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Abstract

We present the hole subband structure calculation in single and double p-type d-doped quantum wells in Si based on the 4� 4 Lutt-
inger–Kohn Hamiltonian. The valence band bending and the C hole states are calculated within the lines of the Thomas–Fermi–Dirac
approximation and the effective mass theory at the Brillouin zone center. The obtained zone center eigenstates are then used to diago-
nalize the k � p Hamiltonian for non-zero k. The hole subband structure is analyzed as a function of the impurity density and the distance
between d wells. It is shown that the application of a 4� 4 model to describe the hole ground state in single p-type d-doped in Si can be
misleading.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Silicon is the leading semiconducting material regarding
its technological applications. Additionally, some interest-
ing properties are present in the so-called d-doped systems.
Studies of p-type B-d-doped Si quantum wells have been
reported [1–4]. B-d-doped Si QW has been investigated
from the theoretical and experimental points of view
[1–12]. It is clear that in the case of p-type systems the
simultaneous consideration of the heavy and light hole
bands is unavoidable because the electric charge is distrib-
uted among them. Due to the technological importance of
this material and the particular properties of the d-doped
systems, they appear to be of interest for application in
the electronic device industry and for basic investigation
as well (see for instance, [13,14], and references therein).

From the technological point of view double d-doped
(DDD) QWs offer an improvement in the transport proper-
ties with respect to single d-doped (SDD) ones [15–20]. This
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improvement is of importance for possible implementation
in high speed, amplifier, and switching devices, in which a
high density charge -and consequently, mobility- is sought.

Due to those properties, a more complete and rigorous
calculation of the hole subband structure of multiple p-d-
doped systems is necessary to understand the underlying
physics behind these layered systems. The band bending
profile is described analytically along the lines of the local
density Thomas–Fermi–Dirac (TFD) approximation,
including the exchange contribution [21,22]. With the
derived model potential we have calculated the eigenstates
and eigenfunctions at the Brillouin zone center. Then, this
set of eigenstates are taken as a basis for the diagonaliza-
tion of the 4� 4 k � p Hamiltonian, thus obtaining the hole
subband structure for k 6¼ 0, which is analyzed as a func-
tion of the doping density and the interwell distance.

2. Method and model

For a single d-doped quantum well, a direct relation
between the hole density pðzÞ and the Hartree potential
V HðzÞ was previously obtained in the one-dimensional
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TFD approach within the local density approximation
(LDA) [23]. It is written as

pauðzÞ ¼
m3

a1
3ðwÞ

3p5
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2ðl� � V �HðzÞÞ

12ðwÞma

s" #3

; ð1Þ

where pauðzÞ, V �H ¼ V H=R�y and l� ¼ l=R�y are the hole den-
sity, the Hartree potential and the chemical potential in

atomic units, respectively. ma ¼ 1þ mlh

mhh

� �3=2
� �2=3

, where

mhh and mlh are the heavy and light hole masses, respec-
tively. Effective heavy-hole-related Si atomic units are used
throughout.

1ðwÞ accounts for the valence band coupling and is given
by [24]

1ðwÞ ¼ 2�1=3 þ ð1� w2Þ½w2ðawþ bÞ
þ cð4w3 þ 3w2 þ 2wþ 1Þ�; ð2Þ

where w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mlh=mhh

p
, a ¼ 0:679, b ¼ �0:0686 and

c ¼ �0:0811. By including Eq. (1) in the corresponding
Poisson equation, an explicit expression for the Hartree po-
tential centered in z ¼ d is obtained. It has the form

V �HðzÞ � l� ¼ � a2

a z� dj j þ z0ð Þ4
; ð3Þ

with a ¼ 2m3=2
a

15p and z0 ¼ a3

ppau
2D

� �1=5

. pau
2D is the acceptor density

in atomic units.
In the framework of the LDA, the exchange potential

for a hole gas can be written as

V �xðzÞ ¼ �1ðwÞ 2

p
ð3p2Þ1=3ðpauðzÞÞ

1=3 ð4Þ

Using the relation between pauðzÞ and V HðzÞ it is possible to
write the total potential V � ¼ V �H þ V �x as

V �ðzÞ ¼ � a2

ða z� dj j þ z0Þ4

� 212ðwÞma

p2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

12ðwÞma

a2

ða z� dj j þ z0Þ4

s" #

ð5Þ
The latter equation summarizes the model for the band
bending profile. Instead of carrying out numerically trou-
blesome self-consistent calculations, we simply solve three
Schrödinger-like effective mass equations at the zone center
k ¼ 0, thus obtaining the corresponding ladders of the hole
levels.

