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ABSTRACT 
 

In all ecosystems, plants continuously face environmental stress and 

consequently are forced to respond with defensive and adaptive strategies. 

These responses require the activation of several signaling pathways that 

induce expression of specific genes. An effective response requires that the 

biological system have the genetic background to support the necessary 

molecular players that permit the assembly of essential integrative genetic 

pathways. In the most complicated scenario, plants must contend against 

more than one abiotic stress, pest, or pathogen at the same time, forcing an 

integral and complete defense response to adjust plant physiology. Certain 

molecular players act as hubs or master regulators to integrate signals from 
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different regulatory pathways activated by two or more types of abiotic stress 

or forms of biotic stress. Some defense and adaptive genes are 

transcriptionally regulated not only by a specific abiotic stress but also by 

biotic stress, exposing the existence of overlapping pathways. The genes 

shared between these networks appear to allow plants to prioritize their 

responses and ensure their survival by using their resources efficiently. The 

well-documented shared or convergence points in the response to abiotic and 

biotic stress in plants exhibit a superimposed complexity, as exemplified by 

induction of certain defense genes by biotic stress in presence only of a 

specific environmental condition (temperature and humidity). Interestingly, 

accumulating data strongly support the hypothesis that the convergence 

points between abiotic and biotic stress pathways also modulate the post-

embryonic developmental program which is one of the most conspicuous 

adaptive strategies to cope with environmental stress. Pathogen attack or 

abiotic stresses such as nutrient scarcity alter cell division and cell 

differentiation processes, and consequently the plant architecture is modified. 

Plant growth regulators, such as auxins, cytokinins, ethylene, and jamonic 

acid, as well as reactive oxygen species, play crucial roles in the early steps 

of the convergence between these multiple stress signals. The advancement 

in powerful molecular tools, including transcriptome and proteome analysis, 

whole-genome sequencing, and bioinformatic studies are enabling disection 

of networks in abiotic and biotic signaling cascades and identification of the 

overlapping reactions and key factors that fulfill very important roles as 

integrative signals in plants. 

 

 

I. INTRODUCTION 
 

Different forms of abiotic and biotic stress invariably limit the production of 

crops in the approximately 1.5 billion hectares of arable land in the world 

(UNESCO, 2009), a problem that is far from solved and that will be exacerbated 

constraining plant growth and productivity. Problems of lower yields due to 

drought are serious; irrigation will not be a long-term viable solution since water 

grows scarcer and large-scale desalinization is not yet viable. High and low 

temperatures, acid soils, and soils with high content of metal ions reduce 

productivity in many cropping areas. Solutions to these problems could be 

diverse, but a better understanding of the physiology and genetic of tolerance in 

plants to stress will be essential as we attempt to mitigate these limitations and to 

increase crops yields. Maximizing yields by breeding for resistance, or at least 

tolerance, to abiotic and biotic stress is of great importance. Increases in crop 

yields in developing countries are of high priority since these areas exhibit the 

highest levels of increasing population and consequently increasing demands on 
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the food supply. Furthermore, the effects of climate change will be of major 

impact on lower latitudes that are occupied primarily by developing countries. 

In the past two decades, great advances in plant molecular biology have 

permitted new discoveries about phenotype plasticity, defined as the capacity of a 

given plant genotype to produce different phenotypes in different environmental 

conditions (Sonia, 2010). Several genes that determine phenotypes of abiotic and 

biotic stress tolerance or resistance and involved signaling pathways have been 

identified. The study of gene function has been advanced firstly by whole genome 

sequences and bioinformatics approaches. At the same time, molecular biology 

techniques have been used to identify points of convergence where the signaling 

due to various stresses collides to activate specific response reactions. Formidable 

progress in the area of defense mechanisms to environmental stress in plants has 

been achieved, and the task now is to dissect the collections of players in the 

signaling pathways that transduce the messages from two or more cascades and 

identify the interconnections that exist among signaling routes. It is well known 

that when two or more types of stressing factors (biotic or abiotic; for instance, 

pathogen attack and heat stress or high relative humidity) coincide, the defense 

reaction to one stress impairs the reaction to the other. The knowledge of how 

biotic and abiotic environmental cues affect the final size and architecture of 

plants are progressing. We are beginning to understand in an integral way the 

biochemical, molecular, cellular, and physiological mechanisms involved in 

individual phenotypic plasticity. More effort is needed to draw the complete 

networks assembled in the intricate abiotic or biotic stress signaling responsible 

for control of the molecular, cellular, and physiological mechanisms of 

acclimation or adaptation. 

