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A B S T R A C T

Low-dimensional thermoelectricity is a key concept in modern thermoelectricity. This concept refers to the
possibility to improve thermoelectric performance through redistribution of the density of states by reducing
the dimensionality of thermoelectric devices. Among the most successful low-dimensional structures we can
find superlattices of quantum wells, wires and dots. In this work, we show that this concept can be extended
to cutting-edge materials like graphene. In specific, we carry out a systematic assessment of the thermoelectric
properties of quantum well gated graphene superlattices. In particular, we find giant values for the Seebeck
coefficient and the power factor by redistributing the density of states through the modulation of the fundamental
parameters of the graphene superlattice. Even more important, these giant values can be further improved by
choosing appropriately the angle of incidence of Dirac electrons, the number of superlattice periods, the width
of the superlattice unit cell as well as the height of the barriers. We also find that the power factor presents a
series of giant peaks, clustered in twin fashion, associated to the oscillating nature of the conductance. Finally,
we consider that low-dimensional thermoelectricity in graphene and related 2D materials is promising and
constitutes a possible route to push forward this exciting field.

1. Introduction

Thermoelectricity is a phenomenon that has captivated the minds of
scientist for nearly 200 years. This fascination comes from the simplic-
ity of the phenomenon, that is, by maintaining a temperature gradient
it is possible to generate electricity. This exciting field formally started
with the discovery of the Seebeck effect in 1821. Nowadays, there
are a plethora of thermoelectric and thermomagnetic phenomena, for
instance, the Peltier effect, Thomson effect, Nerst effect, Ettingshausen
effect and Righi-Leduc effect [1]. Thermoelectricity remained without
significant progress until the advent of semiconductors in the sixties of
the last century. Semiconductors resulted ideal materials because they
helped to increase the Figure of Merit, ZT = S2𝜎T∕𝜅, which is by far the
most important quantity in thermoelectricity [2]. This quantity depends
on the electric (𝜎) and thermal (𝜅) conductivities, the Seebeck coeffi-
cient (S) and the average temperature (T) between the hot and cold
sides of a thermoelectric device. The relevance of this quantity comes
from its direct relation with the efficiency of a thermoelectric device. In
principle, there is no upper limit for ZT, and for large values of it, the
thermoelectric efficiency will approach to the ideal Carnot efficiency.
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Then, the main issue for practical thermoelectric applications, that com-
pete with traditionally power conversion technologies, is the rising of
ZT. Until now there is no well defined theoretical limit for ZT, but in
order to make thermoelectric devices competitive it is necessary that
ZT > 3 [3]. However, for more than forty years the Figure of Merit of
bulk semiconductors barely approached to 1 [4]. The most successful
strategy was alloying [5]. With alloying a considerable reduction of
the thermal conductivity was achieved, without detriment of the power
factor (S2𝜎). The interdependence of the Seebeck coefficient, electric
and thermal conductivities is the main obstacle to reach and surpass
the desirable value of 3 for ZT [6,7]. The best scenario for a thermo-
electric material is that 𝜅 be reduced as much as possible and that the
power factor be as large as possible, in other words, minimization and
maximization, respectively.

In the dawn of 21st century a new concept burst the scene of thermo-
electricity. This concept was based on low-dimensional structures such
as quantum wells, wires and dots [8,9]. In fact, the name given to it
was low-dimensional thermoelectricity [10–12]. It relies on the ability
to redistribute the density of states (DOS) by changing the dimension-
ality of a semiconductor through size effects. Actually, DOS redistri-
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bution turns out in energy zones with accumulation of states. As the
electric conductivity depends directly on DOS and as the Seebeck coef-
ficient is a function of 𝜎, the mentioned accumulation enhanced the
power factor in unprecedented ways [13]. Furthermore, quantum wells,
wires, and dots are typically arranged in a periodic fashion. This spe-
cial arrangement also known as superlattices favours S2𝜎 because rep-
resents an extra reduction of dimensionality [8,14]. Superlattices also
reduce the thermal conductivity because the natural contrast between
the building blocks of the superlattice structure serve as obstacle for
thermal transport [15–17]. The net result of low-dimensional thermo-
electricity is the improvement of the Figure of Merit to values close or
even larger than the dreamed 3. For instance, quantum well superlat-
tices of Bi2Te3/Sb2Te3, quantum wire superlattices of Si and quantum
dot superlattices of PbSeTe give rise to Figures of Merit of 2.4, 1 and
1.6, respectively [15,18,19]. These outstanding improvements came to
reinvigorate the field as well as allowing several thermoelectric appli-
cations.