The construction of a model potential for the DDD is
performed via an appropriate combination of two single
d-wells centered at z ¼ �l=2 and z ¼ l=2, considering the
same impurity density in both doping spikes, as it has been
reported in [21,22]. Again, the solutions of effective-mass
Schrödinger equations, lead to the Brillouin zone center
states for heavy and light holes.

The next step is the diagonalization of the 4� 4 k � p
Luttinger–Kohn Hamiltonian [25]. That is, we need to
solve the secular problem
H hh b c 0

b� H lh 0 c

c� 0 H lh �b

0 c� �b� H hh

0
BBB@

1
CCCA

/3=2;3=2
m ð~j; zÞ

/3=2;1=2
m ð~j; zÞ

/3=2;�1=2
m ð~j; zÞ

/3=2;�3=2
m ð~j; zÞ

0
BBBB@

1
CCCCA

¼ Ehð~jÞ

/3=2;3=2
m ð~j; zÞ

/3=2;1=2
m ð~j; zÞ

/3=2;�1=2
m ð~j; zÞ

/3=2;�3=2
m ð~j; zÞ

0
BBBB@

1
CCCCA

ð6Þ

where /m
mð~j; zÞ is the function associated to the confining

potential of the quantum wells. The components with
m ¼ 3=2;�3=2 and m ¼ 3=2;�1=2 correspond to the heavy
and light holes, respectively. m is the subband index and
Ehð~jÞ are the energy eigenvalues of the holes; i.e., the sub-
bands. In effective atomic units, the matrix elements in Eq.
(6) are given by

Hhh ¼ � g1j
2 þ o

2

oz2

� �
þ V ðzÞ;

H lh ¼ � g2j
2 þ n1

o2

oz2

� �
þ V ðzÞ;

b ¼ �6in3ðsin hþ cos hÞj o

oz
;

c ¼ 6iðn2 cos 2h� in3 sin 2hÞj2

ð7Þ

with

g1 ¼
c1 þ c2

c1 � 2c2

; g2 ¼
c1 � c2

c1 � 2c2

;

n1 ¼
c1 þ 2c2

c1 � 2c2

; n2 ¼
c2

c1 � 2c2

; n3 ¼
c3

c1 � 2c2

:

Here, c1, c2 and c3 are the Luttinger parameters, ~j ¼
ðkx; kyÞ is the parallel wavevector in the x� y plane of the
well, h is the angle between~j and the kx-direction. V ðzÞ rep-
resents the confinement potential, which in our case is gi-
ven by Eq. (5).

The technique chosen for this process consists in the use
of the set of C-point wave functions as a basis for the expan-
sion of the non-C-point states [26,27]. Mathematically this
reads as follows: at the C point, Ehð~jÞ ¼ Eh

0m: the ladder
of levels of the QW. At the same time, there is not any inter-
band coupling ðb ¼ c � 0Þ Eq. (7) is simplified to

Hhh ¼ � o2

oz2
þ V ðzÞ

H lh ¼ �n1

o2

oz2
þ V ðzÞ;

ð8Þ

We can also write n1 ¼ mhh=mlh provided that the effective
masses of the heavy and light holes are defined as mhh ¼
m0=ðc1 � 2c2Þ and mlh ¼ m0=ðc1 þ 2c2Þ, respectively. In con-
sequence Eq. (6) is reduced to two independent effective
mass Schrödinger equations with eigenvalues Ehh

0 , and
Elh

0 , and eigenfunctions /3=2;�3=2
0m ðzÞ, and /3=2;�1=2

0m ðzÞ, for
heavy and light holes, respectively.
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At the C point the heavy-hole states /3=2;3=2
0m , /3=2;�3=2

0m are
degenerated and have the same quantized energies Ehh

0m. The
same happens between /3=2;1=2

0m , /3=2;�1=2
0m with quantized

energies Elh
0m. If the spin is not considered, /3=2;3=2

0m and
/3=2;�3=2

0m are in fact the same solution, and so do /3=2;1=2
0m

and /3=2;�1=2
0m .