 

 

II. HOW PLANTS INTEGRATE REGULATORY  

GENETIC PATHWAYS 
 

During 450 millions of years of their existence on the earth, the environment 

has imposed changing and stressing conditions on land plants. These conditions 

have forced the evolution of elaborate molecular systems that respond to dynamic 

situations with physiological changes that have allowed plants to adapt efficiently 

to life in the varied climates of the earth. These elaborate molecular systems have 

enabled the survival and adaptation in each plant species that reign over planet 

surface. In biological systems, it is well known that evolution has led to integrated 

and well engaged signaling pathways, that enable the organisms to respond to 



Saúl Fraire-Velázquez, Lenin Sánchez-Calderón et al. 136 

stressing conditions with the lesser waste of energy. An early event in plants after 

perception of environmental stresses is the activation of signaling cascades that in 

turn leads to the reprogramming of the profile of expressed genes including stress-

responsive genes. In biotic stress, plant innate immunity is activated after 

perception of pathogen-associated molecular patterns (PAMPs) in charge of 

pattern recognition receptors (PRRs) or upon resistance (R) protein-mediated 

recognition of pathogen race-specific effector molecules (Figure 1). R proteins 

have been identified in many pathosystems, but only several PRRs have been 

described. In Arabidopsis several members of leucine-rich repeat with protein 

kinase activity have been found as PAMP receptors, which suggest members of 

this family function as pattern recognition receptors, and that heterologous 

expression of PAMP recognition systems is functional (Lacombe et al., 2010). 

A number of molecular players fulfill the relevant function of integrating 

signals from signaling pathways activated in responses to different types of biotic 

and abiotic stresses. A good example is Med25, a subunit of the Arabidopsis 

thaliana Mediator complex. Mediator is a phylogenetically conserved 

multiprotein complex of 20 to 30 subunits (depending of the organism) organized 

into three linked modules (the head, middle, and tail) and a detachable kinase 

module. The tail module is thought to interact primarily with DNA-bound 

transcription factors, while the head and middle modules bind to the C-terminal 

domain of RNA polymerase II (Kidd et al., 2009). In this way Mediator promotes 

the assembly and activation of transcription complexes on core promoters, 

interacts with RNA Pol II in the initiation of transcription, and serves as a primary 

conduit of regulatory information from enhancers to promoters (Kuras et al., 

2003). Mediator is thought to be an integrator of regulatory signals that converge 

on promoters of stress-responsive genes, in this way, several subunits have been 

found functionally necessary in the transcription activated in response to diverse 

stress-specific signaling pathways (Kim et al., 2006). Consistent with this, the 

Med25 subunit is a common target of three transcription factors involved in 

different pathways activated in response to salt, drought, and heat stress and also 

has a function in signaling that regulates flowering time in response to light 

conditions (Elfving et al., 2011). That means that in these signaling cascades, 

Med25 (as part of Mediator) is the last signal receptor-transducer, just after these 

three transcription factors that have been found involved in stress response 

pathways, and just before the action of RNA Pol II (Figure 1). Med25 has a 

conserved activator-interacting domain (ACID) located in the 551-680 amino acid 

segment through which the molecule interacts with DNA-bound transcription 

regulatory factors. Transcription factors DREB2A, ZFHD1, and a MYB-like 

protein have been identified as Med25 interactors. DREB2A interacts with cis-
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acting dehydration-responsive element/C-repeat (DRE/CRT) involved in cold and 

