independent of the constraints occurring in other approaches
using other natural signals as mentioned before.

The main contribution of this work is the use of contextual information extracted from human
activity recognition to estimate the user’s location in an indoor environment, without the need
of adding devices to the user or to the environment. This approach uses sound data to estimate
the location, which is present in any indoor environment and thus there is no need to generate or
modify infrastructure.

This paper is organized as follows: after this introduction, in Section 2 the environmental sound
data set is described in detail, as well as methods used to develop the ILS. In Section 3, the experiment
using sound data from human activities and results from the experiment are shown. In Section 4,
discussion and conclusions about this work are presented, and finally in Section 5 the future work is
briefly described.
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2. Materials and Methods

In this section, the environmental sounds that comprise the data set of human activities and their
locations is described in detail, and then the methods applied to develop the indoor location estimation
(ILE) model are presented next.

2.1. Data Set Description

The human activity sounds data set is comprised of ten activities and several sounds from
environmental noises tagged as non-activity. These activities are commonly performed in a residential
home. Brewing coffee, cooking meat, boiling eggs, dish washing, and using the microwave oven
are performed at kitchen; taking a shower, hand washing, and teeth brushing occur in the bathroom;
chewing food in dining room; and finally, reading a book and sounds not related to the mentioned
activities, tagged as no activity in the room for resting. A brief description of the activities and the
residential rooms are shown in Table 1. It is worth mentioning that kitchen and bathroom have four
activities, where running water has similar background sound, adding complexity to the ILE problem.
All environmental audio recordings tagged by activity and location are available on the AmiDaMi
research group page (http://ingsoftware.reduaz.mx/amidami).

Table 1. Brief description of activities used to describe each of the studied rooms.

Location Activity Description of Action Recorded

Kitchen

Brewing coffee Brewing coffee from putting a coffee pot on the stove to turning
off the stove or coffee machine turning from on to off.

Frying meat From putting meat into the frying pan to turning the stove off.

Cooking eggs From cracking the egg to finishing with it cooked.

Using microwave oven From set-up time to opening the microwave oven’s door.

Dish washing Dishes washed by hand individually or in groups of different
dishes; water noise in the background.

Bathroom
Taking a shower Taking a shower in different environments, in some cases water

fall was interrupted in intervals.

Hand washing Washing hands with bar soap.

Teeth brushing Audio clips include from opening the tap to closing it.

Chewing food Sounds produced by chewing crispy potatoes and apples.

Dining Room
Room for

resting
No activity No activity audio clips, which mostly comprise noises added by

the device used to record.

Reading a Book Whispering and page changing.

2.2. Recording Devices

Sounds were recorded using several smartphones, with the aim of covering different specifications
and recording qualities depending on the microphones embedded in these. Smartphone model,
system-on-chip (SoC), and operating system (OS) are shown in Table 2; these features of hardware and
software had an impact on the sound recording capabilities and process of each device.

http://ingsoftware.reduaz.mx/amidami
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Table 2. Selected mobile phones system-on-chip and operating system.

Smartphone System on Chip (SoC) Operating System

Lanix Ilium s600 Qualcomm Snapdragon 210 MSM8909 Android 5.1
LG G Pro Lite MediaTek MT6577 Android 4.1.2

iPhone 4 Apple A4 APL0398 iOS 4
iPhone 3GS Samsung S5PC100 iOS 3

HTC One M7 Qualcomm Snapdragon 600 APQ8064T Android 4.1.2

2.3. Spatial Environments

Sounds were recorded in different residential home environments in the four selected rooms:
kitchen, bathroom, dining room, and room for resting, meaning different sound reflections,
construction materials, background sounds, and home appliances—especially in the kitchen (in
the activities of brewing coffee, cooking meat, frying eggs, and microwave oven).

2.4. Meta-Data

Sounds sampling rates from 8 kHz to 44.1 kHz, with mono and stereo recordings were considered
in this data set to create a representative sample of mobile phones’ capabilities in the market.
Additionally, it allowed the inclusion of future sounds to expand the data set with new activities in
different locations. Table 3 shows the summary of meta-data for each performed activity in this dataset.

Table 3. Sounds meta-data per activity.