On the other hand, the superb physical properties of cutting-edge
materials like graphene are quite appealing for countless technologi-
cal applications [20–22]. In specific, the excellent electric conductiv-
ity makes graphene a natural candidate for thermoelectricity. How-
ever, graphene, in reality, is a bad thermoelectric material due to
its outstanding thermal conductivity [23]. For instance, suspended
graphene [24] and graphene on hexagonal Boron Nitride [25] are
among the materials with the highest mobilities, 200,000 cm2V−1s−1

and 125,000 cm2V−1s−1, respectively. The thermal conductivity is also
high at room temperature, in the range of 2000–6000 Wm−1K−1,
depending on the number of graphene layers [26,27]. These remark-
able properties are closely related to the fundamental characteristics of
graphene. This 2D material is a semi-metal with a gapless linear dis-
persion relation. The charge carriers behave as massless quantum rela-
tivistic particles known as Dirac electrons [20]. In the case of thermal
transport, the most important contribution comes from the out-of-plane
phonon modes. Under this context, how to do in order to transform
graphene in a potential thermoelectric material. As in the case of semi-
conductors, the best strategy is to reduce dimensionality. One of the
main proposals is based on the so-called graphene nanoribbons (GNRs).
In these structures, the shape and edges dictate the fundamental prop-
erties [28–31]. So, by manipulating these structural characteristics it
is possible to improve the Figure of Merit to values even superior to 3
[32,33]. Practically, all nanoribbons designs try to diminish the ther-
mal transport without detriment to the power factor. Designs ranges
from simple armchair GNRs [34,35], nanoribbons with mixed edges
[36–38] to more elaborated chevron-type GNRs [32,39]. At this point,
it is important to mention that despite the advance in the manipulation
of the edges of GNRs [40,41], we consider that the sophistication of
GNRs for thermoelectric applications would be problematic at experi-
mental, and more importantly at mass production, levels. Another pro-
posal that has been less explored and could have important possibilities
is the one based on gating. Actually, by nanostructuring graphene with
top gate electrodes in a periodic fashion, it is possible to obtain the
so-called gated graphene superlattices (GGSLs) [42–45]. This nanos-
tructuring, in principle, reduces dimensionality, redistributes the DOS
and consequently can enhance the thermoelectric properties. In fact,
giant values of the Seebeck coefficient, 30 mV/K and 260 mV/K, have
been reported in GGSLs [46] and GGSLs with defects [47], respectively.
Here, it is also important to remark that gated graphene structures are
experimentally reliable at such degree that they have served as vehi-
cles to test unprecedented phenomena like Klein tunneling [48,49]. For
more details about the state of the art of thermoelectricity in graphene
the reader is remitted to the excellent review of Dollfus et al. [50].

In the present work, we address the concept of low-dimensional
thermoelectricity in graphene. In particular, we carry out a systematic
assessment of the thermoelectric properties of quantum well GGSLs.
We use the Dirac-like equation to describe the charge carriers and we
implement the transfer matrix approach, Landauer-Büttiker formalism

and Cutler-Mott formula to obtain the transmission, transport and ther-
moelectric properties, respectively. We find that the giant value of the
Seebeck coefficient can be improved up to two orders of magnitude
without the need of incorporate a defect barrier in GGSLs. This enhance-
ment can be achieved by appropriately choosing the angle of incidence
of the impinging electrons. We also find that the giant values of the
Seebeck coefficient are preserved even when we sum up on all trans-
mission channels. Furthermore, we obtain that the oscillatory nature of
the conductance give rise to twin giant peaks in the power factor. One
of the peaks is related to the increasing (decreasing) behaviour of the
conductance (Seebeck coefficient), while the other peak is associated
to the decreasing (increasing) trend of the conductance (Seebeck coef-
ficient). It is also important to mention that in a typical configuration
of gated graphene structures the graphene sheet is place on a substrate
like SiO2. This aspect could be quite relevant because it is known that
the thermal conductivity of graphene on this kind of substrates drops up
to three orders of magnitude [23]. Then, in principle, this diminution
of the thermal conductivity and the giant values of the power factor in
quantum well GGSLs can confabulate to give rise to significant Figures
of Merit.

