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Simple algebraic method to study the effects of hydrostatic pressure on the
fundamental parameters of a Schottky barrier of metal/n-GaAs
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The effects of hydrostatic pressure on the fundamental parameters of a Schottky barrier diode of metal/n-GaAs are studied using a simple
algebraic method. The method relies on the dependence of the parameters of the semiconductor (effective mass, dielectric constant and
band gap) with the hydrostatic pressure. We obtain simple expressions for the Schottky Barrier Height, Background Density and Differential
Capacity that account of the hydrostatic pressure readily. In particular, the Schottky Barrier Height expression agrees qualitatively with
the experimental results available. The Differential Capacity expression depends directly on the effective mass, opening the possibility of
determined the effective mass through capacitance measurements. Due to its simplicity the algebraic method could be useful in the design of
devices that exploit hydrostatic pressure effects.
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1. Introduction

The investigation of metal-semiconductor (MS) contacts,
commonly known as Schottky barrier diodes (SBDs), is a
very important topic from both theoretical and practical re-
search. Metal semiconductors structures are important tools
used for the characterization of new semiconductors and the
fabrication of these structures plays a crucial role in the con-
struction of useful technological devices [1-10]. In addi-
tion to that, Schottky contacts on group III-V semiconduc-
tors have been widely applied in high speed electronic and
optoelectronic devices such as diodes, field-effect transistors,
high electronic mobility transistors, solar cells, etc. [11-14].

Because of the technological importance of SBDs a full
understanding of the nature of the electrical characteristic is
of great interest [15]. However, despite of years of exten-
sive research and widespread use of Schottky contacts in de-
vice technology, the fundamental mechanism responsible for
the formation of the Schottky barrier is still not fully under-
stood [15]. The complexity of SBDs comes from the depen-
dence of the Schottky barrier on the atomic structure of the
MS interface. Due to the particularities of each MS inter-
face the lack of general expressions, based on a quantum-
mechanical description, of the Schottky barrier parameters is
still present [15]. Within this context, simple theories that
provide information of the Schottky barrier parameters are
still valuable and could be useful in the design of technolog-

ical applications based on Schottky barriers. Among these
theories, one that has been widely used is the thermionic
emission theory [16]. In this theory, the Fermi-level pinning
is of paramount importance, since it determines the Schottky
Barrier Height (SBH). Different models for the Fermi-level
pinning have been proposed, among the most popular ones,
we can find the metal-induced gap states (MIGS) [17-19] and
the defect model [20-22].

Within this context, the Schottky barrier under hydro-
static pressure (HP) is not the exception. Even more, if
we consider the relevance of pressure effects as a mecha-
nism to modulate the optoelectronic and transport proper-
ties of micro-mechanical devices, as well as a natural condi-
tion for devices working in extreme environments, see for in-
stance [23-26]. So, different models have been implemented
in order to explain the observed variations of the SBH with
the hydrostatic pressure [27-43]. Despite the particularities
that we can find in these reports, in general, under pressure,
both the semiconductor and the MS interface are affected. In
particular, it is reported that the rectifying properties of SBDs
are improved under hydrostatic pressure. Besides, a linear
increase of the SBH with the HP is observed. An important
parameter that helps to discern if the changes in the semicon-
ductor or in the semiconductor and MS interface are impor-
tant in the determination of the SBH is the ideality factor [16].
The ideality factor is a parameter that accounts how perfect
or ideal a junction is, or equivalently how much a SBD de-
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viates from the ideal behavior (Diode Law) due to interfacial
inhomogeneities. In particular, if the ideality factor is much
greater than 1, then the changes in the MS interface become
important. Specifically interface states, series resistance and
a interfacial layer can come into play. To this respect, it has
been shown that the increase of the SBH and the improve-
ment of the rectifying properties of SBDs obey a decrease
in the interface state density. Last but not least to mention,
it is that irrespective if the changes in the MS interface are
important or not, the SBH variation comes from the changes
suffered by the effective band gap of the system, since at the
end the Fermi level pinning is what determines the SBH.

