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Abstract

We propose a regularization method for estimating the wavefront from shearing interferometric patterns generated
in vectorial shearing interferometry. The method considers shearing patterns with variable magnitude and direction
displacement. This regularized technique leads a stable solution of the inverse shearing problem and allows the re-
duction of the wavefront noise. We present the results of this technique applied on synthetic shearing interfero-

grams. © 2001 Published by Elsevier Science B.V.
PACS: 42.30.Rx; 42.87.—d; 07.05.P
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1. Introduction

Recently there has been a growing interest in
the fabrication of asymmetric and large diameter
optical devices. Asymmetric elements can provide
better or unique solution to specific optical design
problems. Optical testing for the analysis of opti-
cal devices is carried out with diverse type of
interferometers. The most commonly used con-
figurations are the Fizeau and Twyman—Green
[1], however, these conventional interferometric
systems do not satisfy the requirements to test
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asymmetric or large diameter elements which has
increased the need of developing new techniques.
On the other hand shearing interferometric sys-
tems [1] have been used in order to solve some
problems associated to conventional interfero-
meters. Although the information measured with
shearing interferometers is not directly the wave-
front but its derivative along the shear direction,
they can diminish problems of stability and good
quality reference components.

The main characteristic of shear interferometers
is that the wavefront is compared with itself
splitting it into two parts so that it is not necessary
a reference wavefront. These type of interferome-
ters are sensitive to the wavefront slope in the
shearing direction, that is, the modulating phase of
the interferograms is proportional to the derivative
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Fig. 1. Schematic diagram of the original and displaced wave-
fronts in the VSI.

of the wavefront. Other characteristic of shear
interferometers is that the sensitivity is controlled
by means of the displacement amount that is in-
creased when displacement is increased.

The vectorial shearing interferometer (VSI) [2,3]
is a proper alternative to test aspheric and asym-
metric optical elements. In the case of the VSI, the
wavefront displacement is done along an arbitrary
direction, that is, the derivative is directional. Fig. 1
shows the vector displacement in the VSI, where S,
0, ox and Jy represent the magnitude, direction, x
component, and y component respectively. The
advantage of the VSI with respect to traditional
lateral shear interferometers [4,5] may be more
evident when testing asymmetrical components
because in many cases the fringe density in a spe-
cific direction is very high [6]. One of the features
of this interferometer is the capability of control-
ling the density and direction of the fringes in the
interferograms by a proper selection of wavefront
displacement, this is beneficial when asymmetrical
components are tested [5].

The objective of shearing interferometers is the
recovery of the wavefront from phase differences.
Hunt proposed a matrix formulation of phase re-

construction from phase differences [7]. The most
common procedure to retrieve the phase from
phase derivatives is the least-squares method [8,9].
A more general method that considers directional
derivatives in arbitrary directions was proposed by
Legarda et al. [10]. These methods, however, as-
sume that the amount of shear is so small that the
modulating phase of the shearing interferograms
may be considered the wavefront derivative.
Servin et al. [11] proposed a regularization method
to integrate the wavefront difference fields. This
method consists in the improvement of the least-
squared method including a regularization term to
control the smoothness of the wavefront to be
recovered. An advantage of the algorithm with
respect to the proposed in Refs. [8,9] is that as-
sumes the amount of shear may be bigger than one
pixel. However, this regularization method con-
siders that shearing is performed just along or-
thogonal directions, x and y.

As we show below, we can retrieve phase from
phase differences along arbitrary direction and
variable amount of shear. We propose a regular-
ized technique that can be applied even if the
sheared interferograms are not mutually orthogo-
nal while keeping good properties of method de-
scribed in Ref. [11]. The principle of the technique
is described in Section 2. Experimental results
using synthetic interferograms are presented in
Section 3. Finally, conclusions are given in Section
4.

2. Wavefront estimation from sheared phase

An interferogram represents an intensity dis-
tribution in the two dimensional space. The in-
terferogram is produced by superimposing two
wavefronts where at least one of them is the
wavefront shape to be measured. The complex
amplitude of the two wavefronts that interfere in a
observing plane (e.g. a CCD array) is considered
the addition of the complex amplitudes of the two
waves [12], that is

E(x,y) = Ay (x,y) exp[ikW (x, )]
+ Az (x,y) explikWa(x, y)]. (1)
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In Eq. (1) 4, and 4, are the amplitudes of the
waves, and k = 2r/2, where 4 is the wavelength of
the light source and W (x, y) and W(x, y) represent
the shape of the wavefronts interfering. Hence, the
irradiance can be modelled as

E(xay)E*()@y) :A%()Qy) +A§(x,y) + ZAI(xay)A2(x7y)
x cos{k[M(x,y) = Ma(x,»)]}, ()

where the asterisk (x) denotes complex conjugated.