2. Model for thermoelectric device based on graphene
superlattice

A prototypical GGSL consist of: a graphene layer supported by
non-breaking-symmetry SiO2 substrate and an array of periodic metal-
lic electrodes that are coupled to graphene through a dielectric SiO2
[46,47]. Through the electrodes, an external electrostatic field can be
applied [42]. The main effect of the electrostatic potential is a shift-
ing of the Dirac cones proportional to the field strength V0. This shift-
ing generates a periodic pattern of regions with (barriers) and without
(wells) potential, see Fig. 1. The latter region has a potential V0 = 0,
a thickness dW and the transport is owing to electrons (calling to this
region n-type graphene). The former region has a potential V0, thick-
ness dB and the transport is owing to holes (calling to this region p-type
graphene). To know the actual profile of the barriers it is necessary to
solve the electrostatic problem that underlies between graphene and
the top and back electrodes. However, if the electron wavelength is
large compared to the length over which the potential rises the edges of
the barriers can be considered as sharp [51]. In our case the edges are
assumed as sharp, so the barriers can be considered as perfectly abrupt,
in other words, stepwise potential barriers. If we applied an electric
current I between the two graphene-metal junctions (contacts A and
B), then the contact A is heated and the contact B is cooled. With the
help of thermocouples, we can measure the difference of temperature
between the contact A and B [52]. This configuration can be used for
electrical cooling (Peltier Effect). The same device can be used for the
generation of a voltage due to a temperature difference between the
contacts A and B (Seebeck effect). This is possible if a controlled tem-
perature gradient is applied to the sample by microfabricated heater
while the resulting thermally induced voltage ΔV is measured by the
voltage probes to acquire the Seebeck coefficient [53].

The transport of charge carriers through GSL is ballistic, highly
anisotropic and in extreme cases results in group velocities that are
reduced to zero in one direction but are unchanged in the other direc-
tion [43]. Depending on the transversal wave vector or the angle of
the electrons that impinge on the superlattice structure the propagation
properties can be tuned readily. The transmission of electrons through
the periodic n-p superlattice may resemble optical refraction at the fron-
tier of the interfaces. The quantum characteristic of electrons allows
that their wave nature takes place. Then, an electron approaching the
interface from the n-side is partly reflected and partly transmitted to the
p-side. The Fermi momentum plays the same role as the refractive index
in optics, with the sign determined by the charge carriers, positive for
electrons and negative for holes [54].
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Fig. 1. (Top) Schematic representation for thermoelectric
graphene devices based on p-n junction superlattices. The
arrow indicates the direction of the heat flow, and ΔV
denotes the voltage between electrodes. (Middle) Distribu-
tion of Dirac cones along the superlattice structure. (Bot-
tom) Band-edge profile of the conduction band of GGSLs.
V0, dB, dW and E0 represent the strength of the potential,
the width of barriers and wells and the energy of an inci-
dent electron.

The massless Dirac-like equation describes this system and the shift-
ing can be obtained through of:

[vF( ⃖⃗𝜎 · ⃖⃗p) + V(x)]𝜓(x, y) = E𝜓(x, y), (1)

where the components of pseudospin ⃖⃗𝜎 = (𝜎x, 𝜎y) are Pauli matrices,
⃖⃗p = (px, py) is the in-plane momentum operator, V(x) = V0 is the one-
dimensional potential along the x direction and 𝜓(x, y) represents the
wave function.

In the well and semi-infinite regions (V(x) = 0) the dispersion rela-
tion is given as E = ±ℏvFk, while in the barrier regions an additional
term appears due to the applied field, E = V0 ± ℏvFq. We denote the
wave functions with 𝜓k

±(x, y) for the well and semi-infinite regions and
𝜓

q
±(x, y) for the barrier regions:

𝜓k
±(x, y) =

1√
2

(
1

u±

)
e±ikxx+ikyy, (2)

𝜓
q
±(x, y) =

1√
2

(
1

v±

)
e±iqxx+iqyy, (3)

where vF is the Fermi velocity (for graphene vF = c∕300), k is the
magnitude of the wave vector in the well and semi-infinite regions,
kx and ky are the longitudinal and transversal components of k,
u± = ±se±i𝜃 the coefficients of the wave functions that depend on the
angle of the impinging electrons, 𝜃 = arctan(ky∕kx) and s = sign(E),
v± = ℏvF(±qx+iqy)

E−V0
, here V0 is the strength of the electrostatic potential,

q is the magnitude of the wave vector in the barrier regions, qx and qy
are the components of q, and v± the coefficients of the wave functions.

We can apply the continuity conditions of the wave function along
the superlattice axis as well as the conservation of the transversal
momentum (ky = qy), and define the energy-dependent quantum trans-
mission probability through the GGSL in terms of the so-called transfer
matrix [55,56],

𝕋 (E, 𝜃) = 1|M11|2 , (4)

which depends on the transfer matrices of barriers and wells, and the
number of periods as well. The linear-regime conductance is obtained
through the Landauer-Buttiker formula as [57]:

𝔾∕G0 = E⋆F ∫
𝜋∕2

−𝜋∕2
𝕋 (EF, 𝜃) cos(𝜃)d𝜃, (5)

where E⋆F = EF∕E0 is the dimensionless Fermi energy with E0 = V0,
G0 = 2e2LyE0∕h2vF is the fundamental conductance factor with Ly the

width of the system in the transversal y-coordinate, and 𝜃 is the angle
of the incident electrons with respect to the x-coordinate.

