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A B S T R A C T

In this work we study the propagation of Dirac electrons through Cantor-like structures in graphene. In concrete,
we are considering structures with magnetic and electrostatic barriers arrange in Cantor-like fashion. The Dirac-
like equation and the transfer matrix approach have been used to obtain the transmission properties. We found
self-similar patterns in the transmission probability or transmittance once the magnetic field is incorporated.
Moreover, these patterns can be connected with other ones at different scales through well-defined scaling rules.
In particular, we have found two scaling rules that become a useful tool to describe the self-similarity of our
system. The first expression is related to the generation and the second one to the length of the Cantor-like
structure. As far as we know it is the first time that a special self-similar structure in conjunction with magnetic
field effects give rise to self-similar transmission patterns. It is also important to remark that according to our
knowledge it is fundamental to break some symmetry of graphene in order to obtain self-similar transmission
properties. In fact, in our case the time-reversal symmetry is broken by the magnetic field effects.

1. Introduction

In nature many peculiar features of certain phenomena are observ-
able only under special conditions. For instance, recently by break-
ing either the time-reversal symmetry or the inversion symmetry novel
materials such as topological insulators [1–3], Dirac semimetals [4,5],
Weyl semimetals [6,7] and materials with special charge carriers like
Kane electrons [8,9] have arisen. Then, the set of symmetries in a mate-
rial (chiral symmetries) and specially its breaking (chiral symmetry
breaking) can give rise to unprecedented materials with exotic prop-
erties. In fact, in graphene it has been shown that chiral symmetry
breaking can change the character of the material from a semimetal
to a strong insulator [10]. Even a metallic or superconducting phase
can be induced by breaking some particular chiral symmetry. Actually,
if we take into account the variety of 2D materials available today as
well as the symmetry-breaking possibilities the opportunities for exotic
materials are superb.

On the other hand, the two-dimensional nature of graphene consti-
tutes an unprecedented platform to study the transmission and trans-

* Corresponding author.
E-mail address: isaac@fisica.uaz.edu.mx (I. Rodríguez-Vargas).

port properties in special (self-similar) geometries such as those that
can be constructed using the Sierpinski carpet, Cantor set, Koch curve,
etc. In principle, these peculiar geometries can be obtained by nanos-
tructuring the material. In fact, it is possible to obtain potential pro-
files with self-similar characteristics. Even, the profiles can have scal-
ing in both the spatial and energy axis. These self-similar potential pro-
files were originally proposed in the context of semiconductor quan-
tum wells [11,12]. Actually, in graphene we have several mechanisms
to nanostructuring. Among the most relevant ones we can find those
based on metallic electrodes [13–16], interacting substrates [17–20],
strain [21–23] and ferromagnetic gates [24–31]. All these mechanisms
modify the fundamental properties of graphene. For instance, if we have
graphene on an interacting substrate such as SiC or hBN the dispersion
relation is modified and most importantly a bandgap is induced. The
interaction of the graphene sheet with the substrate breaks the intrinsic
sublattices symmetry in graphene and consequently a bandgap opening
arises. In addition, as a result of the symmetry breaking the pseudo-spin
is not longer conserved as well as Klein tunneling is prevented [32,33].
In the case of metallic and ferromagnetic gates the associated electric

https://doi.org/10.1016/j.physe.2018.03.007
Received 13 November 2017; Received in revised form 31 January 2018; Accepted 7 March 2018
Available online 7 March 2018
1386-9477/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physe.2018.03.007
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/physe
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2018.03.007&domain=pdf
mailto:isaac@fisica.uaz.edu.mx
https://doi.org/10.1016/j.physe.2018.03.007


R. Rodríguez-González et al. Physica E: Low-dimensional Systems and Nanostructures 101 (2018) 22–28

Fig. 1. (a) Schematic representation of the
top view of a Cantor-like graphene-based
structure under magnetoelectric effects.
Graphene is placed on a non-interacting
substrate like SiO2 (shaded blue area). The
magnetoelectric strips (MESs) are incorpo-
rated on top of graphene to tune the dis-
tribution and shape of the magnetic and
electric fields applied perpendicularly to
graphene and consequently the profile of
magnetoelectric barriers. (b) Correspond-
ing vector and scalar potential profiles for
(a). The deltaic magnetic field is depicted
as up and down arrows. (For interpretation
of the references to colour in this figure leg-
end, the reader is referred to the Web ver-
sion of this article.)

and magnetic fields shift the graphene’s Dirac cones in the energy and
wavevector axis, respectively. In the case of the magnetic field, it also
breaks a fundamental symmetry, specifically the time-reversal symme-
try.

