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Subband and transport calculations in double n-type �-doped quantum
wells in Si
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The Thomas-Fermi approximation is implemented in two coupled n-type �-doped quantum wells in
Si. An analytical expression for the Hartree-Fock potential is obtained in order to compute the
subband level structure. The longitudinal and transverse levels are obtained as a function of the
impurity density and the interlayer distance. The exchange-correlation effects are analyzed from an
impurity density of 8�1012 to 6.5�1013 cm−2. The transport calculations are based on a formula
for the mobility, which allows us to discern the optimum distance between wells for maximum
mobility. © 2006 American Institute of Physics. �DOI: 10.1063/1.2168024�

I. INTRODUCTION

Recently, an improvement in the incorporation of differ-
ent dopants such as Ge, P, Er, As, Sn, N, and O in Si has
become possible.1–14 The n-type �-doped quantum wells in
Si provide an ideal system not only for investigating the
physics at extremely high carrier densities but also for po-
tential technological applications.15–17

Single and multiple �-doped structures have been re-
ported experimentally18–24 and theoretical.25–32 Theoretical
and experimental studies of the energy-level structure in
n-type �-doped layers in Si have been performed by resonant
tunneling experiments and self-consistent calculations.18–20

Besides, the electrical activities and the carrier mobilities
have been investigated by Hall measurements.21 Self-
consistent calculations have been performed in single and
multiple �-doped Si structures.25 The electronic structure as a
function of the doping concentration �n2D� and the periods
�d� has been analyzed. The influence of n2D and d on the
subband energies and occupancies, potential profiles, Fermi-
level position, and miniband widths is reported.

Double �-doped quantum wells have attracted attention
since the proposal by Zheng et al.,33 due to the improvement
in the transport properties. Theoretical and experimental
works in which the properties of double �-doped QWs are
analyzed have been reported in the literature.33–46 These
studies have been performed in GaAs,33–41 Si,42–45 and
ZnSe.46 In n-type double �-doped quantum wells in Si there
are two representative works.42,44 The electrical transport be-
tween locally grown �-doped layers spaced 63–146 nm has
been investigated.42 Current-voltage measurements show
symmetrical diode characteristics for a donor density of 2
�1013 cm−2. Transport measurements in two closely Sb
�-doped layers with a donor density of 2�1013 cm−2 and a
distance between wells of l=120 Å have been performed.44

It is found that the room-temperature mobility is enhanced
by a factor of 2 compared with the corresponding single
�-doped well or the homogeneous-doped layers. This mobil-
ity enhancement is attractive to optimized electronic devices.

In this work we present the results obtained for the elec-
tronic levels and the relative mobility as a function of the
doping density and the distance between � wells by means of
the Thomas-Fermi �TF� approximation and a phenomeno-
logical formula for the mobility previously proposed and ap-
plied to p-type �-doped systems.40,45,46 We also paid atten-
tion to the exchange-correlation effects, comparing the
Hartree and Hartree-Fock calculations.

II. THEORETICAL APPROXIMATION

We consider n-type double �-doped layers perpendicular
to the growth direction ��001�� of a Si host crystal. The ion-
ized donors and two-dimensional electron gas �2DEG� form
a V-shaped potential. We will describe this potential using
the local-density Thomas-Fermi approximation.

The ideal-gas relations are supposing valid at each point,
that is, the electron density can be written as

n�r� =
1

3�2

pF
3�r�
�3 , �1�

where pF is the Fermi radius in the momentum space. The
probability of finding an electron between p and p+dp is

Ir�p�dp =
4�p2dp

4/3�pF
3 ��pF − p� . �2�

The kinetic energy of a single electron can be written as

t =
1

2m*�
0

pF

p2Ir�p�dp =
3

2m*pF
�

0

pF
3

p4dp , �3�

integrating the former equation and using the relation be-
tween n�z� and pF�z� Eq. �1� is possible to write the energy
functional of the kinetic energy as

T =� n�r�t�r�dr =
3

10m* � n�z��3�2�3n�z��2/3dz , �4�

where m*= �mt
2ml�1/3 is the geometric average, with ml and

mt the longitudinal and transverse electron effective masses.
The energy functional corresponding to the interaction be-a�Electronic mail: irv@buzon.uaem.mx
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tween the carrier cloud and each plane of ionized impurities
is