With the help of the conductance, we can compute the power or
Seebeck coefficient in the low temperature limit and in absence of inter-
actions [46,47]:

S(E, 𝜃) = − V
ΔT

=
𝜋2k2

BT
3e

𝜕 ln𝔾(E)
𝜕E

||||E=EF

, (6)

where e is the electron charge, kB is the Boltzmann constant, T is the
average temperature between the hot and cold sides. In the case that,
we have only a single conduction channel the Seebeck coefficient can
be computed by changing 𝔾(E) for 𝕋 (E, 𝜃) in equation (6). Note that
for large values in ZT is necessary a large Seebeck coefficient, hence,
the conductance or transmittance need a large variation at the Fermi
energy.

3. Numerical results

Let us first calculate the transmission probability and the Seebeck
coefficient of GGSLs as a function of the energy for different angles of
incidence 𝜃 = 10◦, 30◦ and 60◦. The numerical results are presented
in Fig. 2. The structural parameters considered for the superlattice
were: an applied voltage V0 = 0.1 eV, a maximum energy Emax = 0.5
eV, number of barriers NB = 10, barrier and well widths dB = 10 nm
and dW = 10 nm, respectively.

As we can see for normal incidence 𝜃 = 0◦, the transmission proba-
bility is perfect (𝕋 = 1, red line in Fig. 2a–c) and there is no formation
of energy minibands and gaps (Klein tunneling). The Klein tunneling
occurs when we have normal incidence, independent of the number
of barriers, barriers width, or variation in applied voltage V0 [45]. In
this case, the Seebeck coefficient is zero, and consequently, the Figure
of Merit is zero too. It means that charge carriers cross the superlat-
tice from electrode A to electrode B, without a change in the transmis-
sion probability [58]. The superlattice structure does not contribute to
improve the Seebeck coefficient.

In Fig. 2a–c, we can see that for small angles 𝜃 = 100, we have
pseudo minibands and gaps, since they are not well defined yet [58]. By
increasing systematically the angle of incidence 𝜃 = 30◦, 60◦, we find
that the mentioned pseudo minibands and gaps become well-defined
ones. From Eq. (6) we can realize that in order to increase the See-
beck coefficient the term (𝜕 ln 𝕋∕𝜕E)E=EF

should be as large as possible.
Thereby, in regions in which we have gaps, perfect transmission, maxi-
mums or minimums the Seebeck coefficient will be zero, see Fig. 2d–f.
In the transition between minibands and gaps the Seebeck coefficient
takes its maximum value, i.e., the change in (𝜕In𝕋∕𝜕E)|E=EF

is large.
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Fig. 2. Transmittance and Seebeck coefficient of GGSLs as a function of energy for different angles of incidence: (a) (d) 𝜃 = 10◦, (b) (e) 𝜃 = 30◦ and (c) (f) 𝜃 = 60◦. The applied voltage,
the number of barriers, the maximum energy and the widths of barriers and wells are V0 = 0.1 eV, NB = 10, Emax = 0.5 eV and dB = dW = 10 nm, respectively.

Low values in S represent a small change in the transmission probability
and high values in S are associated with large changes in the transmis-
sion probability. Under this context, the angle of incidence has a huge
impact on the Seebeck coefficient because minibands and gaps are quite
sensitive to this parameter, see Fig. 2a–c. In fact, minibands and gaps
are not only well defined as the angle of incidence increases, they also
become narrower and larger, respectively. These changes result in a sys-
tematic enhancement of the Seebeck coefficient. For instance, we obtain
maximum values for the Seebeck coefficient of 5, 30 and 200 mV/K for
angles of incidence of 10◦, 30◦ and 60◦, respectively. We can also notice
the systematic change in sign of the Seebeck coefficient. This sign alter-
nation is directly related to the reduce dimensionality of the system and
not to the type of charge carrier as in bulk semiconductors. Such is the
case that even when we have n-type, p-type or n-p type transport the
sign alternation is preserved. In the present case of GGSLs the periodic
modulation brought by itself specific characteristics on the transmission

properties, minibands and gaps, that result in sign alternation.
GGSLs have different structural parameters that if appropriately cho-

sen can help to improve the thermoelectric properties. Such is the case
of the number of periods (barriers), the height of the barriers as well
as the width of barriers and wells. The case of the number of barri-
ers is quite useful because minibands and gaps can be better define by
increasing the number of barriers even when the angle of incidence be
small. In Fig. 3 we show the concrete results of the Seebeck coefficient
for different number of barriers: (a) 3, (b) 6, (c) 10 and (d) 20. The
angle of incidence considered is 𝜃 = 10◦. The other structural parame-
ters are the same as in Fig. 2. As we can notice for NB = 3 the Seebeck
coefficient barely reaches a maximum value of 0.3 mV/K. We can also
see a reduced number of peaks. The small values for the Seebeck coef-
ficient are related to the lack of well define minibands and gaps, while
the reduce number of peaks is associated to the reduce number of res-
onances within each miniband [56]. In fact, the number of resonances