Now for kx, ky 6¼ 0, and b and c 6¼ 0 the mixing effects
exist between the heavy and light hole bands. In order to
solve the Luttinger–Kohn equation, Eq. (6) and obtain
the hole eigenvalues and eigenfunctions at non-C points
we take a basis for the energy representation that consists
of the above eigenstates /m

0mðzÞ at C point. Then, it is pro-
posed that the eigenfunctions sought, /m

mð~j; zÞ, can be
expanded as

/3=2;3=2
m ¼

Xn1

l¼1

Al/
3=2;3=2
0l ; /3=2;1=2

m ¼
Xn2

l¼1

Bl/
3=2;1=2
0l

/3=2;�1=2
m ¼

Xn2

l¼1

Cl/
3=2;�1=2
0l ; /3=2;�3=2

m ¼
Xn1

l¼1

Dl/
3=2;�3=2
0l

ð9Þ

where n1, n2 are the numbers of energy eigenfunctions
/3=2;�3=2

0l , /3=2;�1=2
0l at the C point, respectively. Al, Bl, Cl,

Dl are the expanding coefficients. Multiplying Eq. (6) by
the matrix

/�3=2;3=2
m ;/�3=2;1=2

m ;/�3=2;�1=2
m ;/�3=2;�3=2

m

h i
; ð10Þ

and substituting Eq. (9) into the result, and then integrat-
ing over z, it is possible to obtain the following energy ma-
trix equation [26]:

Hhh b c 00

by Hlh 000 c

cy 000 Hlh �b

00 cy �by Hhh

0
BBB@

1
CCCA

A

B

C

D

0
BBB@

1
CCCA ¼ Eh

A

B

C

D

0
BBB@

1
CCCA ð11Þ

where 00 and 000 are the zero square matrices of n1 and n2

orders, respectively. The energy eigenvector A, B, C and
D are given by

A ¼

A1

A2

..

.

An1

0
BBBB@

1
CCCCA B ¼

B1

B2

..

.

Bn2

0
BBBB@

1
CCCCA C ¼

C1

C2

..

.

Cn2

0
BBBB@

1
CCCCA D ¼

D1

D2

..

.

Dn1

0
BBBB@

1
CCCCA
ð12Þ

and the matrix elements of Eq. (11) come as

H hh
l0l ¼

Z 1

�1
/�3=2;3=2

0l0 Hhh/3=2;3=2
0l dz ðl0; l ¼ 1; 2; . . . ; n1Þ

H lh
l0l ¼

Z 1

�1
/�3=2;1=2

0l0 H lh/3=2;1=2
0l dz ðl0; l ¼ 1; 2; . . . ; n2Þ
bl0l ¼
Z 1

�1
/�3=2;3=2

0l0 b/3=2;1=2
0l dz

ðl0 ¼ 1; 2; . . . ; n1; l ¼ 1; 2; . . . ; n2Þ

cl0l ¼
Z 1

�1
/�3=2;3=2

0l0 c/3=2;1=2
0l dz

ðl0 ¼ 1; 2; . . . ; n1; l ¼ 1; 2; . . . ; n2Þ ð13Þ
The computation of the coefficient matrix in Eq. (11) is
needed to obtain the quantized energy values Ehh

m and Elh
m0

as well as their corresponding relative energy eigenvectors
A, B, C and D for heavy and light holes at the non-C states.

3. Results and discussion

In the present work we limit ourselves to study the hole
subband structure of the two-dimensional hole gas in Si
SDD and DDD QW for doping densities of the order of
5� 1012 cm�2 (here we switch back to normal units)
and below. This justifies the fact of considering only the
contributions from the heavy and light hole bands, and
corresponds to the range of most reported densities in
GaAs-based d-doped systems. For these values of p2D the
inclusion of the split-off band in the Hartree potential

V HðzÞ through a contribution of the form mso

mhh

� �3=2

in the

averaged effective mass parameter ma, does not result in
practically any difference in the spectrum of levels, com-
pared to the present case.

There is an uncertainty in the literature with respect to
the values of the Luttinger parameters for Si. We choose
to consider two different sets herein: I; c1 ¼ 4:285,
c2 ¼ 0:339, c3 ¼ 1:446, is taken from the experimental
determination quoted by Hensel as a private communica-
tion in Ref. [28] (see also Ref. [6]). II; c1 ¼ 4:25,
c2 ¼ 0:37, c3 ¼ 1:46, is obtained from a report on Dressel-
haus–Kane parameters given in Ref. [29]. In addition, the
static dielectric constant is taken to be �r ¼ 11:7. All ener-
gies presented throughout this section are measured with
respect to the C-point valence band edge.

