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Abstract

The hole subband structure in double p-type δ-doped quantum wells in GaAs is computed with the use
of the 4 × 4 k · p Hamiltonian. The Thomas–Fermi–Dirac approach is implemented for the description of
the valence band bending, and the hole states at the Brillouin zone center are calculated along its lines,
within the effective mass approximation. The zone center eigenstates obtained are then used to diagonalize
the k · p Hamiltonian for non-zero k. The hole subband structure is analyzed as a function of the impurity
density and the distance between δ wells.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The advancement in growth and doping techniques allows the fabrication of semiconducting
structures with very sharp doping profiles within a few atomic layers: the so-called δ-doping.
Systems bearing δ-doped profiles are of interest for basic research as well as for possible
device applications (see, for instance, [1,2], and references therein). In particular, p-type δ-doped
quantum wells have played a fundamental role in the fabrication of diamond-based field effect
transistors with outstanding characteristics [3,4].
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From the theoretical point of view single δ-doped (SDD) wells in GaAs have been quite
extensively studied [5–22]. However, much less work on double δ-doped (DDD) QW’s in
GaAs has been reported [23–27]. The DDD structures offer an improvement in the transport
properties with respect to the SDD ones [28–32]. This improvement is of importance for possible
implementation in high speed, amplifier, and switching devices, in which a high density charge –
and consequently, mobility – is sought. On the other hand, diamond-based stacked p–delta-doped
structures have shown promising features as vertical power diodes with very good on-resistance
to blocking voltage ratio [33].

Due to those properties, a more complete and rigorous calculation of the hole subband
structure of multiple p–delta-doped systems is necessary to understand the underlying physics
behind these layered systems. In the present work we limit ourselves to study the hole subband
structure of the two-dimensional hole gas in the GaAs DDD QW. The band bending profile
is described analytically along the lines of the local density Thomas–Fermi–Dirac (TFD)
approximation, including the exchange contribution [26]. With the derived model potential we
have calculated the eigenstates and eigenfunctions at the Brillouin zone center. Then, this set
of eigenstates are taken as a basis for the diagonalization of the 4 × 4 k · p Hamiltonian, thus
obtaining the hole subband structure for k 6= 0, which is analyzed as a function of the doping
density and the interwell distance.

2. Method and model

For a single δ-doped quantum well, a direct relation between the density p(z) and the Hartree
potential VH (z) was previously obtained in the one-dimensional TFD approach within the local
density approximation (LDA) [17]. It is written as

pau(z) =
m3

aς3(w)

3π5

1 −

√
1 +

π2(µ∗ − V ∗

H (z))

ς2(w)ma

3

, (1)

where V ∗

H = VH /R∗
y , µ∗

= µ/R∗
y , ma =

[
1 +

(
mlh
mhh

)3/2
]2/3

, where mhh and mlh are the heavy

and light hole masses, respectively. ς(w) accounts for the valence band coupling and is given
by [34]

ς(w) = 2−1/3
+ (1 − w2)[w2(aw + b) + c(4w3

+ 3w2
+ 2w + 1)], (2)

where w =
√

mlh/mhh , a = 0.679, b = −0.0686 and c = −0.0811. By including Eq. (1) in
the corresponding Poisson equation, an explicit expression for the Hartree potential centered in
z = d is obtained. It has the form

V ∗

H (z) − µ∗
= −

α2

(α |z − d| + z0)
4 , (3)

with α =
2m3/2

a
15π

and z0 =

(
α3

πp2D

)1/5
(effective heavy-hole-related Ga As atomic units are used

throughout).
In the framework of the LDA, the exchange potential for a hole gas can be written as

V ∗
x (z) = −ς(w)

2
π

(3π2)1/3(pau(z))1/3. (4)
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Using the relation between pau(z) and VH (z) it is possible to write the total potential
V ∗

= V ∗

H + V ∗
x as

V ∗(z) = −
α2

(α |z − d| + z0)
4 −

2ς2(w)ma

π2

[
1 −

√
1 +

π2

ς2(w)ma

α2

(α |z − d| + z0)
4

]
.

(5)

The latter equation summarizes the model for the band bending profile. Instead of carrying
out numerically troublesome self-consistent calculations, we simply solve two Schrödinger-like
effective mass equations at the zone center k = 0, thus obtaining the corresponding ladders of
the hole levels.

The construction of a model potential for the DDD is performed via an appropriate combi-
nation of two single δ-wells centered at z = −l/2 and z = l/2, considering the same impurity
density in both doping spikes, as has been reported in [26]. Again, the solutions of effective mass
Schrödinger equations lead to the Brillouin zone center states for both heavy and light holes.