Fig. 3. Seebeck coefficient of GGSLs as a function of energy
for different number of barriers: (a) NB = 3, (b) NB = 6, (c)
NB = 10 and (d) NB = 20. The angle of incidence consid-
ered is 𝜃 = 10◦. The other parameters are the same as in
Fig. 2.
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in each miniband is proportional to the number of wells in the superlat-
tice. By increasing the number of barriers we can see an overall increase
of the Seebeck coefficient and a multiplication of the number of peaks.
In particular, we obtain maximum values for the Seebeck coefficient of
1.2, 4 and 26.38 mV/K, which correspond to number of barriers of 6,
10 and 20, respectively. Other interesting feature is that these maxi-
mum values are located at practically the same energy irrespective of
the number of barriers. This can be understood by considering that an
increase in the number of barriers does not entail a change in the width
of minibands and gaps neither a shift of them, what really incorporates
the number of barriers is a better definition of these superlattice char-
acteristics specially at low energies.

Another parameter that can be used to tune the fundamental prop-
erties of GGSLs is the height of barriers. Contrary to what happen with
the number of barriers the height of the potential allows us to increase
the number of well defined minibands and gaps, to change the widths
of minibands and gaps as well as to shift them. The specific results of
the Seebeck coefficient for different barrier heights are shown in Fig. 4.
In particular, we have considered heights of: (a) 0.1 eV, (b) 0.2 eV, (c)
0.4 eV and (d) 0.8 eV. Here, the number of barriers and the maximum
energy considered are NB = 10 and Emax = 1.3 eV. The angle of inci-
dence and the width of barriers and wells are the same as in Fig. 3.
From this figure, it is clear that the most important changes in the See-
beck coefficient are taking place at energies close to the height of the
barriers. That’s why we are seeing a shift to higher energies of the most
important region in the Seebeck coefficient. By increasing the height of
the barriers we are changing the degree of confinement in the structure
and consequently changing practically all miniband structure charac-
teristics. In the specific case of the maximum value of the Seebeck coef-
ficient, we can see a systematic increase of this quantity as the barrier
height grows. For instance, in the case of a single energy level, we get
values of 5, 16, 35 and 41 mV/K for barrier heights of 0.1, 0.2, 0.4 and
0.8 eV, respectively.

At this point, it is important to remark that previous studies in
GGSLs reported giant values for the Seebeck coefficient [46,47,59].
However, we are seeing here that a critical parameter to even improve
the already giant values of the Seebeck coefficient in GGSLs is the angle
of incidence. Even more important, if we combine appropriately the
angle of incidence with the structural parameters of the superlattice
we can obtain a further improvement of the Seebeck coefficient of two

or even three orders of magnitude. As far as we know these values of
tenths of V/K for the Seebeck coefficient are unprecedented for a solid-
state structure. Despite of this, we consider that there are two important
issues that we have to address in order to have a better understanding
of the thermoelectric properties in GGSLs. The first one is related to
the origin of the giant values of Seebeck coefficient as a function of
the angle of incidence, and the second one to if the giant values are
preserved when we sum up over all transmission channels, and more
importantly if the power factor S2G, which is the quantity that really
matters for the figure of merit and consequently for the thermoelectric
efficiency, also presents giant values.

To know the origin of the sensitivity of the Seebeck coefficient with
the angle of incidence we will attend the fundamental aspect in low-
dimensional thermoelectricity, that is, the redistribution of the density
of states (DOS) with the reduction of dimensionality. And in the partic-
ular case of GGSLs also the variation of this quantity with the angle of
incidence. We can obtain the DOS(E, 𝜃) if we know the band structure
of the superlattice, because there is a direct mathematical connection
between these quantities [55], namely:

DOS∗ (E, 𝜃) = DOS (E, 𝜃)
L

= 1
2𝜋

||||𝜕qSL (E, 𝜃)
𝜕E

|||| , (7)

where qSL is the superlattice wave vector, DOS∗(E, 𝜃) represent the num-
ber of states per unit length in a certain energy range and DOS(E, 𝜃)
represent the number of states in a certain energy range. The superlat-
tice band structure can be computed by taking advantage of the direct
relationship between the superlattice wave vector and the trace of the
transfer matrix of the superlattice unit-cell [60],