Figs. 1 and 2 show the potential well profiles and -sche-
matic- k ¼ 0 single-hole confined states of Si p-type d-
doped quantum wells in for a doping concentration of
5� 1012 cm�2. The Fig. 1 corresponds to the set of Luttin-
ger parameters (SLP) labeled as I, while 2 depicts the case
of SLP II. In fact, very small quantitative differences
regarding the potential well’s depths as well as the values
of the energy levels are found when using one SLP or the
other. We obtain for the mentioned concentration (all in
meV) the following values related to single d-doped quan-
tum wells: V 0 ¼ 67:3, Ehh0 ¼ 26:7, Ehh1 ¼ 1:8, Elh0 ¼ 24,
for the SLP I, and V 0 ¼ 66:5, Ehh0 ¼ 26:1, Ehh1 ¼ 1:6,
Elh0 ¼ 23:7 for the SLP II.

As it should be expected, for the same concentration the
levels of double d-doped quantum wells are deeper and in
both SLPs the state lh1 becomes well localized.

In Fig. 3 we can see the energy dispersion relations for
the hole subbands in single Si p-type d-doped quantum



Fig. 1. Potential well profiles and (schematic) single-hole states, corre-
sponding to the motion along the direction of quantum well confinement,
for p-type d-doped quantum wells in Si for a doping concentration of
5� 1012 cm�2. (a) Single d-doped quantum well. (b) Double d-doped
quantum well with interwell distance equals to 50 Å. This figure
corresponds to the set of Luttinger parameters labeled as I.

a

b

Fig. 2. The same as in Fig. 1 but for the set of Luttinger parameters
labeled as II.
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wells. The figure is obtained for a two-dimensional doping
concentration p2D ¼ 5� 1012 cm�2. The corresponding
subband dispersion relations (a) and (b) are calculated with
the use of the SLPs I and II, respectively. No important dif-
ferences between cases (a) and (b) can be noticed for both
directions considered in the two-dimensional Brillouin
zone. Furthermore no appreciable orientation-related
anisotropy is detected in both cases.

Fig. 4 shows the energy dispersion curves for a p-type Si
double d-doped quantum well with l = 50 Å are presented
for SLP I (a) and SLP II (b), for a doping concentration
p2D ¼ 2:5� 1012 cm�2. The change in the SLP used does
not reflect onto significant differences. But the effect of
intersubband mixing comes out in this case, particularly
in the [110]-direction. This results in a warping of the
higher subbands that leads to a negative effective mass
behavior. In the case of the ground state (hh0), this behav-
ior starts very close to the zone center. The reason for this
to happen relies in the aforementioned fact that the hole
states become more localized and therefore their interac-
tion strengthens. The difference between directions [10 0]
and [110] comes specially from the ‘‘c” element in the Lutt-
inger–Kohn Hamiltonian which substantially changes for it
goes from depending on c2 to depends on c3, together with
a change in sign. This is seen in the set of graphs included
in Fig. 5, which shows the evolution in the subband struc-
ture as depending on the values of h, going from small to
close to p=4. For any other direction, from 0 to p=4 (or
equivalent, due to the fourfold symmetry), both c2 and c3

contribute to”c”. The parameter c2 is predominant in Eq.
(7) for directions corresponding to small angles (for
instance, the direction ½1210�, shown in Fig. 5a, that corre-
sponds to approximately 5�). In the case of directions asso-
ciated to intermediate values of the angle h, both
parameters contribute almost with the same weight.
Finally, in the case of directions with angles close to p=4,
c3 is predominant (an example is the ½12110� direction
shown in Fig. 5h, which corresponds to an angle of 42�).

It can be also seen that the energetic distance between
lh0 and hh1 is smaller in the double well compared with
its value in the single d-doped one; hence the strong anti-
crossing seen in the figures for j 	 0:5 nm�1. The j and
energy positions of this anti-crossing slightly shifts toward
smaller values of the 2D wavevector and higher values of
the energy, respectively, as long as the direction in the Brill-
ouin zone approaches h ¼ p=4.

Fig. 6 shows the dispersion relations for p-type Si dou-
ble d-doped quantum wells with p2D ¼ 5� 1012 cm�2, for



Fig. 3. Energy dispersion along two directions in the two-dimensional
Brillouin zone for single p-type d-doped Si quantum wells with doping
density p2D ¼ 5� 1012 cm�2. (a) Corresponds to the set of Luttinger
parameters labeled as I, while (b) corresponds to the set named as II.