Under this context, the relativistic character of the charge carri-
ers in graphene, the exotic properties that can arise due to the break-
ing of symmetries and the special geometries that can be imposed to
graphene and other 2D materials by nanostructuration can confabu-
late to give place to unprecedented transmission and transport prop-
erties. In fact, in recent years, self-similar transmission and transport
in graphene Cantor-like structures have been reported [34–37]. The
self-similar transmittance and conductance patterns found obey well-
defined scaling rules, that is, the patterns for different sizes of the sys-
tem can be connected. The size of the system in the energy and spatial
coordinates can be controlled by the generation and effective width of
the system as well as the height of the barriers. Actually, the scaling
rules correspond to precisely those parameters. Other important aspect
to remark is that in order to obtain the mentioned self-similar pat-
terns it is fundamental that the sublattices symmetry be broken, which
correspond to structures with interacting substrates. Because as far as
we have corroborated the self-similar characteristics are not present
in structures in which the sublattices symmetry is preserved [35], i.e.
structures in which the energy barriers are generated with metallic elec-
trodes.

In this work, we study the transmission properties of graphene
Cantor-like structures. In concrete, we explore the consequences of
breaking the time-reversal symmetry. In order to induce the time-
reversal symmetry breaking and at the same time obtain a self-similar
(Cantor-like) structure we have considered that the energy barriers that
composed the structure are generated by magnetic and electric fields.
The magnetic field assures us the breaking of the time-reversal sym-
metry. The Dirac-like equation and the transfer matrix approach are
implemented to describe the charge carriers and to obtain the trans-
mission properties, respectively. We obtain that once the magnetic field
is incorporated the transmission patterns show self-similar characteris-
tics. Even more important, we obtain scaling rules that can describe the
self-similar transmission patterns at different scales. To our knowledge
this is the first time that scaling rules are reported under magnetic field
effects.

2. Methodology

Our Cantor-like structure is composed of a graphene sheet placed
on a non-interacting substrate like SiO2. Magnetoelectric strips are con-
sidered as top gates in order to generate the magnetic and electrostatic
(magnetoelectric) potential barriers along the structure, see Fig. 1. In
fact, ferromagnetic strips were successfully deposited on semiconduc-
tors heterostructures [38] and constitute one of the main proposals to
obtain magnetic barriers in graphene [28]. So, in principle, the strips

allow us to induce different profiles for the magnetoelectric barriers. In
our specific case we are considering step-wise scalar and vector poten-
tial barriers, Fig. 1 (b). These barriers are arranged according to the con-
struction rules of the Cantor set in order to obtain our self-similar struc-
ture. A schematic representation (top view) of our Cantor-like structure
is shown in Fig. 1 (a). The blue region and the orange stripes represent
the SiO2 substrate beneath the graphene sheet and the top magneto-
electric gates, respectively. Under these conditions we are dealing with
two different regions corresponding to those without and with magne-
toelectric barriers. The physics in these regions can be described by the
corresponding Dirac-like equation. In fact, the Hamiltonian that corre-
sponds to regions with magnetoelectric barriers is given by:

H = vF𝝈 · (𝐩+ e𝐀) + V(x)𝜎0, (1)

where 𝝈 = (𝜎x, 𝜎y) are the Pauli matrices, p = (px, py) = iℏ∇ is the
momentum operator, vF is the Fermi velocity of the Dirac electrons
in graphene, 𝐀 = (0,Ay,0) is the vector potential given in the Landau
gauge, V(x) is the scalar potential and 𝜎0 is the 2 × 2 unitary matrix.

For this particular problem, we have introduced the dimensionless
quantities, lB =

√
ℏ∕eB0 and E0 = ℏvF∕lB that refer to the strength and

length of the magnetic field as well as the unit of energy, respectively.
Here, B0 is a magnetic field of reference that help us to define the basic
units of energy and length. In all our numerical calculations a typical
realistic value of B0 = 0.1 T is used, with lB = 811 Å and E0 = 7.0 meV
[39]. Then, 𝐀(x) = Ayŷ = B(B0)lBŷ and V(x) = U0 are defined as the
vector and scalar potentials. The magnetic field B comes in terms of
B0. By solving the Dirac-like equation that corresponds to Eq. (1) it is
possible to obtain the following dispersion relation:

E = U0 ±
√
ℏ2v2

Fq2
x + v2

F(ℏqy + eAy)2, (2)

the ± signs correspond to electrons and holes, respectively. Moreover,
the wavefunctions take the form:

𝜓±(x, y) =
1√
2

(
1

v±

)
e±iqxx+iqyy , (3)

with

v± =
ℏvF

(
±qx + i

(
qy +

e
ℏ

Ay

))
E − U0

. (4)

In addition, the wave vector in the propagation direction comes as:

qx = 1
ℏvF

√
(E − U0)2 − v2

F(ℏqy + eAy)2. (5)

In contrast, for regions without magnetic field the Hamiltonian come
as:

H = vF(𝝈 · 𝐩), (6)
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with a linear dispersion relation:

E = ±ℏvF

√
k2

x + k2
y , (7)

and wavefunctions

𝜓±(x, y) =
1√
2

(
1

u±

)
e±ikxx+ikyy, (8)

with

u± =
ℏvF

(
±kx + iky

)
E

. (9)

Here, the two-dimensional wave vector k is determined by Eq. (7).
With all this information, we can treat the scattering problem by

means of the transfer matrix method [40,41], since we already have
two different well characterised regions by its appropriate energy dis-
persion relation, wave vector and wavefunction. Considering the conti-
nuity condition of the wavefunction in each boundary of the structure
along the propagation direction (x direction) as well as the conservation
of the momentum in the transversal direction (ky = qy), we can find a
matrix connection between the amplitudes of the incoming waves in
terms of the outgoing waves via the expression:(

A0

B0

)
=

(
M11 M12

M21 M22

)(
AN+1

0

)
, (10)

where the transfer matrix M is given as:

M = D−1
0

[ N∏
j=1

DjPjD−1
j

]
D0, (11)

with Dj as the dynamical matrices which take the form:

Dj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
1 1

u+ u−

)
,

(
1 1

v+ v−

)
,

(12)

and Pj the propagation matrices written explicitly as:

Pj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
e−ikx(xj+1−xj) 0

0 eikx(xj+1−xj)

)
,

(
e−iqx(xj+1−xj) 0

0 eiqx(xj+1−xj)

)
,

(13)

where kx (qx) is the x component of the wave vector k (q) for regions
without (with) magnetic field and xj+1 − xj is the width of the j-th
region with j = 0,1,2,…, N.

Thus, the transmittance or transmission coefficient can be computed
as:

T = 1|M11|2 . (14)

3. Results

With the previous formalism at hand, we are in possibility to deal
with our central goal which is to explore scaling relations for the self-
similar transmission patterns. In particular, we look for scaling rules as
function of two principal parameter: the generation N and the length of
the system w.

First, we start by comparing the transmission curves between two
consecutive generations. This with the aim to find out if in reality
self-similarity between generations exists. To this respect, Fig. 2 (a)
shows the transmittance as function of the energy for Dirac electrons

Fig. 2. Scaling between generations. (a) Transmittance as function of the energy for gen-
erations N = 7 (solid-black lines) and N = 8 (dashed-red lines). (b) The same as in (a) but
here the generation N = 8 (dotted-blue lines) is scaled in accordance with Eq. (15). In this
case the scaled curve resembles quite good to the reference one (N = 7). The structural
parameters are B = 2B0, U0 = 2E0 and w = 20 lB. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

at oblique incidence (𝜃 = 𝜋∕4). Here the solid-black and the dashed-
red lines correspond to generations N = 7 and N = 8, respectively. The
rest of the structural parameters are fixed such as the magnetic field
strength B = 2B0, electric field intensity U0 = 2E0 and length of the sys-
tem w = 20 lB. From the figure we can see that the transmission curves
are perfectly correlated and only differ in their amplitudes. Hence, it is
likely that the scaling transformation be a certain power of the trans-
mittance. Specifically, we propose

TN(E) ≈ [TN+1(E)]2. (15)

Then, to prove this expression we simply denote T7 and T8 as the ref-
erence and scaled curves, respectively. Thus, Eq. (15) takes the form
T7(E) ≈ [T8(E)]2. The resulting scaling is shown in Fig. 2 (b), we can
notice that the scaled curve (dotted-blue lines) has an excellent match-
ing with respect to the reference one (solid-black lines). Then turns out
that our proposed expression effectively describes the scaling between
generations.