drought stress–responsive gene expression and, in a constitutively active form, 

enhances drought tolerance (Sakuma et al., 2006). The expression of ZFHD1 is 

induced by drought, high salinity and abscisic acid, and Arabidopsis plants 

overexpressing ZFHD1 have higher drought tolerance than wild-type plants (Tran 

et al., 2007). MYB-like protein activates expression of transcripts specifically 

expressed in plants subjected to a combination of drought and heat stress (Rizhsky 

et al., 2004). Furthermore, in Arabidopsis, the PHYTOCHROME AND 

FLOWERING TIME1 (PFT1) gene, which encodes the MEDIATOR25 (Med25) 

subunit of Mediator, is required for jasmonate-dependent defense gene expression 

and resistance to leaf-infecting necrotrophic fungal pathogens (Kidd et al., 2009) 

(Figure 1, biotic stress). 

Another example of a molecular player that integrates signals is the Target of 

Rapamycin (TOR), a Ser/Thr kinase conserved in fungi, insects, mammals, and 

photosynthetic eukaryotes. Rapamycin is an anti-proliferative drug produced by 

Streptomyces hygroscopicus (Schmelzle and Hall, 2000) originally described as 

an antifungal agent (Vezina et al., 1975). Rapamycin first binds to FK506-binding 

protein (FKBP12) and this complex inhibits the target TOR Ser/Thr kinase. In 

contrast to its activity in other eukaryotes, Rapamycin does not seem to affect 

TOR function in plants (Mahfouz et al., 2006), although in the unicellular green 

alga Chlamydomonas reinhardtii TOR and FKBP12 homologs have been 

identified and characterized, and Chlamydomonas cells are sensitive to 

Rapamycin (Crespo et al., 2005). TOR has a phosphatidylinositol 3-kinase 

domain in its C-terminal region, adjacent to the FKBP12-rapamycin-binding 

(FRB) domain through which it establishes interaction with the FKBP12-

rapamycin complex. At the N-terminus, TOR has two blocks of HEAT motifs; 

these motifs are involved in protein-protein interactions (Andrade, 1995) Through 

the HEAT motifs, Arabidopsis TOR interacts with RAPTOR1 (a TOR regulatory 

protein), and RAPTOR1 regulates the activity of S6 kinase (S6K) in response to 

osmotic stress. S6K in turn phosphorylates ribosomal protein S6 (RPS6), through 

which regulates translation (Mahfouz et al., 2006). TOR inactivation leads to a 

nutrient-starvation response, suggesting that TOR is involved in the reaction to 

nutrient deficiency (Barbet et al., 1996). In Arabidopsis, AtFKBP12 interacts with 

AtFIP37, a protein involved in embryogenesis and endosperm development, 

placing AtFKBP12 in regulation of the cell cycle and in developmental processes 

(Vespa et al., 2004). In yeasts and mammals it has been found that TOR is a 

central controller of cell growth (Schmelzle and Hall, 2000). In plants, TOR links 

embryonic development, cell growth, yield, stress resistance, and mRNA 

translation, integrating energy levels, nutrient availability, and stress information 
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(Abraham, 2005; Mahfouz et al., 2006). In summary, TOR acts as a hub that 

optimizes cellular resources for growth, playing a central regulatory role in stress 

and growth signaling pathways. Med25 and TOR are two molecules that 

exemplify how plants have evolved to respond efficiently by integrating several 

pathways through key master regulators (Figure 1). 