The next step is the diagonalization of the 4 × 4 k · p Luttinger–Kohn Hamiltonian [36]. That
is, we need to solve the secular problem

H hh b c 0
b∗ H lh 0 c
c∗ 0 H lh

−b
0 c∗

−b∗ H hh




φ
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φ
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m (Eκ, z)

φ
3/2,−3/2
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 = Eh(Ek)


φ

3/2,3/2
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φ
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φ
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m (Eκ, z)

φ
3/2,−3/2
m (Eκ, z)

 (6)

where φν
m(Eκ, z) is the function associated with the confining potential of the quantum wells.

The components with ν = 3/2, ±3/2 and ν = 3/2, ±1/2 correspond to the heavy and light
holes, respectively. m is the subband index and Eh(Eκ) are the energy eigenvalues of the holes. In
effective atomic units, the matrix elements in Eq. (6) are given by

H hh
= −

[
η1κ

2
+

∂2

∂z2

]
+ V (z),

H lh
= −

[
η2κ

2
+ ξ1

∂2

∂z2

]
+ V (z),

b = −6 i ξ3 (sin θ + cos θ) κ
∂

∂z
,

c = 6 i (ξ2 cos2 2θ − iξ3 sin2 2θ) κ2

(7)

with

η1 =
γ1 + γ2

γ1 − 2γ2
, η2 =

γ1 − γ2

γ1 − 2γ2
,

ξ1 =
γ1 + 2γ2

γ1 − 2γ2
, ξ2 =

γ2

γ1 − 2γ2
, ξ3 =

γ3

γ1 − 2γ2
.

Here, γ1, γ2 and γ3 are the Luttinger parameters, Eκ = (κx , κy) is the parallel wavevector in
the x–y plane of the well, θ is the angle between Eκ and the κx -direction. V (z) represents the
confinement potential, which in our case is given by Eq. (5).

The technique chosen for this process consists in the use of the set of Γ -point wavefunctions
as a basis for the expansion of the non-Γ -point states. Mathematically this reads as follows: At
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the Γ point, κx = κy = 0, Eh(Eκ) = Eh
0 (kz). At the same time, there is no interband coupling

(b = c ≡ 0). Eq. (7) is simplified to

H hh
= −

∂2

∂z2 + V (z)

H lh
= −ξ1

∂2

∂z2 + V (z).

(8)

We can also write ξ1 = mhh/mlh provided that the effective masses of the heavy and light holes
are defined as mhh = m0/(γ1 − 2γ2) and mlh = m0/(γ1 + 2γ2), respectively. In consequence
Eq. (6) is reduced to two independent effective mass Schrödinger equations with eigenvalues
Ehh

0 , and E lh
0 , and eigenfunctions φ

3/2,±3/2
0m (z), and φ

3/2,±1/2
0m (z), for heavy and light holes

respectively.
At the Γ point the heavy hole states φ

3/2,3/2
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and so are φ
3/2,1/2
0m and φ

3/2,−1/2
0m .

Now for κx , κy 6= 0, and b, c 6= 0, effects of mixing between the heavy and light hole bands
exist. In order to solve the Luttinger–Kohn equation, Eq. (6), and obtain the hole eigenvalues
and eigenfunctions at non-Γ points we take a basis for the energy representation that consists
of the above eigenstates φν

0m(z) at Γ point. Then, it is proposed that the eigenfunctions sought,
φν

m(Eκ, z), can be expanded as

φ
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where n1 and n2 are the numbers of energy eigenfunctions φ
3/2,±3/2
0l and φ

3/2,±1/2
0l at the Γ

point, respectively. Al , Bl , Cl and Dl are the expanding coefficients. Multiplying Eq. (6) by

the matrix
[
φ

∗3/23/2
m , φ

∗3/21/2
m , φ

∗3/2−1/2
m , φ
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]
and substituting Eq. (9) into the result, and

then integrating over z, it is possible to obtain the following energy matrix equation [37]:
Hhh b c 0′

bĎ Hlh 0′′ c
cĎ 0′′ Hlh

−b
0′ cĎ −bĎ Hhh




A
B
C
D

 = Eh


A
B
C
D

 (10)

where 0′ and 0′′ are the zero square matrices of n1 and n2 orders, respectively. The energy
eigenvectors A, B, C and D are given by

A =


A1
A2
...

An1

 B =


B1
B2
...

Bn2

 C =


C1
C2
...

Cn2

 D =


D1
D2
...

Dn1

 (11)
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and the matrix elements of Eq. (10) emerge as
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(12)

The computation of the coefficient matrix in Eq. (10) is needed to obtain the quantized energy
values Ehh

m and E lh
m′ as well as their corresponding relative energy eigenvectors A, B, C and D

for heavy and light holes at the non-Γ states.
The above described method has been previously applied to the obtaining of the hole structure

in strained multiple quantum wells [37] and in diamond δ-doped systems [38–41].