Activity Sample Rate Encoding Format Channels

Brewing coffee 8000–44,100 Hz m4a, amr Stereo, Mono
Frying meat 44,100 Hz m4a Stereo

Cooking eggs 44,100 Hz m4a Stereo
Use microwave oven 44,100 Hz m4a Stereo

Take a shower 44,100 Hz m4a, mp3 Stereo
Dish washing 44,100 Hz m4a Stereo
Hand washing 8000–44,100 Hz m4a,amr Stereo, Mono
Brushing teeth 44,100 Hz m4a Stereo
Chewing Food 44,100 Hz m4a Stereo
Reading a book 8000–44,100 Hz m4a, amr Stereo, Mono

No activity 8000–44,100 Hz m4a, amr Stereo, Mono

2.5. Data Preparation

No processing was performed on the sound files in order to keep the variations of the original
sounds in the experiment [22,33]. The selected activities are normally done within 10 s to several
minutes (taking a shower); therefore, activities’ sounds were trimmed into 10 s clips, allowing the ILS
to estimate the location based on the activity every 10 s.

2.6. Feature Extraction

To acquire data that can potentially summarize the sound of a given activity being performed in a
certain room (i.e., kitchen, bathroom, dining room, and room for resting), a feature extraction approach
was performed. Each 10 s clip was converted into an integer array, where each integer represented
the magnitude of the sound wave at a given time. Even though all clips had the same duration, the
length of the arrays that represented them varied from 80,000 to 441,000 samples, depending on the
sample rate of the original recording. In the stereo recordings, features were extracted only from the
left channel, and in mono recordings features were extracted from the raw signal.

From our experience [32,34], first- and second-order statistical features can summarize the
behavior of different types of natural signals [6] that can be used to develop ILE systems; additionally,
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other types of problems with several approaches have been tackled with statistical features [35–37].
Therefore, the 16 statistical features listed in Table 4 were extracted from each sample of the human
activities done in each selected room.

Table 4. Statistical features that were extracted from each sample.

Features
Kurtosis of the probability distribution of the integer array
Skewness of the probability distribution of the integer array
Mean of the integer array
Median of the integer array
Standard deviation of the integer array
Variance of the integer array
Coefficient of variation (CV) of the probability distribution of the integer array
Inverse CV
1st, 5th, 25th, 50th, 75th, 95th, and 99th percentile of the probability distribution of the integer array
Mean of the integer array after trimming the bottom and top 5% elements

2.7. Feature Validation

To validate the extracted features to describe the behavior of this type of signal and be useful in
the indoor location problem, a genetic algorithm approach was applied to generate a genetic rank
of features to visualize the performance of each feature in the final model. This process allows the
evaluation of the feature’s (genes) relevance in terms of sensitivity and specificity. Based on features
evaluation, an ILS model (chromosome) was developed to explore the capability of each one to explain
the sound behavior, and to describe the location where the activity was done. The process of evaluating
features with a genetic algorithm approach starts with a random selection of features that comprises a
subset called a chromosome. Each chromosome represents a model that can predict the dependent
variable with a certain level of fitness. This chromosome mutates along generations to include new
genes (features) randomly and evaluate the change in terms of fitness, allowing the behavior of each
feature to be evaluated. Finally, after a defined number of random evolutions of different chromosomes,
a gene rank is developed which depends on the fitness achieved in the mutation process, making
it possible to know the behavior and importance of each feature to model the phenomena [38].

2.8. Model Generation with Random Forest

In the work of Breiman et al. [39], the RF classification technique was proposed, which is a
machine learning algorithm created for the solution of classification problems. This technique is based
on bagging and random feature selection, and it has been commonly used in different areas (i.e.,
medical approaches for feature extraction and breast tumor classification) [40].

RF is based on a set of decision trees composed by randomly-selected features; each tree is
conformed by split nodes and leaf nodes. The split nodes are the parts where these trees grow
according to the evaluation of the values obtained in their random feature vector and the incoming
samples, and the evaluation of the features, deciding the left or the right side of the node. The statistic
of the new samples is stored in the leaf nodes in order to be used for future prediction.

The RF process has two main stages: the first stage consists of training and the second of testing.
The training stage is based on the construction of multiple decision trees with the complete set
of features.

Initially, these trees are constructed through the evaluation of the entire dataset; then, in the ith
tree (where i is selected depending on the quantity of subjects), RF selects a subset of data for the
training stage. This subset is randomly sampled with a replacement from the entire dataset. Using
this subset of data, each node in the tree is recursively trained, starting from the root node, which
is the node in the top. In the jth node (where j is selected depending on the quantity of subjects)
is generated a function to divide the data into left and right child nodes. This process step also
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includes the improvement of randomness in the trees of the forest based on the selection of features by
random sampling.