Signal integration from different stress signaling pathways is also mediated 

more simply than by Med25 and TOR through the protein-binding elements in the 

promoters of some defense genes. It is known for example that abiotic and biotic 

stresses such as salinity, drought, abscisic acid (ABA), and fungal inoculation 

induce similar patterns of expression of the members of the 14.3.3 gene family 

(GF14b and GF14c). The 14-3-3 proteins participate in cellular regulatory 

pathways as adapters, chaperones, activators, or repressors and execute important 

steps in signal transduction and metabolism (Chen et al., 2006). These GF14 

genes share the characteristic of cis-elements in their promoter regions that are 

responsive to abiotic stress and pathogen attack (Figure 1). The 14-3-3s family 

genes are also subject to regulation by certain transcript factors (Chen et al., 

2006). In rice, the promoter regions of OsGF14b, c, e and f genes contain low-

temperature response elements (LTRE), whereas OsGF14b, c, d and g genes 

contain cooper response elements (CuRE), in addition to other elements related to 

abiotic stress such drought-responsive elements (DRE) and binding sites for MYB 

transcription factors widely distributed in promoter regions of OsGF14s (Yao et 

al., 2007). Likewise, in Arabidopsis at least five of the 29 cytochrome P450 genes 

are induced by abiotic and biotic stress including the pathogens Alternaria 

brassicicola or Alternaria alternata, paraquat, rose bengal, UV stress (UV-C), 

heavy metal stress (CuSO4), mechanical wounding, drought, high salinity, low 

temperature, or hormones (salicylic acid, jasmonic acid, ethylene, and ABA). Five 

of these cytochrome P450 genes (CYP81D11, CYP710A1, CYP81D8, Cyp71B6 

and CYP76C2) are co-induced by metal stress (CuSO4), paraquat, salinity, ABA, 

and pathogen inoculation. In these cytochrome P450 genes as in the 14.3.3 gene 

family, cis-acting elements include W-box (DNA binding sites for WRKY 

transcription factors), P-box (a positive cis-acting regulator of pathogen defense), 

and MYB recognition sites (Narusaka et al., 2004). These data show clearly that 

plants have evolved diverse response elements to assemble special architectures in 

the regulatory regions of defense genes, which allow an integrated and efficient 

response against diverse environmental stressing constraints (Figure 1). 
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Figure 1. Signal cascade pathways in response to abiotic and biotic stress. In abiotic stress, 

besides classical transcription factors (TFs), TOR and Mediator (with Med25) as key 

regulator in the signal transduction to activate specific stress response genes. In biotic 

stress, cascade signaling through classical pattern recognition receptors (PRRs), R protein 

and Basal defense response, impaired by high temperature and high humidity, whereas 

several described R proteins act even in high temperature. Med25 also included in signal 

transduction to the expression of defense genes in response to pathogen. Furthermore, 

plant defense genes against pathogens, are induced in response to forms of abiotic stress. 

TOR and Med25 also involved in regulation of the development program. 

 

III. SUPERIMPOSED COMPLEXITY IN THE DEFENSE 

MECHANISMS TO BIOTIC STRESS IN SPECIFIC 

ABIOTIC STRESS CONDITIONS 
 

The defense reaction to pathogen in some pathosystems exhibits another level 

of complexity. Variable environmental conditions are common during the plant 

life cycle and, as could be expected, stressing conditions, in the climate for 

example, exert another stress pressure in the host in a pathosystem. The pressure 

of this extra stress is manifested in the plant cells and at the end in the molecular 

mechanisms that plant implements to respond to these spliced stressing factors. In 

this direction, several studies with mutants of Arabidopsis thaliana show a 

resistance phenotype that depends on environmental conditions, specifically 
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temperature and relative humidity; under low humidity and cold temperatures the 

resistance is enhanced, and in high relative humidity and high temperature the 

resistance phenotypes are suppressed (Yoshioka et al., 2001; Mosher et al., 2010). 

Similarly, in A. thaliana and Nicotiana benthamiana/Pseudomonas syringae 

pathosystems, the basal resistance and (R) gene-mediated resistance are reduced at 

moderately elevated temperatures (Wang et al., 2009). Temperature sensitivity is 

thus present in defense mediated by different classes of R proteins, and also, often 

correlates with lesser hypersensitive response (Figure 1, biotic stress side), an 

observable fact not attributable to pathogen-secreted effectors. The negative effect 

of high temperature on the defense reaction is a common phenomenon reported in 

plant disease resistance against biotrophic and hemibiotrophic pathogens (Wang 

et al., 2009). Indeed, studies on plant-bacterial pathosystems indicate that the 

expression of virulence genes tends to increase below temperatures of optimal 

microorganism growth, and several bacterial effectors are secreted preferentially 

in a range of temperature between 18 and 22°C (Van Dijk et al., 1999). 

