
Applied Physics Research; Vol. 10, No. 5; 2018 
ISSN 1916-9639   E-ISSN 1916-9647 

Published by Canadian Center of Science and Education 

79 

The Tesla Currents in Electrodynamics 
Andrew Chubykalo1 & Viktor Kuligin2 

1 México Unidad Académica de Física, Universidad Autónoma de Zacatecas, A.P. C-580, Zacatecas 
2 Physical faculty Department of an electronics, Voronezh State University, Russia 
Correspondence: Andrew Chubykalo, México Unidad Académica de Física, Universidad Autónoma de Zacatecas, 
A.P. C-580, Zacatecas. E-mail: achubykalo@yahoo.com.mx  
 
Received: August 8, 2018 Accepted: September 20, 2018 Online Published: September 27, 2018 
doi:10.5539/apr.v10n5p79         URL: https://doi.org/10.5539/apr.v10n5p79 
 
Abstract 
The paper theoretically shows that the Maxwell equations in the Lorentz gauge deal with not only inertial charged 
particles, but also charged particles that do not have inertia (virtual charges). Virtual charges appear on the surface 
of metals. Their movement is the currents of Tesla. Experiments confirming their existence are presented, and 
some features that reveal them. The influence of virtual currents on the process of transfer of conduction electrons 
in p-n junctions of semiconductor devices is especially interesting. The results obtained can change our 
understanding of phenomena in the microcosm. 
Keywords: Virtual charges, conduction electrons, Avramenko plug, Tesla currents 
1. Introduction 
There are not many physicists who will argue that Maxwell's equations describe all phenomena of 
electromagnetism without exception. Electrodynamics cannot be considered a complete theory. In 
electrodynamics, there are little studied phenomena. In this paper, we consider the problem of energy transfer by 
one wire. The effect, discovered by Avramenko (Avramenko, Lisin, & Zaev, 1991), has existed for a long time, 
the scientists, however, still could not give an adequate explanation of this phenomenon. 
2. Charges and Currents on the Metal Surface 
Tesla was an ingenious experimenter. However, his experiments were not supported by equations. Therefore, the 
Tesla currents have a mystery to this day. Many experimenters closely approached the possibility of repeating 
Tesla's experiments. One of the researchers was Avramenko, who conducted a number of interesting experiments, 
transmitting electric energy through one wire. 
The problem of explaining the Avramenko effect is not simple, so we will start from afar. In electrodynamics, the 
boundary conditions for the fields at the interface of two media are strictly deduced. We are interested only in 
conductors, so we will write down the boundary conditions for the electric and magnetic fields for the conductor 
surface. When the fields act on the surface of an ideal conductor, surface charges and currents (𝜚ୱ୳୰୤; 𝐣ୱ୳୰୤) arise 
that prevent the penetration of the fields into the metal.  