Here, we show that using a simple algebraic method it
is possible to obtain readily the Schottky barrier parameters
as a function of the hydrostatic pressure for metal/n-GaAs.
The algebraic method is based on the assumption that practi-
cally all relevant parameters of the semiconductor vary with
HP. Specifically, the variation of the band-gap and the dielec-
tric constant with pressure have a direct impact on the ef-
fective Bohr radius and effective Rydberg. We determined
algebraically the SBH, screening distance, background im-
purity density, potential profile and Differential Capacitance
of metal/n-GaAs for different values of the hydrostatic pres-
sure and temperature. In the case of the SBH and the inverse
square of the Differential Capacitance we have found an in-
creasing and decreasing behaviour with respect to HP, which
agrees quite well from a qualitative stand point as compared
to the experimental data available. Additionally, the algebraic
formalism provides a direct relation between the Differential
Capacitance and the effective mass for metal/n-GaAs under
pressure, opening the possibility to determine the effective
mass through Capacitance measurements.

2. Theory and Results

2.1. Schottky Barrier Height

As we already mentioned, there are different models to deal
with hydrostatic pressure effects on SBDs. Here, we consider
a quite different approach. The basic idea of the analysis is
to suppose that all the parameters of the systems can be writ-
ten in effective atomic units [44,45]: effective Bohr radius
and effective Rydberg. Moreover, as the hydrostatic pressure
modifies the interatomic distance of crystals [46,47], param-
eters such as the energy band-gap, the dielectric constant and
the effective mass change as well [48]. Then, as the effective
units depend on these parameters, the effects of the hydro-
static pressure can be incorporated via the effective atomic
units. Explicitly, we can write the effective Bohr radius as,

a∗0 (P, T ) =
εr (P, T ) ~2

m∗ (P, T ) e2
, (1)

and the effective Rydberg as

R∗y (P, T ) =
e2

2εr (P, T ) a∗0 (P, T )
, (2)

where the pressure and temperature dependent effective mass
is given by [49,50],

m∗ (P, T ) =
[
1 +

2× 7510
Egap(P, T )

+
7510

Egap(P, T ) + 341

]−1

m0, (3)

here m0 is the free electron mass andEgap(P, T ) is the
pressure-temperature dependent gap for GaAs at theΓ point
in units of meV, this parameter is given by [49],

Egap(P, T ) = E1 + βP + αT 2/ (T + 204) , (4)

where in theΓ point E1 (P ) = 1519 meV, β = 10.7
meV/kbar and α = −0.5405 meV/K. The pressure-
temperature dependent dielectric constant comes as [49]

εr (P, T ) = εaeα1T+α2P . (5)

In Eq. (5) forT ≤ 200 K (T> 200 K) we use the following
parametersεa = 12.65 (= 12.29) , α1 = 9.4 × 10−5 K−1

(= 20.4 × 10−5 K−1) and α2 = −1.67 × 10−3 kbar−1

(= −1.73× 10−3 kbar−1).
From Eqs. (3) and (5) we can notice that as the hydro-

static pressure increases the effective mass and the dielectric
constant increases and decreases, respectively. Likewise, we
can see that the Bohr radius and the effective Rydberg re-
duces and increases as the pressure increases. Taking into
account these modifications, we proceed by writing the ex-
pression for the height of the Schottky diode in atomic units
as a function of the pressure for the special case of a metal/n-
GaAs system. By supposing that we are in the low pressure
limit (P< 6 kbar), the SBH can be written as,

eΦ(P, T ) = eΦ∗R∗y (P, T ) , (6)

whereeΦ (P, T ) is the height of the barriers as a function
of the hydrostatic pressureP and temperatureT , eΦ∗ is the
height of the barrier without pressure effects andR∗y (P, T )
is the pressure-temperature dependent effective Rydberg.
Therefore,eΦ (P, T ) can be written in effective atomic units
as

eΦ(P, T ) = eΦ∗Ry
m∗ (P, T )
ε2
r (P, T )

, (7)

whereRy is the effective Rydberg without pressure. Let us
now define the relative theoretical Schottky barrier as follows

eΦtheo
rel (P, T ) =

eΦ(P, T )
eΦ(P = 0, T )

, (8)

after some straightforward algebraeΦtheo
rel (P, T ) can be ex-

pressed in the following way

eΦtheo
rel (P, T ) =

m∗ (P, T ) ε2
r (P = 0, T )

ε2
r (P, T )m∗ (P = 0, T )

. (9)
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FIGURE 1. (Color online) Evolution of the relative SBH in Au/n-
GaAs as a function of hydrostatic pressure. The curves from top to
bottom correspond to the relative experimental SBH for T=300 K,
the relative theoretical SBH when T=300 K, the relative theoretical
SBH for T=77 K and the relative theoretical SBH for T=0 K.