2 cos(qSLdSL) = Tr[Muc], (8)

here dSL and Muc represent the size and the transfer matrix of the unit
cell, respectively. In our specific case the unit cell is compose of a
barrier and a well, then, these quantities adopt the following values:
dSL = dB + dW and Muc = MBMW. Eq. (8) can be written explicitly as
[60]:

cos(qSLdSL) = cos(qxdB) cos(kxdW)

+ (sin(𝜃B) sin(𝜃W) − 1)
cos(𝜃B) cos(𝜃W) sin(qxdB) sin(kxdW),

Fig. 4. Seebeck coefficient of GGSLs as a function of energy
for different applied voltages: (a) V0 = 0.1 eV, (b) V0 = 0.2
eV, (c) V0 = 0.4 eV and (d) V0 = 0.8 eV. The maximum
energy considered in this case is Emax = 1.3 eV. The other
parameters are the same as in Fig. 3.
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Fig. 5. Density of States DOS(E, 𝜃) of GGSLs as a func-
tion of energy for different angles of incidence and differ-
ent heights of the barriers: (a) V0 = 0.1 eV, 𝜃 = 10◦, (b)
V0 = 0.1 eV, 𝜃 = 30◦, (c) V0 = 0.1 eV, 𝜃 = 60◦, (d) V0 = 0.2
eV, 𝜃 = 10◦. The size of the superlattice unit cell is dSL = 20
nm, which corresponds to dB = dW = 10 nm. Here, 𝛽 is
equal to ℏvF . So, the vertical axis represents simply the
number of states.

where 𝜃W and 𝜃B are the angles of the charge carriers in the well and
barrier regions. For our system the angle in the well region coincides
with the angle of incidence, 𝜃W = 𝜃. The angle in the barrier comes in
terms of the corresponding wave vectors 𝜃B = arctan(qy∕qx). Here, it is
important to remark that the wave vectors of barrier and well regions
depend on the energy and angle of incidence. Furthermore, the ener-
gies and superlattice wave vectors that represent the superlattice band
structure are those that fulfill with the condition |Tr(Muc)| < 2. Then,
with the help of Eq. (9) it is possible to compute the density of states as
a function of the energy.

In Fig. 5, we show our concrete results of the density of states
for different angles of incidence and different heights of the barriers:
(a) V0 = 0.1 eV, 𝜃 = 10◦, (b) V0 = 0.1 eV, 𝜃 = 30◦, (c) V0 = 0.1 eV,
𝜃 = 60◦, (d) V0 = 0.2 eV, 𝜃 = 10◦. In all these cases dB = dW = 10 nm.

As it is expected in gap regions the density of states is zero. On the
contrary, in miniband regions, the density of states is non zero and
remains practically constant at the center of minibands. More impor-
tantly, we can notice accumulation of states at the edges of minibands.
This accumulation is presented in practically all minibands, however,
the accumulation is not the same in all them, and minibands with higher
accumulation coincide with those at which the Seebeck coefficient gets
its maximum values. We can also see that the density of states increases
dramatically as the angle of incidence rises. For instance, when the
angle changes from 𝜃 = 10◦ to 𝜃 = 30◦, the density of states increases
around eight times, compare Fig. 5a and b. By increasing the angle of
incidence to 𝜃 = 60◦ the density of states presents a further enhance-
ment, about two orders of magnitude larger than the case of 𝜃 = 10◦,
see Fig. 5c. By changing the applied voltage we can redistribute the

Fig. 6. Conductance of GGSLs as a function of the Fermi
energy for different number of barriers: (a) NB = 2, (b)
NB = 4, (c) NB = 8, (d) NB = 16. The other superlattice
parameters adopt the following values: dB = dW = 10 nm,
E0 = V0 = 0.3 eV and Emax = 0.5 eV. The lateral dimension
of the structure is Ly = 200 nm.
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Fig. 7. Overall Seebeck coefficient as a function of the
Fermi energy for different number of barriers: (a) NB = 2,
(b) NB = 4, (c) NB = 8, (d) NB = 16. The other superlattice
parameters are the same as in Fig. 6.

density of states such that the accumulation regions coincide with the
maximums in the Seebeck coefficient, see Fig. 5d. Likewise, the rise of
the barriers height enhances the density of states, see the vertical axis
of Fig. 5d.