The training stage is repeated until the criteria point is reached, which is established before the
algorithm starts and represents the maximum of the tree depth or a statistical value.

Finally, in the testing stage, the process is very similar to the training stage. The remaining subset
of data—reserved for testing—is submitted to the forest in the root node of each tree, being classified
into the left or the right child node until arriving at a leaf node, according to the learned function
from the training stage. From the forest, each tree presents a prediction result based on the statistic of
the training values that were initially reserved in each leaf node. The final result of the algorithm is
calculated by averaging the results obtained from the prediction of each tree [41].

To validate the results, RF uses the out-of-bag (OOB) error, which is an unbiased estimate of the
true prediction error that consists of testing each tree on the samples not used in the building trees
stage. According to Breiman et al. [39], it was demonstrated that calculating the OOB error produces
the same results in the error estimation using training and testing sets of the same size [39].

RF results will differ each time that the algorithm is performed because of the randomness set
in the tree building process; nevertheless, this randomness can be specified to be always the same,
obtaining specific purpose forests for certain problems [42].

This classifier is a widely used machine learning algorithm due to the simplicity in the approach
of the global interpretation of the logical relation between features, values, and classes [38].

2.9. Random Forest Model Validation

Even when RF estimated the final model error using the OOB approach, model validation was
done with a blind test, splitting the data set into two balanced partial data sets: training set and test
set. From this blind test, ROCs were calculated for each room. The ROC allows the performance of
a classifier to be evaluated in terms of sensitivity and specificity, revealing the ability of the model
to recognize true positives (TPs, observations that actually belong to the class in which were classified)
and false positives (FPs, observations that belong to another class but were classified as the current
evaluated class).

A well-known metric to evaluate the performance of a classifier using a ROC is the area
under the curve (AUC), which explains the general performance of the model using sensitivity
and specificity data.

3. Experiments and Results

The activities sound data set is comprised of 64 recordings with 1201 10 s human activity sound
descriptors. Table 5 details the number of recordings and 10 s instances per room obtained from
the activities.

Table 5. Number of recordings and 10 s instances per room described by contextual activity
recognition information.

Location Activity Recordings 10 s Instances Total Sounds Per Room

Kitchen

Brewing coffee 9 245

553Cooking (Meat and Eggs) 6 132
Use microwave oven 3 42
Washing dishes 6 134

Bathroom
Take a shower 11 428

590Brushing teeth 9 92
Washing hands 15 70

Dining Room Chewing food 6 29 29

Room for resting Reading books 7 13 29No activity 5 16
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The final data set had 1201 observations from all the locations, with 16 statistical features each.
To validate that all features are relevant to explain the behavior of the audio signal to describe an

indoor location with the current human activity, a genetic algorithm was used to explore these features’
potential. To apply the GA approach, the Galgo package was used [38]. This package implements a
generic genetic algorithm approach primarily used for variable (genes) selection in random subsets
(chromosomes). Galgo is a generic R software package that uses a genetic algorithms approach in order
to optimize problems by a selection of features (genes) subsets (chromosomes) in partially isolated
niches (environments) that warrant a non-biased genes analysis.

Settings were set to generate five genes (features) chromosomes (models); these genes represent
the 16 previously-extracted features. There were 300 evolving generations, using three different
algorithms as function cost: K-nearest neighbors, nearest centroid, and RF. This was done with the aim
of corroborating parametric and non-parametric classification algorithms’ behavior. These parameters
are recommended in the literature [38,43,44] to achieve a statistically significant and non-biased
process. Figure 1 presents gene rank acquired after genetic algorithm process using the three proposed
algorithms, in which it is shown that independently of the algorithm, time evolution quantile features
are dominant features.
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Figure 1. Gene rank stabilization with three different algorithms as function cost.

Once the data set pre-processing and feature evaluation was done, a RF with 500 trees and
classification mode was trained, using all the features as a result of the gene rank stabilization from
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the three algorithms to develop an ILS. The variation of the forest tended to zero when 500 trees were
reached, as can be appreciated in Figure 2, meaning that the local optima of the forest was achieved
and the location estimation had the minimum error.

0 100 200 300 400 500
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5

M@object
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rr
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Figure 2. Random forest (RF) stabilization with 500 trees.

