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Abstract

We present an alternative and efficient way for calculating the superlattice Green function for discrete systems. The

idea is to consider the superlattices as a crystal with the unit cell having the size of the superlattice period in the growth

direction. The calculation method takes into account the matrix structure of the system Hamiltonian and a block

tridiagonal matrix inversion algorithm. To illustrate the method we study the electronic band structure of a semi-

conductor superlattice described by means of an empirical sp3s� tight-binding Hamiltonian, including nearest-neighbor

interactions and spin–orbit coupling.

� 2004 Published by Elsevier B.V.
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1. Introduction

The most common types of heterostructures

are simple heterojunctions, quantum wells and

superlattices [1,2]. These multilayer structures are

produced now with a high quality degree due to

the enormous advances in growth techniques such

as molecular beam epitaxy (MBE) and metal-or-

ganic chemical vapour deposition (MOCVD). In
particular GaAs/AlAs superlattices received con-
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siderable attention as prototypes of artificial het-
erostructures combining alternate slabs of a direct-

gap material (GaAs) and an indirect-gap one

(AlAs), which resulted in novel electronic features

such as band mixing or spatial confinement. The

control now achieved in the growth of hetero-

structures has made possible the existence of more

complicated heterostructures of interest. As

examples we can quote an arbitrary sequence of
wells and barriers, digital quantum wells [3],

polytype superlattices [4] or a quasiregular system

following a given sequence (Fibonacci, Thue-

Morse, etc.) [5,6]. The usual superlattices have a

great importance in different fields, but especially

in the laser device area. Quantum cascade lasers
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based on the intraband transitions of GaAs/AlAs

superlattices [7] have been produced. One of the

advantages of superlattices in laser design comes

from the high oscillator-strength of the radiative

transitions between minibands. This leads to the so

called ‘‘natural inversion’’, and in contrast to the
case of the intersubband quantum cascade struc-

tures, comes for free.

Different theoretical methods have been put

forward to study these systems. Recent review

works on the theoretical methods employed to

study multilayer and nanostructured systems can

be found in [8,9]. Among these methods, Green�s
function techniques have proved to be very useful
for these studies. Among the Green�s function

techniques the surface Green�s function matching

(SGFM) [10–12] and the interface response theory

[13,14] are very handy to study systems with many

non-equivalent interfaces because they are partic-

ularly compact and flexible. These methods obtain

the system Green function through the bulk Green

functions of the constituent materials. We present
here an alternative and efficient way to calculate

the Green function of a superlattice (simple or

polytype) in discrete media by considering the

whole superlattice period.

In Section 2 we present the mathematical

method. In Section 3 an application is done to the

study of the electronic structure of GaAs/AlAs

superlattices described by an empirical tight-
binding (ETB) sp3s� Hamiltonian [15] includ-

ing nearest-neighbor interactions and spin–orbit

coupling [16]. Conclusions are presented in Sec-

tion 4.
2. Mathematical method

We shall consider an infinite superlattice

Anw=Bnb , with nw monolayers of material A and nb
monolayers of material B, described as discrete

media. The problem to study can be electronic

states, phonons, etc., with no loss of generality in

our method. The main idea of the method is to

consider the superlattice as a crystal, although

artificial, having as unit cell the superlattice
period in the growth direction, taken here as the z
axis. Then we proceed with a generalization of the

classical method for surfaces and interfaces [17] to

the superlattice case.

In order to fix the notation we shall take the

wording of the electronic structure problem, but

the method is not restricted to this problem, and
it is easy to see how it can be applied to the study

of other excitations in superlattices.