  𝐣ୱ୳୰୤ = −ሺ𝐧 × 𝐇ሻ     and     𝜚ୱ୳୰୤ = 𝜀ሺ𝐧 ∙ 𝐄ሻ,  (1) 
where 𝐄 is the electric field strength on the metal surface, 𝐇 is the intensity of the magnetic field on the metal 
surface, 𝐧 is the unit normal to the surface, 𝜚ୱ୳୰୤  and 𝐣ୱ୳୰୤  are surface  charge density and surface current 
densities. 
When explaining boundary conditions and surface phenomena, there is a question that is not usually considered in 
textbooks. Assume that electromagnetic or light waves hit the surface of the metal (Landau & Lifshitz, 2010). 
Suppose that the metal surface reflects electromagnetic or light waves. Then the electromagnetic fields change 
very quickly. What processes take place on the metal surface? Are the boundary conditions satisfied almost 
instantly? The authors (Avramenko, Lisin, & Zaev, 1991) avoid a direct answer to this question. They usually 
refer to “conduction electrons”. However, the conduction electrons have a large inertia. So this explanation is 
rather controversial. 
The fields E and H are retarded. Consequently, the surface currents and charges in formulas (1) are also retarded. 
Like the fields E and H, the surface charges must satisfy the wave equation, and they can move at the speed of 
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Inside the coaxial cable fields E and H are created by moving excess positive and negative charges (Landau & 
Lifshitz, 2010). Let the pulse propagate along the z axis. Let us calculate some quantities: 
1) The charge on the elementary segment 𝑑𝑧 of the outer coaxial cylinder is 𝑑𝑞ଵ = 2𝜋𝑏𝜀𝐸௥ሺ𝑏ሻ𝑑𝑧; where 𝐸௥ሺ𝑏ሻ is the electric field at 𝑟 = 𝑏. 
2) The charge on the elementary segment 𝑑𝑧 of the interior coaxial cylinder is 𝑑𝑞ଶ = 2𝜋𝑎𝜀𝐸௥ሺ𝑎ሻ𝑑𝑧; where 𝐸௥ሺ𝑎ሻ is the electric field at 𝑟 = 𝑎. Hence  𝐸௥ሺ𝑟ሻ =  𝐼ଵ 𝑟⁄ . 
Obviously, the law of charge conservation holds: |𝑑𝑞ଵ| = |𝑑𝑞ଶ| = 𝑑𝑞. We calculate the values of the surface 
currents in these conductors. 
3) External coaxial cylinder: Iଵ = 2πbH஦ሺbሻ. 
4) Internal coaxial cylinder: Iଶ = 2πaH஦ሺaሻ. Hence  H஦ሺrሻ =  Iଶ r⁄ .   
The surface currents of these conductors are, respectively, |𝐼ଵ| = |𝐼ଶ| = 𝐼 Now we can easily calculate the rate of 
movement of excess charges, for example, for an internal conductor of a coaxial line. On the one hand, we have: 

 W 𝐼 = ௗ௤ௗ௧ = ௗ௤ௗ௭ ௗ௭ௗ௧ = 𝑣 ௗ௤ௗ௭ = 𝑣2𝜋𝑎𝜀𝐸௥ሺ𝑎ሻ,    (2) 

on the other hand: 

 𝐼 = 2𝜋𝑎𝐻ఝሺ𝑎ሻ.   (3) 
Comparing these expressions and taking into account that 𝐸௥ሺ𝑎ሻ 𝐻ఝሺ𝑎ሻ⁄ = ඥ𝜇 𝜀⁄  we get: 𝑣 = 𝑐. Try to make the 
"free" conduction electron move at a similar speed! But in waveguides the phase velocity of excess charges 
exceeds the speed of light in a vacuum! 
So, the excess charges in the coaxial line move with the speed of light! This is one of the important points. Another 
point is that positive and negative excess charges are not born in pairs, but separately, ignoring the law of 
conservation of charge. Therefore, we will call such charges virtual charges. It is the virtual charges that are 
mainly responsible for the instantaneous fulfillment of the boundary conditions on the surface of the conductors. 
3. Virtual Charges (Or: Surface Charges Without Inertia) 
Let the electromagnetic wave fall on the surface of the conductor. We write the boundary conditions. 

  𝐣ୱ୳୰୤ = −ሾ𝐧 × 𝐇ሿ     and     𝜚ୱ୳୰୤ = 𝜀ሺ𝐧 ∙ 𝐄ሻ .   (3.1a) 
The wave excites surface currents and charges. On the one hand, the current density  𝐣ୱ୳୰୤ satisfies the continuity 
equation 

 div 𝐣ୱ୳୰୤ = −ሺ𝐧 ∙ rot 𝐇ሻ = −𝜀 డሺ𝐧∙𝐄ሻడ௧ = − డద౩౫౨౜డ௧  .   (3.1) 

On the other hand, we have on the surface of an ideal conductor only a common electric field 𝐄 directed along the 
normal to the surface. Therefore, we can write: 