Substituting the effective mass Eq. ( 3) and dielectric con-
stant Eq. (5) and by using Taylor series expansion up to
fourth order in the pressure, we obtain forT = 0 K,

eΦtheo
rel (P ) = 1 + 0.95× 10−2P + 0.232× 10−4P 2

+ 0.34× 10−7P 3 + θ
(
P 4

)
, (10)

and forT = 300 K,

eΦtheo
rel (P ) = 1 + 0.999× 10−2P + 6.4× 10−4P 2

+ 0.363× 10−7P 3 + θ
(
P 4

)
. (11)

These two last expressions are the ones we are going to use to
compare the relative experimental height of the Schottky bar-
rier. The experimental expression for the SBH as a function
of the hydrostatic pressure for Au/n-GaAs is [41],

eΦexp (P ) = eΦexp (P = 0) + αP + βP 2 + γP 3. (12)

In this equation we have considered T = 300 K, so
α = 11.21 meV/kbar, β = −0.345 meV/kbar2 and
γ = 0.25 meV/kbar3. In order to compare with Eq. (11), we
define the relative experimental height of the Schottky diode
as,

eΦexp
rel (P ) =

eΦexp (P )
eΦexp (0)

, (13)

thus, by substituting Eq. (12) into Eq. (13), we obtain

eΦexp
rel (P ) = 1 + 1.40× 10−2P − 43× 10−5P 2

+ 3.125× 10−4P 3 + θ
(
P 4

)
. (14)

Figure 1 shows the results ofΦtheo
rel (P ) for T = 0 K,

T = 77 K andT = 300 K and the result ofeΦexp
rel (P ) for

T = 300 K. Some relevant aspects that should be pointed
out are the following:Φtheo

rel (P ) andΦexp
rel (P ) have the same

behavior for pressures below4 kbar, whereas the difference

between experimental and theoretical model is under 7 per-
cent for pressures in the range of4 kbar< P <6 kbar. We
can also see that the SBH decreases as the temperature de-
creases as well, as claimed by Mangal and Banerji [13]. So,
despite the simplicity of our model we can see that it agrees
qualitatively with the experimental results, and quantitatively
in a specific range of pressures.

2.2. Potential profile

In this section we will analyze the SBD when in addition
to the pressure, there is also a contact voltageVc. If we
apply a difference of potential of 500 meV in the metal-
semiconductor contact, we can study the profile of the po-
tential, the penetration distance of the electric field (Debye
distance) and the background density. Here it is important
to mention that we are considering a potential of 500 meV,
because it is a typical value in Schottky barriers in GaAs. In-
deed, in principle, we can apply any potential, however if the
potential is too high the one band model that we are using
is not longer appropriate. Besides, Schottky Barrier Diodes
come with a low-dimensional system, such as for example a
quantum well, so if the potential is too high the quantum well
system will be totally depleted and consequently its charac-
teristics will be inconsequential for the device. Therefore, as
a general criterion we can say that the potential can not sur-
pass the bandgap of the hots material, in our case the bandgap
of GaAs, which is approximately equal to 1400 meV.

The model for describing the metal/n-GaAs profile po-
tential is [16],

V (z) =
2πe2

εr
Nd (z − L)2 , (15)

whereNd is the background impurity density,εr is the elec-
tric permittivity constant of GaAs andL is the screening dis-
tance of the electric field given by

L =
√

εrVc

2πe2Nd
, (16)

hereVc is the contact voltage. Following the spirit of this
paper, when we apply the hydrostatic pressure all the physi-
cal parameters of the system change, therefore the potential
profile would have the following form

V (z, P ) =
2πe2

εr (P )
Nd (P ) (z (P )− L (P ))2 . (17)

Writing the potential profile, the Debye distance and back-
ground distance in atomic units we get

V (z, P ) = V ∗R∗y (P ) , (18)

L (P ) = L∗a∗0 (P ) , (19)

Nd (P ) = N∗
d

1
a∗30 (P )

. (20)
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FIGURE 2. (Color online) (Left to right) Screening distance of the
electric field and (Right to left) background impurity density as a
function ot the applied hydrostatic pressure for two different values
of the temperature. Solid-black (dashed-red) curve corresponds to
T=0 K ( T= 300 K).