That means that the advent of increasing environmental temperatures may 

impair (R) gene-mediated disease resistance and result in more extensive disease 

development, although there are examples of R genes that exhibit biological 

performance in the opposite direction with higher efficacy at high temperatures 

(Uauy et al., 2005; Fu et al., 2009; Webb et al., 2010) (Figure 1, biotic stress 

side). The detrimental temperature effect on R-gene-mediated and basal disease 

resistance indicates that genetic pathways activated in response to biotic stress are 

modulated by environmental factors to variable levels. The biological basis of 

high temperature could be explained by considering the impact of temperature on 

protein denaturation and aggregation and on nucleic acid denaturation; this in turn 

affects protein-protein or protein-nucleic acid interactions along all steps of the 

cascade pathway, for example in the avirulence product-R protein recognition and 

in the transcription factor-promoter sequence interaction. Thus, higher 

temperatures result in lower affinity between interacting factors, less specific 

recognition of pathogen molecules, and less optimal interactions between 

interacting players downstream in the signaling cascade, including the 

transcription factor and the response element in the respective gene, and finally 

non-optimal R gene expression. 

In an environment with periods of high temperature, plants besides to cope 

with pathogen challenge, must respond with a physiology change to adapt and 

survive to the stressing condition. Plants could respond with a process of 

acclimation termed thermotolerance; in this process the changes at molecular level 

imply new profiles of expressed genes with emphasis on stress-related proteins. A 

well-characterized response to heat stress is the expression of heat shock proteins 
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(HSPs) that work as molecular chaperones assisting in folding, ATP-dependent 

refolding, intracellular distribution, assembly and degradation of proteins, and 

stabilizing partially unfolded states for thermoprotection (Lee and Vierling, 2000; 

Wegele et al., 2004). A characteristic effect of high temperature is damage to 

cellular structures and membrane dysfunction. Heat stress affects cell physiology 

by increasing the fluidity of membrane lipids, a structure whose interior lipid 

bilayer is normally highly fluid. In fact, normal cell function requires membrane 

lipid bilayers that are largely fluid, a common state at physiological temperatures. 

In accordance with this, cytoplasmic membrane function depends critically on the 

physical state of lipid bilayer, making it susceptible to changes in environmental 

temperature (Mansilla et al., 2004). The cell membrane is a structure for 

anchorage of membrane proteins such as signal receptors, ion-channels, and the 

machinery of translocation. Furthermore, high temperature results in high 

transpiration and this in turn may increase the number of particles dissolved in the 

cell water content (i.e., an increase in solute potential, s) and decrease the water 

potential (w). Peripheral proteins located on the membrane surface commonly 

are water-soluble with mostly hydrophilic surfaces. Conditions that disrupt ionic 

and hydrogen bond interactions would affect the biological function of R proteins 

located in the cytoplasmic membrane or in the cytosol, restraining the activation 

of the defense response at the first step in the signal cascade. 

 

 

IV. MODULATING PROGRAM OF POST-EMBRYONIC 

DEVELOPMENT BY BIOTIC AND ABIOTIC CUES 
 

All land-dwelling plants are attached to the soil and they cannot avoid the 

unfavorable conditions prevailing in its surroundings, as a consequence, they 

always are exposed to multivariate environmental cues. Plants evolved to perceive 

and integrate these biotic and/or abiotic cues and adjust their growth and 

development according to multivariate inputs. This capacity of plant genotype for 

producing different phenotypes under different environmental conditions, called 

phenotypic plasticity, allows plants to change dramatically their final body 

appearance to cope with environmental heterogeneity (Valladares et al., 2007; 

Capron et al., 2009; Sonia, 2010). This capacity is maintained even in mature 

plants in part due to their typical apical growth.  