3. Results and discussion

The input parameters for the p-type delta quantum wells are: γ1 = 7.0, γ2 = 2.25, γ3 = 8.2
[35], εr = 12.5 and 1 × 1012

≤ p2D ≤ 1 × 1013 cm−2.
In Fig. 1 the potential profile and wavefunctions of the single δ-doped quantum wells are

depicted for two impurity densities, p2D = 3 × 1012 cm−2 (a) and p2D = 5 × 1012 cm−2 (b). It
is seen that the main difference between these figures is in the depth of the potential profile. This
is reflected in the number of confined states, which is a situation typical of the δ-doped systems.
The hole subband structure of the above mentioned densities is presented as a function of the
wavevector Eκ , in Figs. 2 and 3 for the directions [10] (a) and [11] (b) of the two-dimensional
Brillouin zone (in fact, corresponding to directions [100] and [110] of the crystal 3D zone).
In both structures the intersubband interaction takes place between the ground heavy hole (hh)
subband and the ground light hole (lh) one. The subband mixing becomes stronger for higher
impurity density.

For the case of DDD quantum wells Fig. 4 shows the potential profile and the wavefunctions
for two different impurity densities, p2D = 3 × 1012 cm−2 (a) and p2D = 5 × 1012 cm−2

(b), keeping the interwell distance fixed, l = 60 Å. The eigenfunctions presented in Fig. 4 have
been computed at the zone center, k = 0. Again, as long as the impurity density increases the
δ wells become deeper. Consequently the number of levels confined into the wells increases.
The same effect occurs when the interwell distance enlarges, while the impurity concentration
remains fixed; p2D = 4 × 1012 cm−2, Fig. 5. This happens because the screening length is much
bigger than the distance between wells, and when they are separating the system resembles a
single well. The difference here is that the well width increases and – as a consequence – more
levels localize. That behavior gradually disappears, for the influence of the potential barrier is
strengthened as long as the interwell separation augments, in such a way that the energy level
structure of the isolated single delta quantum well is attained.

In Fig. 6 we present the hole subband structure in the directions [100] (a) and [110] (b),
with l = 20 Å and p2D = 3 × 1012 cm−2. We have found three subbands, two corresponding
to the heavy holes and one to the light holes. A strong interaction between the ground hh and
lh subbands is present in both directions. On increasing the distance between wells to 80 Å it
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Fig. 1. Potential profile and eigenfunctions of SDD QW’s with p2D = 3.0×1012 cm−2 (a) and p2D = 5.0×1012 cm−2

(b). Conventional units have been restored in the vertical axis.

Fig. 2. The hole subband structure of SDD QW’s in the directions [100] (a), and [110] (b), with p2D = 3.0×1012 cm−2.
As usual, energies are represented on the vertical axis while the horizontal one contains the values of the 2D wavevector
κ . Conventional units have been restored.
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Fig. 3. The hole subband structure of SDD QW’s in the directions [100] (a), and [110] (b), with p2D = 5.0×1012 cm−2.

Fig. 4. Potential profile and eigenfunctions of DDD QW’s for p2D = 3.0 × 1012 cm−2 (a) and p2D = 5 × 1012 cm−2

(b), and l = 60 Å in both cases. The wavefunctions have been computed at the zone center.

is observed that the first excited hh subband is closer to the ground lh subband due to the
higher attractiveness of the δ-doped wells. As a consequence the lh subband presents a strong
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Fig. 5. Potential profile and eigenfunctions of DDD QW’s for l = 40 Å (a), l = 120 Å (b), and p2D = 4.0×1012 cm−2

in both cases. The wavefunctions have been computed at the zone center.

Fig. 6. The hole subband structure of DDD QW’s in the directions [100] (a), and [110] (b), with l = 20 Å and
p2D = 3.0 × 1012 cm−2.
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Fig. 7. The hole subband structure of DDD QW’s in the directions [100] (a), and [110] (b), with l = 80 Å and
p2D = 3.0 × 1012 cm−2.

interaction with the first excited hh subband as well as with the ground hh subband; Fig. 7. A
further increase in the interwell distance up to 140 Å gives five subbands, three corresponding
to hh and two to lh; Fig. 8. The ground and first excited hh subbands are almost degenerate,
and an important interaction between the first excited hh subband and the ground lh subband is
visible.