FIGURE 3. (Color online) Potential profile for metal-
semiconductor in GaAs for four different values of hydrostatic
pressure. The solid-black, dashed-red, dashed-dotted-blue and
dotted-green curves correspond to pressures of 0, 5, 10 and 20 kbar,
respectively.

From these expressions we can readily see that the back-
ground density increases linearly with pressure and the
screening distance decreases when the hydrostatic pressure
is applied, see Fig. 2. In Fig. 3 we can see a crossover
in V (z, P ) about 100Å, specifically we can notice that for
values below 100̊A the potential increases as the pressure in-
creases as well, while for values above 100Å the potential
diminishes as the pressure rises.

2.3. Analytical Differential Capacity

Other of the principal characteristics of the metal-
semiconductor system is the Differential Capacitance. As we
have shown through this paper when hydrostatic pressure is
applied to the system the parameters of it change. Within
this context, the Differential Capacitance is not the exception,
since it depends on the mentioned parameters. The Differen-
tial Capacitance can be defined as [16]

FIGURE 4. (Color online) Reverse bias C−2
rel characteristics for the

metal/n-GaAs Schottky barrier diode as a function of hydrostatic
pressure in the range of0 − 20 kbar for T=0 K (solid-black) and
T= 300 K (dashed-red).

C =
∂Qd

∂eΦ
, (21)

with Qd = −eNdL the charge of the donors in the depletion
zone,Nd the impurity background density,L the width of
the depletion layer and in this case also the penetration dis-
tance of the electric field inside the semiconductor, andeΦ
the height of the Schottky barrier. Thus we can write

C = −eNd
∂L

∂eΦ
, (22)

or

C (P ) = −eNd (P )
∂L (P )
∂eΦ(P )

. (23)

Inserting Eqs. (6), (19) and (20) in this expression one gets

C (P ) = −eN∗
d

∂L∗

∂eΦ∗
1

Ry (P ) a∗20 (P )
, (24)

in this equation the term

−eN∗
d

∂L∗

∂eΦ∗
, (25)

is independent of pressure effects. To analyze Eq. (24) let us
define the relative differential capacitance

Crel =
C (P )
C (0)

, (26)

and using the expressions forRy (P ) anda∗0 (P ), Eqs. (1)
and (2), the relative differential capacitance is going to have
the following form

Crel =
m∗ (P )
m∗ (0)

. (27)

Usually the differential capacitance is reported experimen-
tally asC2

rel. Thus, we have

C2
rel =

m∗2 (P )
m∗2 (0)

. (28)
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From this expression we obtain the results shown in
Fig. 4, for different temperatures. We can see thatC−2

rel has
a downward and linear adjustment. This almost linear be-
haviour give us a valuable tool because it allows to measure
the variation of the effective mass as a function of pressure.
Another observation to emphasize is the fact that Eq. (28) is
independent of the applied potentialVc, as was shown by G.
Çankaya for Cd/p-GaTe [31].

3. Conclusions

In summary, we have implemented a simple algebraic method
to study the variation of the fundamental parameters of SBDs
when hydrostatic pressure is applied. This method allows us
to obtain simple expressions for the SBH, screening distance,
background impurity density, potential profile and differen-

tial capacitance. Despite the simplicity of the method, the re-
sults agree qualitatively, and in some range of pressures quan-
titatively, with the experimental data available. Additionally,
it provides an expression for the differential capacitance, that
depends directly of the effective mass, opening the possibil-
ity of know the effective mass through capacitance measure-
ments. Due to its simplicity the algebraic method could pro-
vide useful information for the design of devices that work
under extreme conditions of pressure and temperature such
as high power laser diodes.
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40. G. Cancaya, N. Ucar and A. Türüt, Phys. Status Solidi a179
(2000) 479.
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