Taking into account that we use a VSI inter-
ferometer to test an optical wavefront, we assume
that the displacement is performed with an arbi-
trary magnitude and direction. In this case we call
ox; and dy; the vector components of the dis-
placement along the x- and y-axis respectively. For
simplicity, if we consider 4; = 4,, the intensity of
the fringe pattern may be expressed as

I (xvy) = a(xvy) + b(xay) Cos{k[W(x,y)
— W(x — dx1,y — dn)l}, (3)

where a(x, y) and b(x,y) represent the background
illumination and the amplitude modulation re-
spectively that vary slowly compared with the
wavefront W (x,y).

The detected wavefront differences from the
interferogram described by Eq. (3) may be repre-
sented by

Pi(x,y) = [W(x,) = W(x = &x1,y — )] 4)

Generally, to recover the wavefront from de-
rivatives or differences we need at least two inter-
ferograms with different shear direction so that a
second wavefront difference field @,(x,y) recov-
ered from a second interferogram is required. In
such circumstances we can integrate the wavefront
differences applying the least-squares technique
minimizing the cost function

Uis = Y [ (x,y) = W (x — 8x1,y — dm)

(xy)eL

- (x’y)]z + Z [W(xvy)
(

x,y)EL
— V/f/(x — 8)62,)/ — 8_)/2) - @2()(3,)/)]2, (5)

where L is a finite regular lattice and W is the
wavefront to be estimated.

There are two drawbacks using least-squares
integration in shear interferometry (see Ref. [11]):

(1) The spatial frequency response of the method
has zeros at w, = nn/d,, n=0,1,2..., where o,
represents the displacement in direction v. (2)
Least-squares techniques of integration does not
provide suitable results because the observations
@y (x,y) and ®,(x,y) do not determine the value of
the estimated field # (x,y) in an unique and stable
way, that is because least-squares method does not
include any information about the nature of the
solution, e.g., smoothness of the estimated signal.
This is specially important with noisy observa-
tions.

Because of the two problems mentioned above,
the wavefront recovery from phase differences is
an ill-posed problem in the sense of Hadamard
[13]. We can alleviate them using regularization
theory [14]. In a regularization technique we may
include information that restricts the solution to
have specific characteristics, e.g., to be smooth. We
may include a term in function (5) that corre-
sponds to an a priori assumption of smoothness. If
we assume that the estimated field (i.e. W (x,y)) has
to be globally smooth, the regularization term may
consist of a linear combination of squares of dis-
crete approximations to partial derivatives inside
the domain of interest [11,14]. With this term we
constrain the solution to have smooth derivatives.
If we use a discrete approximation to the Lapla-
cian in the regularization term, the cost function is
expressed as

Uy = Uis + R, (6)

where
Uis= ) [VAV(x,y) — W (x — 8x1,y — dy)
(x.y)eL
2
- o (x,y)} m(x,y)m(x — 8x1,y — 8y1)
+ Z [W(x,y) — W (x — 8x2,y — 8)»)

(x,y)eL
2
- ¢2(xay):| m(an/)m<x - 8x25y - 5}’2)7
(7

and
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R= ,uZ[ (x+1,y) — 2I/AV(xy)+I7V(x—1y)}2

(xy)eL

)
x m(x+ 1,y)m(x —1,y) +uz [ny—i—l)

(x)eL
~ ~ 2
—2W(x,y)+ W(x,y — 1)]
X m(x7y+ l)m(x,y - 1) (8)

In Eq. (6) we have included the field m(x, y) that
defines the common interference area of the two
interferograms. This field is equal to one within
this region and zero otherwise. Parameter y con-
trols the smoothness of the field to be estimated
whose value depends on the amount of noise. The
bigger the amount of noise the bigger most be the
value of this parameter. There is not a precise
formula for the determination of this parameter
in a given problem so that it is commonly se-
lected intuitively [15]. The minimizer W of Eq. (6)
smooths out the observations, hence the minimi-
zation operation can also be considered a low-pass
filtering operation.