Vei =� n�r�Vi�r�dr

=
2�e2n2D

�r
� n�z���z + l/2� + �z − l/2��dz , �5�

where Vi�r�, n2D, �r, and l are the potential of the impurity
planes, the two-dimensional impurity density, the relative di-
electric constant, and the distance between � wells, respec-
tively. The energy functional associated to the electron-
electron interaction comes as47

Vee = −
�e2

�r
� � n�z�n�z���z − z��dzdz�. �6�

Constructing the Thomas-Fermi energy density func-
tional and taking the variation through standard procedures
we can arrived to the classical Thomas-Fermi equation47

n�z� =
�2m*�3/2

3�2�3 �� − VH�z��3/2, �7�

with � and VH�z� representing the chemical and the Hartree
potential, respectively.

The exchange and correlation effects are taking into ac-
count within the framework of the local-density approxima-
tion �LDA�, therefore the exchange and correlation potential
can be written as

Vxc�z� = − �1 +
0.7734rs

21
ln�1 +

21

rs
	
� 2

��rs
	Ry

*, �8�

where

rs = �4�a0
*3n�z�/3�−1/3. �9�

In these expressions a0
*=�r�

2 / �m*e2� is the effective Bohr
radius, Ry

*=e2 / �2�ra0
*� is the effective Rydberg constant, and

�= �4/ �9���1/3.

FIG. 1. Longitudinal and transverse electron levels vs
the distance between wells, omitting �a� and consider-
ing �b� the exchange-correlation effects. The impurity
density n2D is 8�1012 cm−2.
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Substituting the relation between the carrier density and
the Hartree potential in the former equation for rs, and rs in
�8�, the exchange and correlation potential can be written in
terms of the Hartree one

Vxc
* �z� = − c�1 + a

ln�1 + b��* − VH
* �z��1/2�

��* − VH
* �z��1/2 	

���* − VH
* �z��1/2, �10�

the latter equation is given in a.u. Vxc
* =Vxc/Ry

*, VH
* =VH /Ry

*,
and �*=� /Ry

*. a=0.7734/21�4/ �9���−1/3, b=21�4/ �9���1/3,
and c=2/�. The self-consistent Hartree potential of the
double �-doped quantum wells is48

VH
* �z� = �* −

	2

�	�z + l/2� + z0�4 , �11�

where 	=2/ �15�� and z0= �	3 /�n2D
a.u.�1/5. Finally substituting

�11� in �10�, the total potential V*�z�=VH
* �z�+Vxc

* �z� is

V*�z� = −
	2

�	�z + l/2� + z0�4 − c 	

�	�z + l/2� + z0�2

+ a ln�1 +
b	

�	�z + l/2� + z0�2
� . �12�

The latter equation summarized the proposed model for the
exchange-correlation �Hartree-Fock� calculations. Instead of
carrying out numerically troublesome self-consistent calcula-
tions, we simply solve a Schrödinger-like effective-mass
equation, thus obtaining the corresponding ladder of the elec-

tron levels. When we omit the exchange-correlation term, we
are referring to the Hartree calculations.

The conduction-band edge of Si consists of six equiva-
lent valleys located close to the six equivalent X points of the
Brillouin-zone boundary. The effective masses are aniso-
tropic for each valley and it is possible to separate
Schrödinger-like equations for each valley. Since the
Schrödinger-like equations are the same for valleys of the
same type, the eigenvalues are also identical. Thereby, the
longitudinal eigenvalues will be twofold degenerate, and the
transverse fourfold. The motion in the directions of x and y is
plane wave. Then the corresponding electron density is

n�z� = �
nj

Nn
j �Fn

j �z��2. �13�

Here the index j runs over all six valleys. Assuming zero
temperature, Nn

j is

Nn
j =

m� j
*

��2 �EF − Enj�
�EF − Enj� , �14�

where m� j
* =mt if j=z , z̄ and m� j

* = �mtml�1/2 if j=x , x̄ ,y , ȳ. EF

represents the Fermi energy and 
 the Heaviside step func-
tion.

