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This paper analyzes the boundary term of the Hilbert-Einstein action for an FRW metric, and
uses it to set the conditions of the Einstein’s Field Equations. By means of the energy conservation
equation, we identify a new non gravitational general relativistic effect that modifies the space-time
fabric. This effect is due to the energy density that surrounds a given space-time region, and it gives
a physical explanation to the accelerated expansion of the universe. It also explains why we have not
found any particle or fluid responsible of the dark energy and it clarifies the coincidence problem.
These explanations are achieved without assuming the existence of exotic matter of unphysical
meaning or having to modify the Einstein’s Field Equations.
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The Einstein Field Equations (EFE), describe the fun-
damental interactions of gravitation as a result of space-
time being curved by means of the mass and energy inside
this space-time. In this sense the metric and the stress-
energy tensor determine the system, and it can be ob-
tained via the variation principle of the Einstein Hilbert
(EH) action plus the matter action field.

Since the discovery of Edwin Hubble, in 1929, which
established that the light from farther galaxies was red-
shifted, inferring expansion of the universe; scientists
have been proposing many models and theories, in order
to explain the expansion phenomenon. Basically, such
explanations can be sorted into two different kinds [1]:
one is that the problem lies on the matter content, i.e.
the stress-energy tensor, Tµν , and that there must be
some extra energy fluid that may fill the space-time, e.g.,
quintessence [2]; another possibility states that the prob-
lem lies on the geometric sector, implying that Einstein’s
theory could be wrong or incomplete e.g., Modified Grav-
ity [3].

In this paper assume that the structure of the Ein-
stein’s Field Equations is correct, nevertheless, by ana-
lyzing the boundary conditions on the variation of the
Einstein Hilbert action, we identify a problem on the
matter content introduced to the system. Taking into
account the energy density outside certain space-time re-
gion, a new relativistic effect, never considered before, is
derived. The proposed model has the desired futures of
the ΛCDM model, explaining the accelerated expansion
of the universe [4–6], without adding extra exotic matter.

The variation of the Einstein Hilbert action plus the
matter field is derived, in order to analyze the boundary
conditions on the surface term for an FRW metric.
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The action is given by,

S =

∫
[

1

2κ
R+ LM ]

√
−gd4x, (1)

for an extremum, the variation yields,

0 = δS

=

∫
1

2κ
[(Rµν −

1

2
gµνR)δgµν

√
−gd4x (2)

+

∫
1

2κ
(gµνδRµν)

√
−gd4x+

∫
δ(
√
−gLM )]d4x.

In order to get the EFE, we must eliminate the middle
term,

∫
V

∇αAα
√
−gd4x, (3)

which is an integral of a divergence, ∇αAα, over the vol-
ume,

√
−gd4x, that can be converted to a surface integral

by the Stokes’s theorem.

The contribution of the integral depends on the bound-
ary conditions [7].∫

V

∇αAα
√
−gd4x =

∫
∂V

Aαnα
√
|h|d3x (4)

where gµνδΓαµν − gµαδΓνµν ≡ Aα is a rank 1 tensor, nα
is the vector perpendicular to the surface and h is the
induced metric in 3−D.

There are several ways to ditch the term: if the under-
lying space-time manifold has a boundary, a counter-term
[8] [9] is added to the action (1). The usual approach for
a closed space-time manifold is to set this boundary term
to be zero, because the variations are assumed to vanish
on the surface of V [10].
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For the flat FRW metric, the derivation is

Aαnα =
(
gµνδΓαµν − gµαδΓνµν

)
nα

=
(
(grrδΓtrr + gφφδΓtφφ + gθθδΓtrr)

− (gttδΓrtr + gttδΓφtφ + gttδΓθtθ)
)
nt. (5)

The contribution of the term (4) evaluated at the border,

∫
∂V

Aαnα
√
|h|d3x = 6

∫
∂V

δ

(
ȧ(tf )

a(tf )

)√
|h|d3x, (6)

is zero when the variation of ȧ(tf )/a(tf ) vanishes. For
purpose of identification we will rename the boundary
term a(tf ) = b.

The problem lies on the source term. Usually, the only
energy density content included is the one that is inside
the volume bounded by the hypersurface cast by the ra-
dius a(t) This is done under the assumption that the
matter content outside this radius does not affect gravi-
tationally the space-time. The real size of the system is
given by the conditions of Eq (6). The lack of inclusion
of the energy density surrounding the given volume leads
us to incomplete conservation equations; consequently,
incomplete Friedmann equations.