To analyze the hole subband structure as a function of the impurity density we have considered
an acceptor concentration p2D = 5 × 1012 cm−2. The same interwell distances are taken into
account; l = 20 Å, l = 80 Å, and l = 140 Å (Figs. 9–11, respectively). As we have mentioned,
an increase in the impurity density brings about an increase in the potential depth and therefore
leads to a more effective confinement. This is reflected in the number of confined subbands, from
three in the case of Fig. 6 to four in the case of Fig. 9. In the case of Fig. 10 the number of
subbands is six, while Fig. 7 presents five. There is also evident a strong interaction between all
subbands. In the case of Fig. 11 the subbands are also six, and the ground and first excited hh
subbands are close to degeneracy. A strong interaction between the hh and lh subbands can be
seen.

In general, the change in the direction within the two-dimensional Brillouin zone causes only
small differences in position of the mixing points and in the energy values of the different
subbands. This seems to be a property of GaAs p–delta-doped systems. In other materials –
such as diamond – the choosing of different directions in k-space allows one to identify more
significant differences [39–41].

Another aspect worth noticing is that the interaction between the first and second subbands
leads to an “anomalous” dispersion of the ground state beyond the mixing point in the near zone
center region. It is seen that this inflexion is more pronounced in the case of lower impurity
densities. When the impurity density is larger, the inflexion is less pronounced and occurs for
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Fig. 8. The hole subband structure of DDD QW’s in the directions [100] (a), and [110] (b), with l = 140 Å and
p2D = 3.0 × 1012 cm−2.

Fig. 9. The hole subband structure of DDD QW’s in the directions [100] (a), and [110] (b), with l = 20 Å and
p2D = 5.0 × 1012 cm−2.
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Fig. 10. The hole subband structure of DDD QW’s in the directions [100] (a), and [110] (b), with l = 80 Å and
p2D = 5.0 × 1012 cm−2.

Fig. 11. The hole subband structure of DDD QW’s in the directions [100] (a), and [110] (b), with l = 140 Å and
p2D = 5.0 × 1012 cm−2.
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Table 1
Hole subband energies (Ehh0, Elh0, Ehh1, etc.) at the zone center for different distances between δ-wells and impurity
densities

l p2D = 3 × 1012 cm−2 V0 = 44.89 meV p2D = 5 × 1012 cm−2 V0 = 66.34 meV
Ehh0 Elh0 Ehh1 Ehh2 Elh1 Ehh0 Elh0 Ehh1 Ehh2 Elh1 Ehh3

0 19.05 10.84 2.23 29.50 17.03 4.60 1.02
20 24.55 15.41 5.37 37.71 24.74 10.75 1.60
40 24.01 16.69 10.37 35.80 25.03 19.59 2.39
60 22.34 16.44 14.46 1.28 32.99 25.01 25.19 3.47 3.02 1.02
80 21.00 15.60 16.80 1.54 31.18 23.48 27.74 4.46 6.73 1.23

100 20.95 15.68 16.81 1.72 1.60 30.26 22.03 28.74 5.02 9.86 1.64
120 19.56 13.91 18.54 2.35 4.95 29.97 20.81 29.10 5.37 12.18 2.13
140 19.32 13.17 18.78 2.51 6.29 29.82 19.77 29.27 5.24 13.55 2.21

The potential depth (V0) is also indicated for the corresponding impurity density. The energies, distances and densities
are in meV, Å and cm−2, respectively.

higher values of the two-dimensional wavenumber; thus the parabolic model for the near zone
center region might work better. Although the intersubband interactions give rise to the mixing of
higher states as well, the main changes in the dispersion curves are detected for the lower ones,
because they interact more strongly.

In Table 1 the hole subband energies at the zone center for p2D = 3 × 1012 cm−2 and
p2D = 5 × 1012 cm−2 are presented as a function of the interwell distance from 0 to 140 Å with
a step of 20 Å. The case l = 0 Å is a reference and corresponds to a SDD with the same impurity
density as one well in the DDD system. We also present the potential depth for both densities.

4. Conclusions

The use of approximate TF-type models for the description of hole energies in double GaAs
p-type delta-doped quantum wells has been restricted to deal with zone center states. Previous
findings have allowed us to establish that a Thomas–Fermi–Dirac approach leads to a better
description of the hole level ladders for κ = 0 [17,26]. The results of the present work go beyond,
by extending such treatment to non-Γ states, and show how the heavy and light hole subband
spectra are affected by the interband interaction for states with two-dimensional wavevector close
to the Γ point. This modification could be of importance for the optical properties associated
with intersubband transitions. In this sense, the description of the hole energy structure is more
complete. We believe that within the chosen approximation our procedure may provide a quite
accurate and simple alternative for calculation.

It is shown in this work that the interaction between subbands in the DDD quantum wells is
important and that the assumption of parabolic bands may not be fulfilled, even close to the zone
center. The DDD system is more complex, and presents a variety of possibilities depending on
the distances between wells and the impurity content in the δ-doped planes in comparison to the
SDD quantum wells.
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