We shall consider an infinite SL having nw
monolayers of well material (A) and nb monolayers

of barrier material (B) in each SL period d ¼
nw þ nb. We can generalize now the concept of

principal layer [18] to the SL period d. The prin-

cipal layer indices are in this case N � 1, N , N þ 1.
The layer Hamiltonian (dynamical matrix, etc.)

takes the form
HN ;N ¼
HwN ;wN HwN ;bN

HbN ;wN HbN ;bN

" #
ð1Þ

HN ;Nþ1 ¼
0 0

HbN ;wNþ1
0

" #
ð2Þ

HN ;N�1 ¼
0 HwN ;bN�1

0 0

" #
ð3Þ
‘‘b’’ and ‘‘w’’ stand here for barrier and well

respectively. The Hamiltonian elements HN ;N ,

HN ;Nþ1 and HN ;N�1 are ððnb þ nwÞM � ðnb þ nwÞMÞ
supermatrices, M being the size of the Hamilto-

nian element imposed by the model we are using.

Hw;w, Hw;b, Hb;w, Hb;b are supermatrices too. Be-

cause in general nw will be different from nb, Hw;b,

Hb;w are rectangular supermatrices, while Hw;w and

Hb;b are square supermatrices. As we told before

the size ofM depends on the model we are using. If

we use a sp3s� ETB Hamiltonian with nearest-
neighbor interactions and spin–orbit coupling

for zinc-blende semiconductors, then M ¼ 20.

The HN ;N matrix is a block tridiagonal one,

whereas HN ;Nþ1 and HN ;N�1 have only a non-

zero block. These matrices have the following

structure



0 0 0 0

HN ;N ¼

H1;1 H1;2 0 � � � � � � 0

H2;1 H2;2 H2;3 0 � � � ..
.

0 H3;2
. .
. . .

.
0 ..

.

..

.
0 . .

. . .
. . .

.
0

..

. ..
.

0 . .
.

Hnwþnb�1;nwþnb�1 Hnwþnb�1;nwþnb

0 � � � � � � 0 Hnwþnb ;nwþnb�1 Hnwþnb;nwþnb

2
66666666664

3
77777777775

ð4Þ
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HN ;Nþ1 ¼

0 0 0 � � � � � � 0

0 0 0 0 � � � ..
.

0 0 . .
. . .

. ..
. ..

.

..

.
0 . .

. . .
. . .

.
0

0 0 ..
. . .

.
0 0

Hnwþnb;1 0 � � � 0 0 0

2
6666666664

3
7777777775

ð5Þ

HN ;N�1 ¼

0 0 0 � � � 0 H1;nwþnb

0 0 0 0 � � � 0

0 0 . .
. . .

.
0 ..

.

..

.
0 . .

. . .
. . .

.
0

..

. ..
. ..

. . .
.

0 0

0 � � � � � � 0 0 0

2
666666664

3
777777775

ð6Þ

In order to simplify the algorithm to calculate the

Green function we shall define

WSL
0 ¼ E1�HN ;N

aSL0 ¼ HN ;Nþ1

bSL
0 ¼ HN ;N�1

ð7Þ

where in fact E is to be understood, as usual, as the
limit of E þ i� for � ! 0.

The Green�s function equation is given by

ðE1�HÞ �G ¼ 1 ð8Þ

or in an equivalent form

�HN ;N�1 �GN�1;M þ ðE1�HÞN ;N �GN ;M

�HN ;Nþ1 �GNþ1;M ¼ dN ;M ð9Þ

This expression is really an infinite system of

equations. By taking into account the layer struc-
ture of the Hamiltonians involved the former

equation can be written as

..

.

�aSL0 �G�3;0 þWSL
0 �G�2;0 � bSL

0 �G�1;0 ¼ 0

�aSL0 �G�2;0 þWSL
0 �G�1;0 � bSL

0 �G0;0 ¼ 0

�aSL0 �G�1;0 þWSL
0 �G0;0 � bSL

0 �G1;0 ¼ 1

�aSL0 �G0;0 þWSL
0 �G1;0 � bSL

0 �G2;0 ¼ 0

�aSL0 �G1;0 þWSL
0 �G2;0 � bSL

0 �G3;0 ¼ 0

..

.