In order to unveil if after summing over all transmission channels
the Seebeck coefficient as well as the power factor S2G present giant
values it is necessary to compute the linear-regime conductance. To this
respect, in Fig. 6 we show the conductance of GGSLs for different num-
ber of barriers: (a) NB = 2, (b) NB = 4, (c) NB = 8 and (d) NB = 16.
The other superlattice parameters remain fixed at: dB = dW = 10 nm,
E0 = V0 = 0.3 eV and Emax = 0.5 eV. For the conductance it is neces-
sary to specify the lateral dimension of the structure Ly, so we have
chosen a typical value for gated graphene structures: Ly = 200 nm. As
we can see the conductance oscillates as a function of the Fermi energy.
Furthermore, the oscillations increase in number and become better
define as the number of barriers grows. The main characteristic of the
oscillations, maximums and minimums, can be ascribed to the open-
ing and opening-closure of minibands as well as to the extra Dirac
points in the electronic spectrum of GGSLs [44,61]. We can also see
that the oscillations are not strictly speaking uniform, but they have
some degree of periodicity that will be reflected in the Seebeck coeffi-
cient, see Fig. 7. This sort of periodicity is more evident as the number
of barriers increases. In addition, the increasing and decreasing trend of
the conductance will give rise to a Seebeck coefficient with decreasing
and increasing regions and more importantly to possibly two closely
spaced power factor peaks.

The concrete results of the Seebeck coefficient for all transmission
channels are shown in Fig. 7. As we can notice the Seebeck coefficient
remains giant after considering all channels, of the order of mV/K. It is
clear that the values are not as giant as in the case of a single channel,
but with respect to conventional materials, 𝜇V/K, we can still talk about
giant values. When the number of barriers is small, for instance NB = 2,
the dominant peaks in the Seebeck coefficient are associated to the
graphene’s Dirac point, E = 0. In fact, these peaks are four times greater
than the peaks related to the periodic modulation, see the vertical scale
in Fig. 7a. We can also see that the periodic pattern of the Seebeck coef-
ficient is not well established when the number of barriers is small, see
the cases of NB = 2 and NB = 4. As the number of barriers increases
the peaks associated to the periodic modulation start to compete with
the graphene’s Dirac point peaks and the Seebeck’s periodic pattern

becomes better defined, see Fig. 7c and specially Fig. 7d. The Seebeck
curves also present in general two preponderant regions: decreasing and
increasing regions. The former span about 0.1 eV with a low decreas-
ing rate, while the latter are steeper and with a high increasing rate.
This is more evident in Fig. 7d. These characteristics, if appropriately
combine with the conductance ones, can give rise to giant values of the
power factor. In fact, in Fig. 8 we show the calculated power factor S2G
as a function of the Fermi energy for different number of barriers: (a)
NB = 2, (b) NB = 4, (c) NB = 8 and (d) NB = 16. The other superlattice
parameters are the same as in Fig. 7. At this point, it is important to
remark that in bulk semiconductors it is well known that the increas-
ing pace of the conductivity and the corresponding decreasing trend of
the Seebeck coefficient give rise to a maximum in the power factor [7].
Here in GGSLs we have in addition to the mentioned peaks, extra ones
related to the decreasing and increasing behaviour of the conductance
and Seebeck coefficient, respectively. All these peaks are related to the
oscillating character of the conductance, and at the end to the special
characteristics of the electronic structure in GGSLs. As the increasing
and decreasing conductance regions (oscillations) are close each other
the corresponding peaks, in general, will arise in pairs. Indeed, a pair of
peaks or twin peaks nicely arise in the case of NB = 2, see Fig. 8a. For
GGSLs with larger number of barriers, the power factor curves at first
instance are more irregular. However, if we inspect in more detail we
can find multiple regions with pair of peaks. In some cases, the height
of the peaks is almost the same, practically twin peaks, and in others
the peaks are asymmetric with one being dominant. Other interesting
and important feature is the systematic enhancement of the power fac-
tor as the number of barriers rises. The maximum value obtained for
the power factor is around 200 pW/K2, which represents a giant value
if we consider the typical power factors reported in graphene nanorib-
bons 0.6 pW/K2 [38].

4. Discussion

In the first place, we would like to discuss the experimental con-
ditions for fabrication of the thermoelectric device proposed in the
present work. The fabrication of electrode graphene superlattices, in
principle, is possible due to the recent advances in nonscalable fabrica-
tion processes [62,63]. Actually, electrodes can be coupled to graphene
trough dielectric SiO2 layer with ultrashort top gate structures around
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Fig. 8. Power factor S2G as a function of the Fermi energy
for different number of barriers: (a) NB = 2, (b) NB = 4, (c)
NB = 8 and (d) NB = 16. The other superlattice parameters
correspond to the ones of Figs. 6 and 7.

20 nm-100 nm, whose properties are sensitive to the top-gate oxide
quality and thickness [63,64]. The metal contacts for source and drain
consist of a metal stack of 20 nm Pd and 30 nm Au with the Pd layer in
direct contact with graphene [62,64].