As part of their sessile lifestyle, plants show a particular kind of growth and 

development. Their mature cells are enclosed in a polysaccharide rigid matrix 

which maintains them attached to their neighbors. Unlike metazoans, plant 
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development is given by the progressive addition of new cells through the activity 

of local populations of totipotent cells termed meristems (Meyerowitz, 2002; 

Nakajima and Benfey, 2002; Taiz and Zeiger, 2010). The plant development is 

guided by a genetically controlled program and it can be divided in two main 

stages: a) embryonic development (ED) and b) post-embryonic development 

(PED). During the ED, through a suite of highly regulated and reproducible 

stages, the fertilized egg cell rises into an embryo. In the embryo, the primary 

meristems, body axes and major tissue layers are established (Jurgens, 2001; 

Nakajima and Benfey, 2002; Willemsen and Scheres, 2004; Capron et al., 2009). 

Almost all the body of the mature plant is generated during the PED, which 

begins during germination, as soon as the mitotic activity of meristems 

commences. Both the primary shoot meristem (SM) and primary root meristem 

(RM) occupy opposite ends of the main body axis. The first, located in the upper 

part, gives rise to new organs such as leaves, stems, secondary meristems, flowers 

and fruits. The second, at the bottom part, originates the root system (Willemsen 

and Scheres, 2004; Vernoux et al., 2010; Teotia and Lamb, 2011). The genetic 

program of PED regulates: i) primary meristems activity, ii) de novo formation of 

secondary meristems and organs, and iii) cell elongation, determining the final 

plant size and shape (Sánchez-Calderón et al., 2005; Taiz and Zeiger, 2010). Due 

to the high plasticity of the program of PED, the size and shape of plant can 

change according to environmental cues. 

In soil, biotic and abiotic components are distributed heterogeneously, and 

there, supplies of nutrients and water are very limited, localized, and variable. 

Also, a broad range of chemical and physical processes occurs due to intrinsic soil 

characteristics and the action of biotic factors (Lynch, 1995; McCully, 1995). As 

soon as the primary root emerges from the seed, it has to grow through these 

hostile media. As growth goes on, de novo lateral roots are formed from the 

primary root. Primary and lateral roots form the root system (RS), which has an 

spatial configuration called root architecture (Lynch, 1995). According to RS 

morphology and architecture, the root-soil interaction area, called rhizosphere, can 

increase exponentially. Is in this area where the intricate and multivariate 

interactions among plants, chemical and physical soil components and macro and 

microorganisms take part. This complexity of biotic and abiotic cues must to be 

sensed and integrated by plants in order to adjust their program of PED. For 

example, as nutrients are distributed in a patching heterogeneous pattern, plants 

change their PED during their life in order to find the nutrient-rich regions, and in 

fact they develop more total root biomass in richer regions. Moreover, plants 

selectively destine more resources to those roots developing in those regions with 

increasing nutrient level availability, despite having other roots growing in 
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already richer regions (Hodge, 2004; Shemesh et al., 2010). Nutrients such as 

nitrogen (N), phosphorus (P), potassium (K) and sulfur (S) have been reported to 

modulate the program of PED (Zhang and Forde, 1998; Forde and Lorenzo, 2001; 

Williamson et al., 2001; Kutz et al., 2002; Lopez-Bucio et al., 2002; Ashley et al., 

2006). 