ð10Þ

We can eliminate from these equations all the odd-

numbered layers, by formally solving for G2n�1;0.

In this way we obtain a new system of equations

..

.

��aSL0 �G�6;0 þW
SL

0 �G�4;0 � �bSL
0 �G�2;0 ¼ 0

��aSL0 �G�4;0 þW
SL

0 �G�2;0 � �bSL
0 �G0;0 ¼ 0

��aSL0 �G�2;0 þW
SL

0 �G0;0 � �bSL
0 �G2;0 ¼ 1

��aSL0 �G0;0 þW
SL

0 �G2;0 � �bSL
0 �G4;0 ¼ 0

��aSL0 �G2;0 þW
SL

0 �G4;0 � �bSL
0 �G6;0 ¼ 0

..

.

ð11Þ

where

W
SL

0 ¼ WSL
0 � bSL

0 ðWSL
0 Þ�1

aSL0 � aSL0 ðWSL
0 Þ�1

bSL
0

ð12Þ

�bSL ¼ bSLðWSLÞ�1
bSL ð13Þ
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�aSL0 ¼ aSL0 ðWSL
0 Þ�1

aSL0 ð14Þ
In this way we have obtained similar equations to

(10) with renormalized matrices. This procedure

can now be iterated, and at any step, say i, we
obtain the following matrices as a function of

those obtained in step i� 1
WSL
i ¼ WSL

i�1 � bSL
i�1ðWSL

i�1Þ
�1
aSLi�1 � aSLi�1ðWSL

i�1Þ
�1
bSL
i�1

ð15Þ

bSL
i ¼ bSL

i�1ðWSL
i�1Þ

�1
bSL
i�1 ð16Þ

aSLi ¼ aSLi�1ðW
SL
i�1Þ

�1
aSLi�1 ð17Þ
From here we can apply the same formal pro-
cedure used for a homogeneous bulk medium

[17]. As opposed to the structural Green function

[11,19] we do not need the 1D wavevector kSL

associated to the superperiodicity of the struc-

ture. In this way we eliminate the need to inte-

grate over kSL in order to obtain the normal

superlattice Green function. The price to pay for

this fact is an increase in the size of the matrices
entering the algorithm, especially if nw and nb are

large numbers. We shall see that this can be over-

come with relative ease due to the structure of

the different supermatrices involved. It has been

noted before that HN ;N is always block tridiago-

nal while HN ;N�1, HN ;Nþ1 have only one non-zero

block.

It is then clear that the matrices entering the
iteration procedure are given by
WSL
0 ¼

ww
0 aw0 0 � � � � � � 0

bw
0 ww

0 aw0 0 � � � ..
.

0 bw
0

. .
. . .

.
0 ..

.

..

.
0 . .

. . .
. . .

.
0

..

. ..
.

0 . .
.

wb
0 ab0

0 � � � � � � 0 bb
0 wb

0

2
6666666666666664

3
7777777777777775

ð18Þ
aSL0 ¼

0 0 0 � � � � � � 0

0 0 0 0 � � � ..
.

0 0 . .
. . .

. . .
. ..

.

..

.
0 . .

. . .
. . .

.
0

0 0 ..
. . .

.
0 0

abw0 0 � � � 0 0 0

2
6666666666664

3
7777777777775

ð19Þ

bSL
0 ¼

0 0 0 � � � 0 bwb
0

0 0 0 0 � � � 0

0 0 . .
. . .

. . .
. ..

.

..

.
0 . .

. . .
. . .

.
0

..

. ..
. . .

. . .
.