To minimize the cost iunction Uy we take the
gradient with respect to W (x,y) and equating it to
ZEero.

oUy

5ﬂ25:2wmj+D@:O, 9)

where

DUys = [W (x,y) — W (x — 8x1,y — 8y1) — &1 (x,y)]
x m(x, y)m(x — 8x;,y — 1)
— W (x + 3x1,y + 83) — W (x,)
— @ (x + x1,y + Sy)]
x m(x,y)m(x + dx1,y + 1)
+ [ (x,y) = W (x — Bxa, y — Byn)
— s (x,y)m(x, y)m(x — 8x2,y — 8y2)
— [ (x + 82,y + 8y2) — W (x,)
— ®y(x + 8x2,y + Oy»))
m(x,y)m(x + 8xy,y + 8y,), (10)

and

DR = p[W (x,y) = 2W (x — 1,y) + W (x — 2, )]
m(x, y)m(x = 2,y) = 2u[W (x + 1,y)
—2W(x, )+ W(x—1,p)]m(x+1,y)

x m(x = 1,) + [ (x +2,9) = 2W (x + 1,)

+ 7 (x,)|m(x + 2, y)m(x, y) + u[ 7V (x, )
—2W(x,y— 1)+ W(x,y —2)]
m(x,y)m(x,y —2) = 2u[W (x,y + 1)
—2W (x,y) + W (x,y — 1)]
m(x,y+ Dm(x,y = 1) + p[W (x,y +2)
—2W(x,y 4+ 1) + W(x,y)]

X m(x,y + 2)m(x,y). (11)

The solution I/AV(x, y) of the linear system (9) may
be obtained by using any iterative technique from
the literature [16,17]. In our experiments we ap-
plied the Gauss—Seidel method.

The amount of shear S and vector components
indicated in Fig. 1 are, in general, real numbers.
However, in our algorithm we assume that vector
components are integers because of the discrete
array of pixels. Following a similar reasoning that
in Ref. [11], to overcome this problem we may use
the closest integer numbers to the vector compo-
nents of the shearing, then, we can used the fol-
lowing approximation to the observations:

- ~)C1 2+ 5 1 :
&, (x,y) = ( 8)2+éf By (x,),

R (12
By = VOO )

where

§X1 = il’lt(le + 05), §y1 = 1nt(8y1 + 05), (13)
8)(?2 = il’lt(S)Q + 05), 8)12 = 1nt(8y2 + 05)

With this assumption we minimize Eq. (6) using
@, (x,y), <1')2(x ¥), dx1, Oy, 5x, and Byz The error
caused for this approximation has been negligible
in our experiments especially for large displace-
ments and big size grids.
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3. Numerical simulations

We have made the following numerical simu-
lations to show the performance of the technique
proposed in this paper. Fig. 2(a) and (b) represent
two noisy shearing interferograms in two different
directions obtained simulating a wavefront de-
scribed by

W(x,y) = 0.06y(x* +»*) + 0.04x(x* + »?)
+0.0006(x* + 3y*) + 0.0008(3x* + 37),
(14)
where x and y range from —0.05 to 0.05 m that
represents a 0.1 x 0.1 m image. The value of 1 in

the experiments was 633 nm. In the current ex-
ample, the values for the displacement (in pixels)

were ox; = 4.1, 6y, = 7.05, dx, =8.1 and &y, =
—3.0. The shearograms were processed in a rect-
angular grid of 200 x 200 pixels with 256 gray
levels.

We applied the technique of Ref. [18] to de-
modulate the shearing interferograms. The phase
recovered from shearograms of Fig. 2(a) and (b)
are shown in Fig. 3(a) and (b) respectively.

Fig. 4(a) shows the phase associated to the
wavefront under test, integrating with the least-
squares technique (i.e., minimizing Eq. (5)). Ap-
plying our technique of integration we obtained
the results shown in Fig. 4(b). In our experiments,
we found (with a try-and-error succession) that
best results were obtained using values of u be-
tween 0.1 and 0.3 depending on the amount of
noise, for this example we used 0.2. Results show

Fig. 3. Phase fields (a) and (b) recovered from interferograms shown in Fig. 2(a) and (b) respectively (shown wrapped).
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Fig. 4. Associated phase to the wavefront under test recovered with (a) the least-squares technique, and (b) with the proposed technique
(shown wrapped). The normalized RMS error were 0.2485 and 0.0562 with the least-squares technique and the proposed technique

respectively.

an obvious difference between both techniques.
The normalized RMS errors of the phase associ-
ated to the wavefront recovered were 0.0562 and
0.2485 with our technique and the least-squares
method respectively.

4. Conclusions

We have proposed a technique for integrating
the phase differences in arbitrary direction which
can be applied to VSI. The novelty of the method
is that assembles two possibilities for the shear-
ing: arbitrary direction and variable displacement
amount. Our technique also permits the reduction
of the wavefront noise and a stable solution of the
inverse shearing problem in a controlled way by
means of the regularizing parameter. Moreover,
the integration of phase differences by means of
this technique can be carried out even if the
sheared interferograms are not mutually orthogo-
nal. Also it can be applied for other optical tests
such as Moiré deflectometry.
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