When growing under limiting P conditions, plants of Arabidopsis thaliana 

show dramatic changes in root architecture such as reduction in primary root 

length, increased formation of lateral roots and greater formation of root hairs. P 

deficiency induces a change of program of PED from determinate to 

indeterminate. Typically, on indeterminate PED, the newly formed root cells are 

added by the mitotic activity of primary meristem. These cells then get away from 

the meristem and increase their length, and the elongation process ends when the 

cells start to differentiate. When plants are P starved, cell division in the primary 

root meristems gradually reduces and the cells start to prematurely differentiate 

until total inhibition of cell elongation and loss of meristematic activity occur 

(meristem exhaustion). At the end, root tips change their physiological 

characteristics and the exhausted meristem becomes a structure which takes part 

in P uptake (Williamson et al., 2001; Lopez-Bucio et al., 2002; Sánchez-Calderón 

et al., 2005). In this process, root tips locally detect P deficiency, this response 

being mediated by at least LPR multicopper oxidase genes (Sánchez-Calderón et 

al., 2005; Svistoonoff et al., 2007). Recently, iron (Fe) has been reported to play a 

role as well in the control of these PED reprogramming (Ward et al., 2008). This 

change of root architecture is due to the fact that, in both meristematic and 

elongation areas, the content of reactive oxygen species (ROS) is reduced as long 

as the determined PED goes on. The low phosphorus insensitive 4 (lpi4) mutant 

does not show the typical P deficiency growth phenotype, neither the ROS 

reduction in root tips. Interestingly, the addition of jasmonate (JA) to low P 

availability medium rescues the wild type (WT) growth phenotype, suggesting 

that this phytohormone, commonly related to biotic stress, is taking part over 

developmental root system changes in response to nutritional stress (Chacón-

López et al., 2011), and could be a link integrating both abiotic and biotic stress 

response signals. However, addition of JA in media also inhibits the primary root 

growth in WT plans independently of the media P content (Berger et al., 1996). 

Crosstalk can be inferred by analyzing if a specific mutant shares components or 

check-points regarding responses to abiotic and biotic stresses. For example, the 

coi1 (coronatine insensitive1), jar1 (jasmonate resistant1) and jin1 (jasmonate 

insensitive1) mutants are affected in JA signaling (Feys et al., 1994; Berger et al., 

1996; Staswick et al., 2002). COI1encodes a F-box protein, an integral component 

of multi-protein complexes implicated in ubiquitination. JAR1, a JA amino acid 
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synthetase, is required to activate JA for signaling. JIN1encodes a transcription 

factor of the helix-loop-helix type which transcriptionally regulates the expression 

of JA-responsive genes (Xie et al., 1998; Lorenzo et al., 2004; Staswick and 

Tiryaki, 2004). Genetic damage in these loci modifies the sensitivity of these 

mutants to bacterial and fungal pathogens and insect attack (Feys et al., 1994; 

Anderson et al., 2004; Lorenzo et al., 2004; Dombrecht et al., 2007); besides, it 

reduces the root development sensitivity to JA, clearly indicating that COI1, JAR1 

and JIN1 are necessary for root development and defense responses. Future work 

using coi1, jar1 and jin1 is necessary to confirm the crosstalk among changes in 

root development specifically induced by P starvation and plant defense 

responses. Finally, in the shoot, the shade avoidance syndrome and some specific 

defense responses are regulated by integrated jasmonate and light signals (Kazan 

and Manners, 2011). 

 

 

CONCLUSION 
 

Until recently, it was thought that plant responses to biotic or abiotic stresses 

involved a unidirectional signaling. However, in the past decade our knowledge 

about the sophisticated signaling pathways that have evolved to deal with 

environmental changes has increased dramatically. We now understand how 

plants sense and integrate the multivariate biotic and abiotic stressors allowing 

intricate crosstalk among different signaling pathways in the response to the many 

environmental stresses. In this context, the proteins Med25 and TOR are key 

molecular players in this integration of multiple stressor signals. The 

identification of these control points shared in signaling networks, and work 

toward an understanding of how they are regulated and how they in turn regulate 

downstream responses is of paramount importance, as we seek to determine how 

plants modulate their development, physiology and metabolism in a wide 

spectrum of phenotypic responses. We expect that in the near future, this research 

will enable the development of new generations of tolerant crop varieties. These 

new strains should have better performance under stressful environmental 

constraints, leading to higher yields and productivity, necessary as we seek to 

respond to the food demands of the increasing world population. 
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