0 0

0 � � � � � � 0 0 0

2
666666666664

3
777777777775

ð20Þ

In the case of the first iteration we have

WSL
1 ¼ WSL

0 � bSL
0 ðWSL

0 Þ�1
aSL0 � aSL0 ðWSL

0 Þ�1
bSL
0

ð21Þ

bSL
1 ¼ bSL

0 ðWSL
0 Þ�1

bSL
0 ð22Þ

aSL1 ¼ aSL0 ðWSL
0 Þ�1

aSL0 ð23Þ
The time consuming step here is the inversion of

the block tridiagonal WSL
0 matrix, but we shall see

that the structure of the matrices entering the

iteration procedure allows for a great simplifica-

tion. The matrix ðWSL
0 Þ�1

has all its elements non-

zero. On the other hand aSL0 given by (19) has only
the lowest left element non-zero. Then the product

of these two matrices would be a matrix with the

only non-zero elements given by

ðaSL0 ðWSL
0 Þ�1Þnwþnb ;i

¼ xi ði ¼ 1; . . . ; nw þ nbÞ
ð24Þ

In the same way, and taking into account that bSL
0

given by (20) has only the extreme right element

non-zero, we obtain as the only non-zero element

ðbSL
0 ðWSL

0 Þ�1Þ1;j ¼ yj ðj ¼ 1; . . . ; nw þ nbÞ ð25Þ

The particular values of xi and yj are not relevant
for the discussion.
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Then the matrix products involved in (21)–(23)

would have as only non-zero elements

ðaSL0 ðWSL
0 Þ�1

bSL
0 Þnwþnb;nwþnb

¼ abw0 ðWSL
0 Þ�1

1;1b
wb
0 ð26Þ

and

ðbSL
0 ðWSL

0 Þ�1
aSL0 Þ1;1 ¼ bwb

0 ðWSL
0 Þ�1

nwþnb;nwþnb
abw0 ð27Þ

In this way (21) takes the form
WSL
1 ¼

ww
0 � bwb

0 ðWSL
0 Þ�1

nwþnb ;nwþnb
abw0 aw0 0 � � � � � � 0

bw
0 ww

0 aw0 0 � � � ..
.

0 bw
0

. .
. . .

.
0 ..

.

..

.
0 . .

.
. . . . .

.
0

..

. ..
.

0 . .
.

wb
0 ab0

0 � � � � � � 0 bb
0 wb

0 � abw0 ðWSL
0 Þ�1

1;1b
wb
0

2
666666666664

3
777777777775

ð28Þ
In the same way (22) takes the form

aSL1 ¼

0 0 � � � � � � � � � 0

0 0 � � � � � � � � � ..
.

..

. ..
. ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

. ..
.

0 0 � � � � � � � � � ..
.

abw0 ðWSL
0 Þ�1

1;nwþnb
abw0 0 � � � � � � � � � 0

2
6666666664

3
7777777775

ð29Þ
and (23) takes the form

bSL
1 ¼

0 0 � � � � � � 0 bwb
0 ðWSL

0 Þ�1
nwþnb ;1

bwb
0

0 0 � � � � � � � � � 0

..

. ..
. ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

. ..
.

0 � � � � � � � � � � � � 0

2
666666664

3
777777775

ð30Þ
From (28) it is clear that WSL

1 keeps the tridiagonal
block structure and only the ð1; 1Þ and ðnw þ nb;
nw þ nbÞ elements are modified. aSL1 and bSL

1 keep
the aSL0 and bSL
0 structure with only one non-zero

element. It is then clear that successive iterations

will not modify these structures. Then the iteration

procedure is performed only on four blocks of size

(M �M) in the different matrices involved. These
blocks are obtained in a quick and accurate way

by means of the method presented in [20], without

the need of searching for the whole inverse matrix.

After the convergence is reached we must invert
the whole WSL matrix in order to obtain the su-

perlattice Green function (GSL ¼ ðWSLÞ�1
), thus

inverting a big matrix only once. Thus using the

structure of the matrices involved and the method

for inverting block tridiagonal matrices of [20] we
obtain an efficient computational method to ob-

tain the superlattice Green function of discrete

media.

We have obtained in a direct way all the Green

function elements of the superlattice, as compared

to the case of the structural Green function [11,19].