 
డ𝐣౩౫౨౜డ௧ = − ଵఓ ቂ𝐧 × డሺఓ𝐇ሻడ௧ ቃ = − ଵఓ ሾ𝐧 × rot 𝐄ሿ= − ଵఓఌ grad 𝜀ሺ𝐧 ∙ 𝐄ሻ = −𝑐ଶgrad 𝜚ୱ୳୰୤ .      (3.2) 

Since we are dealing with rapidly changing phenomena, it follows from Eq. (3.2) that 

   డ୰୭୲ 𝐣౩౫౨౜డ௧ = rotሺ−𝑐ଶgrad 𝜚ୱ୳୰୤ሻ = 0 .   (3.2a) 

Combining equations (3.1) and (3.2) and taking into account (3.2a) we finally obtain: 

  ∆𝐣ୱ୳୰୤ − డమ𝐣౩౫౨౜௖మడ௧మ = 0 ,  (3.3) 

 ∆𝐣ୱ୳୰୤ − డమ𝐣౩౫౨౜௖మడ௧మ = 0 .  (3.4) 

So, surface charges and currents satisfy homogeneous wave equations. Let 𝜉 and 𝜂 are coordinates of a surface 
element and 𝑟 = ඥ𝜉ଶ + 𝜂ଶ. Then the solutions of these equations will be  

      𝐣ୱ୳୰୤ = 𝐜𝜚ୱ୳୰୤ଵሺ𝑟 − 𝑐𝑡ሻ + 𝐜𝜚ୱ୳୰୤ଶሺ𝑟 + 𝑐𝑡ሻ ,  (3.5) 
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magnitude, and soon sparks will scatter from the spark gap 𝑃. When? This depends on the capacitance  𝐶, the 
ripple frequency and the gap size of the arrester. A voltmeter connected to the spark gap will show a potential 
difference of up to 10-20kV, or even 100-150 kV.”  
And again there are interesting questions. The voltage on the capacitor increases as the capacitor is charged. This 
voltage creates a potential barrier for electrons passing through the diodes and charging the capacitor. 
A spark discharge is possible if a potential difference of more than 5000 volts arises between the spark gap 
electrodes. In experiments, the voltage across the spark gap reached 100-150 kV. 
How do virtual charges "transfer" the conduction electrons from one capacitor plate to another through diodes, 
overcoming this voltage? Why at such high voltages on the capacitor 𝐶 and between the spark gap electrodes does 
not the phenomenon of reverse breakdown of the n-p junction in diodes occur? 
Virtual currents, as we see, have a great specificity that distinguishes them from currents in standard Kirchhoff 
chains. 
7. Conclusion 
Let us sum up our research: 
1) It has been theoretically established that Maxwell's equations deal not only with conduction electrons and 

other inertial charges. They describe virtual (non-inertial) charges moving along the surface of conductors at 
the speed of light, forming surface currents (Tesla currents). 

2) The existence of virtual charges and Tesla currents is confirmed by numerous experiments. 
3) Virtual charges have unique properties. They can “be born” and “disappear” under a certain influence, without 

fulfilling the law of conservation of charge. 
4) Special interest is caused by unusual phenomena, in p-n transitions of semiconductor diodes, the description 

of which is absent in the scientific literature. They can be of great practical importance. 
5) The problem of studying the physics of Tesla currents is new (Seifer, 2010). Experimental information is 

needed to create a theory (mathematical model) describing these phenomena. For this purpose it is necessary 
to develop new special measurement methods and new types of instruments. 

6) As for the virtual charges themselves, the present information about them is not enough to give a description 
of their structure and the nature of the interaction with inertial charges and electromagnetic fields. It is 
necessary to carry out further experimental and theoretical studies (Angelov, 2016). 

Note 
Note 1. Such generators are usually used for surface hardening of steel. 
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