Fig. 4. Subband energy dispersion along two directions in the 2D
Brillouin zone for a double d-doped quantum well in Si. Doping
concentration is p2D ¼ 2:5� 1012 cm�2, and the interwell distance is of
50 Å. Again, (a) corresponds to the set I of Luttinger parameters, and (b)
is obtained with the set II of Luttinger parameters.
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three values of the interwell distance l = 30 Å (a), l = 50 Å
(b), and l = 70 Å (c). All these figures were generated with
the use of the SLP I. The increase in the interwell distance
causes little modifications regarding the position of the
heavy and light holes ground states. However, the levels
hh1 and lh1 substantially modify their values, becoming
more localized states as long as the wells separate further.
As can be seen, this provokes the shifting of the point in
the direction [110] of the two-dimensional j-space where
the anticrossing between lh0 and hh1 states takes place.
For larger the interwell distance, the closer to the zone cen-
ter this point will be.

As it can be seen from the results obtained, no impor-
tant differences are found when using distinct SLPs. This
is obviously due to the similarity in the values of the Lutt-
inger parameters in both cases. Appreciable changes would
be noticed if both c2 and c3 were significantly different from
one SLP to the other.

As we pointed out, for the values of the two-dimensional
carrier concentration considered in the work, it is assumed
that the split-off band is empty of charge. This would jus-
tify the use of the 4 � 4 Luttinger–Kohn description pro-
vided that the effect of the interaction with this third hole
band could be neglected. But it is apparent from our
numerical output that the approximation is failing in some
way, giving the unphysical negative effective mass result
very close to the Brillouin zone center for single d-doped
quantum wells. Indeed, the value of the spin-orbit splitting
is not large for Si. Nevertheless, the coupling between split-
off and heavy-hole bands may not be negligible. Then, even
without population, the split-off band might be signifi-
cantly affecting the subband structure of the single d-well.
It is worth mentioning that this situation has been already
commented in Ref. [6], and seems not to be associated with
any particular choice of the Luttinger parameters. How-
ever, the most interesting aspect of this problem is that it
does not manifest at all in the case of double p-d-doped
Si quantum wells, in which case the combined effect of
the deepening of the hh0 level position and the interaction
between the subbands corresponding to different wells will
be overcoming the possible influence of the split-off band.
4. Conclusions

We have used the 4 k � p Luttinger–Kohn model to
study the hole subband structure in single and double p-
type d-doped quantum wells in Si. The use of approximate



Fig. 5. Subband energy dispersion of double d-doped quantum well in Si for eight different directions in the two-dimensional Brillouin zone, for angles
between 0 and p=4. The doping concentration is p2D ¼ 2:5� 1012 cm�2, and the interwell distance is set to be 50 Å, for illustration. This figure corresponds
to the set of Luttinger parameters labeled as I.
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Fig. 6. Energy subband dispersion for Si double d-doped quantum wells,
obtained with the use of the set I of Luttinger parameters. p2D ¼ 5�
1012 cm�2. (a) l = 30 Å, (b) l = 50 Å, (c) l = 70 Å.
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TF-type models for the description of hole energies in dou-
ble Si p-type d-doped quantum wells has been restricted to
deal with zone-center states. Previous founds has allowed
to establish that a Thomas–Fermi–Dirac approach leads
to a better description of the hole level ladders for j ¼ 0
[21–23]. The results of the present work go beyond by
extending such treatment to non-C states and show how
the heavy, light hole subband spectra are affected by the
interband interaction for states with two-dimensional
wavevector close to the C point. This modification could
be of importance for the optical properties associated with
intersubband transitions. In this sense, the description of
the hole energy structure is more complete. It is shown that
the hole subband structure significantly depends upon the
direction in the two-dimensional Brillouin zone, showing
quite strong anti-crossings for directions approaching the
K-point.

On the other hand, our results for the case of single d-
doped quantum wells suggest that the two-hole-bands
approximation could be leading to a non-physical descrip-
tion of the heavy-hole ground state close to the Brillouin
zone center and, consequently, a more complete k � p
approach is required in this direction. In spite of this incon-
venient, we believe that within the chosen approximation
our procedure may provide a quite accurate and simple
alternative of calculation, mainly in the case of double d-
doped systems.

Another conclusion arising from our calculations is that
for the study of hole states on Si p-d-doped systems, each
of the two sets of Luttinger parameters considered can be
used indistinctly.
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