There we have to integrate over kSL in order to

obtain the normal superlattice Green function, by
using the interface projected Green function and

additional relationships [11].

As a byproduct of the iteration procedure, and

in the same way described in [17], we can obtain

the following transfer matrices

GNþ1;N ¼ TSLGN ;N

GN�1;N ¼ TSLGN ;N

GN ;Nþ1 ¼ GN ;NSSL

GN ;N�1 ¼ GN ;NSSL

ð31Þ
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These transfer matrices can be used to study the

properties of semiinfinite superlattices, multilayer

systems formed with finite repetitions of the su-

perlattice periods, etc., as explained in [11].
3. Results and discussion

In order to illustrate the capabilities of the new

method we shall study the electronic structure of

AlAs/GaAs superlattices. This is a well studied

case and can serve as an excellent test system. We

shall consider a realistic description by means of

an ETB sp3s� Hamiltonian with nearest-neighbor
interactions [15] and spin–orbit coupling [16]. The

ETB parameters employed in our calculations are

those given in [21]. We have employed the

following energy reference: EvðAlAsÞ ¼ 0:00 eV,

EvðGaAsÞ ¼ 0:55 eV.

As a preliminary test of the method we per-

formed calculations for GaAs bulk systems. We

considered ‘‘superlattices’’ ranging from 2 to 100
ML in the barrier and well. In the calculations the

AlAs barrier was substituted by GaAs. The cal-

culation time increased almost linearly with the

period size. The results of our method were

checked against those obtained by using the

method described in [17]. The numerical values of

the local density of states obtained by both

methods agreed at least to 10�7. Thus the elec-
tronic structure obtained by the two different

methods is the same. This is a strong check on the

numerical accuracy of our method.

It is a well known fact that different combina-

tions of the ðnw; nbÞ numbers of layers give rise to
Table 1

Comparison of our results with those of [23]

Sample nw nw=nb EC
0 (eV) EX

0 (e

10/10 10 1 2.247 2.284

7/7 7 1 2.314 2.291

5/5 5 1 2.441 2.309

7/5 7 1.4 2.343 2.307

6/4 6 1.5 2.399 2.316

10/5 10 2 2.237 2.309

8/4 8 2 2.266 2.329

6/3 6 2 2.301 2.316

Well thickness in ML, ratio nw=nb of well to barrier thickness, groun

barrier EX
0 , energy difference EC

0 � EX
0 for our results and effective ma
direct and indirect gap superlattices, and also to an

intermediate region [10,22,23]. This can be a good

test case for the new method. We have calculated

then the lower conduction and higher valence

band states for a wide number of AlAs/GaAs su-

perlattices in order to illustrate this fact and
to compare with recent experimental information

[23]. In that work a transition from an indirect to

a direct energy band structure was induced in

short-period GaAs/AlAs superlattices by going

from symmetric to asymmetric superlattices, and

reducing the barrier thickness to half the well

thickness.

We have seen in our calculations that for sym-
metric superlattices with nw 6 8 we have always

indirect gap superlattices, that is type II superlat-

tices.

In Table 1 we present the lowest electron state

in the GaAs wells (EC
0 Þ and AlAs barriers ðEX

0 Þ and
compare them with those obtained by effective

mass calculations [23]. It can be seen that for the

symmetric superlattices ðnw; nwÞ analyzed there the
gap is indirect, except in our calculations for

the (10,10) one. In those cases the lowest conduc-

tion band state is located at the X point in the

AlAs barrier. By reducing the AlAs barrier width

to the GaAs well half width the gap becomes di-

rect. This can be seen in a graphic way in Fig. 1

where the local density of states (in arbitrary units)

of the lowest conduction state is represented on the
y-axis versus the position of the different anion and

cation layers in the superlattice period. It can be

seen how in the symmetric superlattices, Fig. 1(a)

and Fig. 1(c), the lowest conduction state in the X
point has the local density of states concentrated in
V) EC
0 � EX

0 m
� EC

0 �EX
0 TB Type

20 )37 I (II)

93 23 II

140 132 II

57 36 II

39 83 II

)47 )72 I

)34 )63 I

)31 )60 I

d conduction state energy of C state EC
0 in well and X state in

ss ones [20], and type of energy gap for investigated SLs.