FIG. 1. Representation of a spherical system bounded by a
radio b, with total volume VT = 4

3
πb3 and total mass MT ,

with two same density sub-regions: one spherical concentric
region of volume V = 4

3
πa(t)3 and mass m, and another con-

centric shell of volume V ′ = 4
3
π(b3 − a(t)3) and mass m′.

The Friedmann equation for a homogeneous and
isotropic flat space-time is,

3

(
ȧ

a

)2

= 8πG(ρT ), (7)

where ρT is the total density of the complete system.
Being the space-time homogeneous at large scales, this
density, is the same for the whole space-time, and it sat-
isfies the conservation equations. The total energy of the

system is, U = M = m+m′, wherem is the interior mass,
and m′ the exterior mass, as seen on Fig. 1; therefore the
fluid of the whole closed system satisfies

d(ρV + ρ′V ′) = −pdVT . (8)

By aid of the first law of thermodynamics for an adi-
abatic closed system, we get the evolution of a perfect
fluid on the inner subsystem

d(ρV ) = −pdV. (9)

So the fluid equation for the inner subsystem is

ρ̇ = −3
ȧ

a
(ρ+ p), (10)

with aid of equation of state for a perfect fluid, ωρ = p,
we arrive to the known solution

ρω = ρ0ωa
−3(1+ω). (11)

The exterior subsystem is also a closed one, so the ther-
modynamics law for it is given by:

d(ρ′V ′) = −p′dV ′. (12)

If we add up the equations of both sub systems (9) and
(12), we obtain the conservation of the whole system (8).

With the aid of the equation of state for a perfect fluid,
we get the equation of the evolution of the density for the
exterior region

ρ̇′ = −3
b2ḃ− a2ȧ
b3 − a3

ρ′(1 + ω), (13)

whit aid of the boundary conditions, ḃ/b = 0, we arrive
to,

ρ′ω = ρ0ω

(
b3

b3 − a3

)(1+w)

. (14)

This is how the energy density outside a given radius,
a(t), modifies the space-time. For a large outer radius, b,
this parameter becomes constant,

ρ′ω = ρ0. (15)

Being all the matter content analyzed, we proceed to
contrast the effects on the dynamics of the universe. First
we present a general solution, then, a particular solution
for a large outer radius.

Introducing the results of conservation equations for
the inner (11) and outer (14) regions, the Friedmann
equation (7) is:(

ȧ

a

)2

=
8πG

3
ρ0ωa

−3(1+ω) +
8πG

3
ρ0

(
b3

b3 − a3

)(1+w)

,

(16)
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the LHS of the equations gives the kinetic information,
the first RHS equation gives the information of the grav-
itational potential, while the last term acts as an energy
reservoir or a spring potential.

The acceleration equation results,

ä

a
= −4πG

3
ρ0ωa

−3(1+ω)(1 + 3w) (17)

+ 4πG

(
a3

b3 − a3
ρ0(1 + ω) +

2

3
ρ0

(
b3

b3 − a3

)(1+w)
)
,

where the first term on the RHS of equations (16) and
(17) gather all the different fluids inside the inner region,
including, possibly, the dark matter; and the last term on
both equations, gather all the different kinds of matter
in the outer region; the matter contents depend on the
value w of the equation of state.

It is worth noting the positive sign of the last term
on the acceleration equation (17), which is responsible
for the accelerated expansion of the universe, due to the
energy density outside of it.

If a large outer radius is assumed, b � a(t) for any
given time, the Friedmann equations become:

(
ȧ

a

)2

=
8πG

3
ρω +

8πG

3
ρ0, (18)

and

ä

a
= −4πG

3
ρω(1 + 3p) +

8πG

3
ρ0. (19)

We could consider the outer region to act like an energy
reservoir; under these circumstances, the outer energy
density acts much like the cosmological constant. This
is certainly not a gravitational effect, it is a general rela-
tivistic effect that gives the information on how the outer
mass-energy density stretches out the space-time fabric,
which explains why there is not such a dark energy fluid
or particle.

These equations resemble the Friedman Equations of
a ΛCDM model, with the advantage of one less param-
eter to be fixed in the model, since ρ0 is obtained by
the system conditions. The energy density term, ρ0, is
of the same order of magnitude as the ordinary matter
content of the universe, ensuring homogeneity, explaining
the Cosmological Coincidence Problem [11].

From the Sloan Digital Sky Survey and the Planck
satellite, we estimate that the whole universe is at least
250 times the radius of the observable one, which is more
than enough in this model to ensure isotropy on the lat-
ter.

Instead of a dark fluid, we visualize the universe in a
thermal energy reservoir, represented by fluid with den-
sity ρ0 in a vast outer region that stretches out evenly
the space-time of the inner region.
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