Besides, this method allows us to study the transport
properties of the system. We only consider the ionized ac-
ceptor scattering mechanism because it is the most important
at low temperature. The Coulomb scattering potential due to
ionized impurities is considered as distributed randomly in
the doped layer. We take the ratio of the mobility of double
�-doped �DDD� to single �-doped �SDD� QWs.

�rel
� =

�DDD

�SDD
=

� j
m� j

* �i � �Fe
��z���2�kF

� − Ei
���z��dz�

� j
m� j

* �i � �Fe
2��z���2�kF

2� − Ei
2����z� − l/2� + �z� + l/2��dz�

, �15�

where Fe
��z��, kF

� , and Ei
� �Fe

2��z��, kF
2�, and Ei

2�� are the en-
velope function, the Fermi level, and the ith level, respec-
tively, of the SDD �of the DDD�. Equation �15� is valid for
T=0 K.

The influence of the temperature onto the electronic
structure has been calculated self-consistently.49 The results

have shown a slight modification of the level structure when
the temperature is less than 6 meV �77 K�. In such a case the
electronic structure can be taken as that corresponding to 0 K
and the thermal effect can be considered as a charge redis-
tribution. Then, the mobility expression would be �as depen-
dent on temperature�

�rel
� =

� j
m� j

* �i � �Fe
��z���2In�1 + e�kF

�−Ei
�/kBT���z��dz�

� j
m� j

* �i � �Fe
2��z���2In�1 + e�kF

2�−Ei
2�/kBT����z� − l/2� + �z� + l/2��dz�

. �16�
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It is worth mentioning that the former phenomenological for-
mulas have been applied successfully to p-type �-doped
systems.40,46

III. RESULTS AND DISCUSSION

The starting parameters for n-type �-doped quantum
wells in Si are ml

*=0.9163, mt
*=0.1905, and �r=12.1. The

doping concentration is varied from 8.0�1012 to 3.0
�1014 cm−2. This interval for n2D includes its experimen-
tally interesting values.

The electron energy levels as a function of the interwell
distance are presented in Fig. 1 for a donor density n2D=8
�1012 cm−2. Figures 1�a� and 1�b� correspond to the calcu-
lations omitting and taking into account the exchange-
correlation effects. The trends are similar for both calcula-
tions. As we can see from Fig. 1 the longitudinal basic level
�the transverse ground level� becomes degenerate for dis-
tances around 140 and 120 Å �300 and 250 Å�, omitting and
considering exchange-correlation effects. For the transverse
ground level a difference of around 50 Å is found, compar-
ing both calculations. A similar thing happens for the other
levels, depending on the concentration and on which level is

observed. As the donor density increases the degeneration
takes place a lesser distance between wells as well as the
difference in the degeneration distance with and without
exchange-correlation effects for the different levels is re-
duced. In the high density limit �6.5�1013 cm−2� differences
were not found concerning to the degeneration distance for
both calculations. Therefore, the exchange-correlation effects
are significant when the donor density is lower.

In Fig. 2 we present the potential profile and the eigen-
functions, normalized to 1, for a donor density n2D=1.3
�1013 cm−2 and distances between impurity planes l
=260 Å �a� and l=180 Å �b�. The solid lines correspond to
the longitudinal electron levels, while the dashed lines to the
transverse ones. When the exchange-correlation potential is
considered in the calculations, Fig. 2�b�, the potential depth
is 203.3 meV, while omitting these effects a value of
155.5 meV is obtained, Fig. 2�a�.

Self-consistent potential calculations were performed in
Sb �-doped Si quantum well with a surface barrier height
e�=0.7 eV, an ionic charge of 1.3�1013 cm−2 spread over
1 nm, and a background doping of 2�1016 cm−3.18 A small
forward bias eVg of 0.035 was considered. The energy levels

FIG. 2. Potential profile, Fermi energy, and longitudinal
and transverse electron wave functions for a donor den-
sity n2D=1.3�1013 cm−2 and interlayer distances l
=260 Å �a� and 180 Å �b�. The solid and dashed lines
represent the longitudinal and transverse electron wave
functions, while the dashed-dot line represents the
Fermi level, omitting �a� and considering �b� exchange-
correlation effects.
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obtained are El0=−55.0 meV, Et0=−1.9 meV, El1