(d)

AlAsGaAsAlAsGaAs

(c)

(b)(a)

Fig. 1. Spatial distribution of the local density of states, in arbitrary units, versus the superlattice period, of the lowest conduction

band state for (a) (8,8) (X point), (b) (8,4) (C point), (c) (6,6) (X point) and (d) (6,3) (C point) SLs. The figure displays the crossover of

the X -state (symmetric SL) to the C state (antisymmetric SL). (Cations, dashed line; anions, dotted line.)
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the AlAs layers. On the other hand in the asym-

metric superlattices, Fig. 1(b) and (d), the lowest

conduction state in the C point has the local den-

sity of states concentrated in the GaAs layers.

In Table 2 we present the results of our

calculations for different superlattices grown exp-
erimentally [23], and studied by means of photo-

luminescence spectroscopy. The difference of the
Table 2

Comparison of our results with those of [23]

Sample nw nw=nb Ec Ev ð
10/10 10 1 2.247 0.483 1

7/7 7 1 2.291 0.440 1

5/5 5 1 2.309 0.390 1

7/5 7 1.4 2.307 0.443 1

6/4 6 1.5 2.316 0.425 1

10/5 10 2 2.237 0.484 1

8/4 8 2 2.266 0.463 1

6/3 6 2 2.301 0.433 1

Well thickness in ML, ratio nw=nb of well to barrier thickness, ground

difference Ec � Ev for our results, energy difference Ec � Ev for experim

to experimental data [23] (the energy units are eV) and type of energ
calculated and measured gaps is quite reasonable.

The biggest differences appear for the (10,5) and

(8,4) superlattices. It can be seen in [23] that those

cases correspond to samples with 50 periods,

whereas in the other cases the number of periods is

at least 100, and there can be some further differ-
ences added to the non-inclusion in our calcula-

tions of exciton effects. Our results give also
Ec � EvÞTB ðEc � EvÞExp DEExp � DETheor Type

.764 1.804 0.040 I (II)

.851 1.866 0.015 II

.919 1.939 0.020 II

.864 II

.891 II

.753 1.846 0.093 I

.803 1.902 0.099 I

.868 1.921 0.053 I

state energy in conduction (Ec) and valence (Ev) band, energy

ental ones, the discrepancy DEExp � DETheor of our results respect

y gap for investigated SLs.
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similar results to those of [10], with some small

differences due to the different parametrization.

From the computational point of view the new

algorithm is fast, with very good precision and

convergence, as checked against [17] in the bulk

case. Besides this the new algorithm allows us to
consider large period SL, without any computa-

tional problem. This algorithm is not restricted to

rectangular potential profiles, and any form can be

considered, at least in principle. Thus the scope of

our method is wider and allows us to consider

problems such as parabolic SLs, Stark effect in

SLs, to mention some ones.

Thus it has been shown that this new method
provides an efficient way to calculate electronic,

vibrational, etc., properties of superlattices.
4. Conclusions

We have developed a new method to calculate

the Green function of discrete superlattices. The
basic idea is to consider the whole superlattice

period in order to obtain the corresponding trans-

fer matrices, and the superlattice Green function.

This is done by the generalization of the classical

algorithm for the transfer matrix [17] together with

a method for the inversion of block tridiagonal

matrices [20]. The method is an efficient and reli-

able one. It has been checked by studying the
electronic properties of AlAs/GaAs superlattices

described by means of a realistic sp3s� ETB

Hamiltonian. Comparison of our results against

experimental data and other theoretical methods

gives a very good agreement.
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