Second, we would like to talk about the thermal conductivity,
given by 𝜅 = 𝜅el + 𝜅ph, where 𝜅el and 𝜅ph are the electron and phonon
thermal conductivity. In metals, the high concentration of electrons,
depending on the temperature range, can be the dominant contribu-
tion in thermal transport, kel ≫ kph. For instance, in copper 𝜅el ∼ 400
WmK−1 at room temperature, while 𝜅ph is less than 1–2% of the
total [6,65,66]. Nevertheless, in graphene, the principal contribution
to the heat transport comes from phonons, 𝜅ph ≫ 𝜅el. For suspended
graphene, the in-plane thermal conductivity is around 2000–4000
Wm−1K−1 at room temperature [67]. Actually, this huge value of the
thermal conductivity is one of the main hurdles to implement graphene
as a thermoelectric material. If after placed the electrodes these values
remain at the same order of magnitude the possible improvement of the
power factor would be inconsequential to ZT, and consequently to the
thermoelectric efficiency. Fortunately, there are multiple studies that
report that the thermal conductivity can be diminished up to two orders
of magnitude [23,68,69]. For instance, the thermal conductivity mea-
sured in graphene supported by SiO2 was 𝜅ph ∼ 600 Wm−1K−1 [23]. In
addition, if graphene is encapsulated (SiO2-encased graphene) an extra
reduction, of a factor of 4, can be achieved 𝜅ph ∼ 160 Wm−1K−1 [68].
In the case of supported GNRs the thermal conductivity barely reaches
a value of ∼ 80 Wm−1K−1 for 20-nm-wide samples [69]. Here, it is
important to remark that all these reductions of the thermal conduc-
tivity are related in general to the coupling and scattering of graphene
phonons with substrate vibrational modes [70]. Other aspect that could
alter the phonon transport along the superlattice structure is the natu-
ral contrast between gated and non-gated regions. Regarding this point,
it is well known that in superlattices of conventional materials such
as GaAs/AlAs, Si/Ge, and Bi2Te3/Sb2Te3 the thermal conductivity is
smaller than the corresponding one in its constituent single crystal
materials [15,17,71,72]. In the case of graphene superlattices the large
phonon mean free path can give rise to ballistic thermal transport, and
as a consequence to the minimum thermal conductance phenomenon
[73,74]. In particular, phonon confined modes and phonon wave inter-
ference in graphene-boron nitride superlattices can lead to minimum

thermal conductance [75,76]. Regarding gated graphene superlattices,
as far as we know, there is no report about thermal transport. How-
ever, minimum thermal conductance, as general phenomenon, it is also
expected in this type of superlattices.

Finally, we would like to comment that the giant values of the ther-
moelectric properties in the single channel case are not in principle
usable due to the difficulties that entail the incidence of electrons in a
very specific angle. However, there are several groups trying to manip-
ulate the propagation of Dirac electrons in graphene [77–79] as well
as others trying to discriminate the angular contribution of the trans-
mission properties across graphene p-n junctions [51,80–82]. So, it is
possible that in the near future the propagation of Dirac electrons takes
place, if not in a single channel (a specific angle of incidence), in a
reduce number of them (reduce angular range). In any case, the giant
values of the thermoelectric properties, for a single channel or for all
channels, together with the small thermal conductivity in supported-
encapsulated graphene constitute an interesting and attractive possibil-
ity for technological applications.

5. Conclusions

In summary, we have assessed the concept of low-dimensional ther-
moelectricity in graphene. In particular, we carried out a systematic
study of the thermoelectric properties in quantum well gated graphene
superlattices. The transfer matrix method, the Landauer-Büttiker for-
malism as well as Cutler-Mott formula have been used to obtain the
transmission probability, linear-regime conductance and the Seebeck
coefficient, respectively. We found that the Seebeck coefficient and the
power factor reach giant values, three orders of magnitude, with respect
to conventional quantum well superlattices. Even more important, these
giant values can be further improved, up to two orders of magnitude,
by appropriately choosing the fundamental parameters of the superlat-
tice, specially the angle of incidence. As far as we have corroborated
these outstanding results are intimately related to the central aspect
in low-dimensional thermoelectricity, the redistribution of the density
of states. We also found that the oscillating nature of the conductance
gives rise to a series of giant twin peaks in the power factor. These giant
values in conjunction with the drastic reduction of the thermal conduc-
tance of monolayer graphene when the graphene sheet is placed on a
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substrate can confabulate to give rise to high values of the figure of
merit and consequently high thermoelectric efficiencies. So, we firmly
believe that low-dimensional thermoelectricity in graphene is a possi-
bility that can reinvigorate this exciting field.
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