After this processing is done, it is possible to visualize the two principal trees and evaluate the
performance and description of the model. Maximum nodes tree and minimal nodes tree are used to
represent the behavior of the RF. Figure 3 shows that the final minimum error tree, after the RF creation
process with the maximum number of nodes, quartiles, and percentiles features, had more weight than
other statistical features, based on the potential to resume the behavior of a signal in evolutionary time
form, which is consistent with the gene rank acquired by the GA approach. In addition, the minimal
tree from the RF process can be seen in Figure 4; however, percentile features are still present in the
root and first level branches of the tree. The meaning of this is that quantile features—which are
time-independent—include relevant data to explain indoor location with the activities’ sound.
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Figure 3. Minimal error tree from random forest 500 trees; all features are present.
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Figure 4. Minimal features tree from 500 trees generated by the random forest algorithm.

The confusion matrix acquired by the RF model is given in Table 6. The indoor location
estimation model using human activity showed 8.3% percentage of error, with 92.4% sensitivity
and 95.6% specificity.

Table 6. Confusion matrix of an RF with 500 trees.

Bathroom Dining Room Kitchen Room for Resting Error

Bathroom 534 1 53 2 0.094
Dining Room 1 23 4 1 0.20

Kitchen 47 0 505 1 0.086
Room for Resting 5 1 9 14 0.51

The ROC curves displayed in Figure 5 are acquired from a blind test (66% for training and 34%
for blind test), as is recommended in literature [38]; this figure shows a true positive rate (TPR) and a
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false positive rate (FPR) for each location, with an average AUC of 0.951, which is consistent with the
0.956 from the OOB error of the RF model training.
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Figure 5. Receiver operating characteristic (ROC) curves for each room.

4. Discussion and Conclusions

The aim of this research was to develop an indoor location estimator model using human activity
recognition through activities’ sound in indoor locations (i.e., kitchen, bathroom, room for resting, and
dining room). The method uses feature extraction and a well-known machine learning technique (RF)
that can be implemented in several platforms and deployed in different types of devices (e.g., mobile
devices) to provide context information. The results presented in Section 3 allowed us to identify the
following aspects to answer questions presented in Section 1:

• Human activity sound can correctly describe an indoor location: Human activity sounds have
enough data that they can be used to describe indoor environments. Therefore, an indoor
location estimation can be developed using human activity recognition context information
with environmental sound as data source.

• Quantile statistic features correctly describe the behavior of the signal: Statistical features that are
independent of time (i.e., ordered features as quantiles) can describe the behavior of the signal to
estimate the location based on the human activity. Minimal and maximum trees from the RF has
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as root a quantile n feature; meanwhile, descriptive statistics features tend to appear near to the
final nodes (final classification).

• Context information can be used to provide LBS: Providing a system with contextual
information—such as location and activity—can be useful to provide services to the user; in
this case, location can be recognized with human activity that is done in a certain room in an
indoor environment.

One of the most interesting points presented in this work is the use of raw data to describe
contextual information (human activity) to feed an RF for indoor location estimation. This well-known
classification algorithm allows us to estimate the location in 10 s. Additionally, it can be trained with
new data to describe new locations.

However, even though in this paper it is demonstrated that human activity can describe indoor
locations, several activities could lead to reduce the fitness of the ILS estimation; for instance, activities
that can be done in more than one room (chewing food or reading a book). This problem must be
studied with a robust ILS in terms of time dependence and/or a specific activities room description
based on an ontology.

Further, gene rank allows us to see that, even when all features contribute to generate
the classification model, to achieve a higher AUC, a deeper analysis of features is needed, and
complemented by other techniques of context or temporal inclusion.

5. Future Work

This study allows us to demonstrate that it is possible to develop an indoor location estimator
using information from human activity; however, there are several issues that must be tackled;,
therefore, we propose as part of future work including other types of features (spectral evolution
features), because the behavior of the quantiles and their time independence—in addition to feature
selection approaches—could help to reduce the amount of features needed to develop an ILE model.
Given spatial/temporal constrains, including an ontology or last-event-dependent algorithm (Petri
nets, for instance) is proposed as future work. The proposed future work is:

• To study other indoor locations that can be described by human activities,
• To include spectral evolution features that are commonly used to summarize the behavior

of sounds,
• To use Net Reclassification Index (NRI) as feature selection approach to promote the reduction of

redundant information,
• To implement a probabilistic algorithm (e.g., Petri nets),
• To propose an ontology to add contextual information to the final estimation.

There are also other techniques to achieve indoor location, such as the use of radio signals, inertial
sensors, or even using geomagnetic signal that can be fused in a multistacking proposal to increase
the accuracy of the indoor location estimation. A final model will be implemented using Internet of
Things-developed devices, such Arduino, raspberry, or similar to offer indoor location-based services.
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