=37.1 meV, and El2=64.7 meV all with respect to the Fermi
level, EF�−70.8±4.4 meV. Here, the Fermi energy is mea-
sured with respect to the conduction-band edge. Theoretical
calculations were carried out in order to obtain the subband
level structure.19 Solving the Poisson equation an analytical
expression for the confining potential was obtained. It was
allowed a small but finite width of the �-doping layer, homo-
geneous doping in the layer, and homogeneous unintentional
background doping. Then, the energy levels were determined
by means of the WKB integral by iteration procedure.19 The
calculation was performed for a sample with �-doping den-
sity n2D=1.3�1013 cm−2, a background doping level of 5.0
�1015 cm−2, and a Schottky-barrier height �=0.75 eV. The
energies of −35 and −8 meV are obtained for the longitudi-
nal and transverse ground levels. The energy reference is the
Fermi energy in the well. Our calculations �l=0� give El0

=−44.8 meV, Et0=−8.4 meV, El1=29.3 meV, and El2

=50.9 meV measured with respect to Fermi energy, EF

=−70.3 meV. The Fermi level is measured with respect to
the conduction-band edge.

The quantum levels were determined through tunneling
spectroscopy for an impurity density of 1.3�1013 cm−2.18

The dI /dVg tunneling characteristic showed evidence at
positive Vg for the occupied longitudinal ground level at �
−55 meV. The same situation with the same experimental
techniques19 showed that the basic longitudinal level has an
energy of −35 meV. Indeed, in these systems the experimen-
tal error is 10 meV. Therefore, the ground level for an im-
purity density of 1.3�1013 cm−2 using tunneling spectros-
copy experiments is −45±10 meV. Our calculations �l=0�
give El0=−44.8 meV measured with respect to EF.

In Figs. 3�a� and 3�b� we present the dependence of the
mobility versus the distance between wells, for two donor
densities of 8�1012 and 1.3�1013 cm−2, respectively. For
l=0 and l�300 Å the energy-level structure corresponds to
a single � doped, therefore the mobility ratio must tend to
unity. These two limiting cases are well fulfilled as we can
see from Figs. 3�a� and 3�b�. A main peak for the mobility is
found around 120 and 100 Å at T=0 K for the two afore-
mentioned concentrations, respectively. Varying the kinetic
energy from 0 to 6 meV by an amount of 1 meV, the main

FIG. 3. Relative mobility vs the distance between �
wells for an impurity density of 8�1012 cm−2 �a� and
1.3�1013 cm−2 �b�. The different curves represent dif-
ferent temperatures in the range of 0–77 K. The
exchange-correlation effects are considered in the
calculations.
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peak in Fig. 3�a� is shifted to around 100 Å, while in Fig.
3�b� remains at the same distance. These peaks have a direct
connection with the degeneration distance of the longitudinal
basic level, due to the special rearrangement of the electron
charge in the superior electron energy levels. Since, when the
degeneration occurs an increase in the charge density of the
superior levels is presented. This increase is small indeed but
significant for the mobility because on one hand, the trans-
verse levels have a small effective mass, and on the other, the
excited levels have nodes in the impurity planes, for which
the electronic charge is located in the undoped region of
DDD QW, thereby the dispersion rate goes down, and con-
sequently the mobility increases.

Finally, in Table I we present �for l=0� the paramount
features of the n-type DDD QWs in Si for three different
impurity densities, 8�1012, 1.3�1013, and 6.5�1013 cm−2,
omitting �H� and considering exchange-correlation effects
�XC�. As we can see from the mentioned table, the Fermi
energy, the potential depth, and the longitudinal and the
transverse electron levels have important changes when the
exchange-correlation effects are considered. These changes
have more relevance as the impurity density is increased.

IV. CONCLUSIONS

In summary, the subband levels and the relative mobility
in double n-type �-doped quantum wells are presented. The
Thomas-Fermi approximation is implemented in order to ob-
tain an analytical expression for the Hartree-Fock potential.
The system is analyzed as a function of the donor density as
well as the distance between the � wells. This expression is
important for possible device applications as well as for
more elaborated self-consistent calculations. It is shown in
this work that the Thomas-Fermi approximation, a simple
model that keeps a great amount of physics, works remark-
ably well.
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