In the case of the length of the system, we found that when one
treats two structures with different lengths, the transmittance patterns
have self-similar features, see Fig. 3 (a). In this case, we have consid-
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Fig. 3. Scaling between lengths. (a) Transmittance as function of the energy for lengths
w = 20 lB (solid-black lines) and w = 10 lB (dashed-red lines). (b) The same as in (a) but
here the length w = 10 lB (dotted-blue lines) is scaled in accordance with Eq. (16). The
scaled curve is very similar to the reference one (w = 10 lB). The structural parameters
are N = 8, B = 2B0 and U0 = 2E0. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

ered two lengths w = 20 lB and w = 10 lB, solid-black lines and dashed-
red lines, respectively. The rest of the parameters are the same as in
Fig. 2, except that here the generation N = 8 remains fixed. Alike to the
generation case, we need to apply some transformation in order to be
able to reproduce the reference curve by means of the scaled one. The
corresponding transformation that we are proposing is

Tw(E) ≈ [T 1
𝛼

w(
1
𝛼

E)]𝛼2
, (16)

where w indicates the length of the system and 𝛼 is the factor that
connects the lengths of both structures: the reference structure and the
scaled one.

By applying Eq. (16) to our particular results, we obtain the expres-
sion T20lB

(E) ≈ [T10lB
( 1

2 E)]4. As we can notice, two transformations are
needed for this scaling. The first one modifies the transmittance axis by
rising it to the fourth power, while the second one implies to reduce
by a factor 2 the energy axis. The result of these transformations is
shown in Fig. 3 (b). The dotted-blue lines correspond to the scaled
curve, while the solid-black lines represent the reference curve. Com-
paring both transmission curves we can appreciate that these curves

Fig. 4. General scaling. (a) Transmittance as function of the energy for N = 7 and w =
20 lB (solid-black lines) and N = 8 and w = 10 lB (dashed-red lines). (b) The same as in
(a) but here the scaled curve (dotted-blue lines) is computed in accordance with Eq. (17).
The scaled curve is very similar to the reference one (solid-black lines). The structural
parameters are B = 2B0, U0 = 2E0 and 𝜃 = 𝜋∕4. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

match quite well.
The preceding scaling expressions, Eq. (15) and Eq. (16), can also

be combined to give us a general scaling rule,

T(E,N,w) ≈ [T(1
𝛼

E,N + m,
1
𝛼

w)]2m(𝛼)2 , (17)

where m is the difference between generations and 𝛼 is the value that
connects the ratio between the lengths of the systems. According to
this general scaling we can compare two transmission curves with non-
consecutive generations and different lengths. Despite the two parame-
ters involved in the general rule as well as non-consecutive generations
it is possible to obtain very good scaling between the transmission pat-
terns, see Fig. 4.

In order to have a quantitative analysis between the self-similar
transmission curves a study of the root mean square deviation (rmsd)
is considered. rmsd gives us a numerical value that indicates quanti-
tatively how similar are the scaled and reference curves. If the rmsd
tends to zero it means that the matching between the curves is quite
good. For the scaling between generations and lengths the rmsd val-
ues are 2.95089167E-02 and 1.90727431E-02, respectively. Thus, as
we can see the best scaling takes place between lengths of the system.
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Fig. 5. Transmission patterns for different heights of the electrostatic barriers: (a) U0 =
3E0, (b) U0 = 4E0, and (c) U0 = 5E0. In order to have self-similar transmission patterns
the length of the system and the magnetic field strength need to be adjusted. In fact, in
(a) w = 25 lB and B = 3B0, while in (b) w = 40 lB and B = 4B0, and in (c) w = 40 lB and
B = 6B0. Likewise, the generations of the self-similar structure need to be adjusted as
well, see the difference between (a), (b) and (c). The angle of incidence in all cases is the
same, 𝜃 = 𝜋∕4.

Fig. 6. The same as in Fig. 5, but here the scaling between generations, Eq. (15), has been
applied. As we can see this rule is well obeyed regardless of the height of the electrostatic
barrier.
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4. Discussion

In this section, we want to discuss three aspects that we consider
relevant to have a better understanding of the self-similar transmission
patterns.

The first one is related to the fact that the scaling is only presented
for holes, see the energy axis in all figures. In graphene-based structures
it is well known that electrons and holes respond in different ways to
magnetic fields. However, we do not have a definite answer about why
only the hole spectrum manifests self-similar patterns. Even more inter-
esting, if the polarity of the magnetic field is inverted, the self-similar
patterns will arise in the electron spectrum.

The second aspect that is important to comment is about the mag-
netic field strength at which the self-similar patterns are taking place.
In fact, for all our results the critical magnetic field takes a value of
2B0. This seems to be a special value for our structure. However, for
larger magnetic fields the transmission patterns are shifted in both
the transmittance and energy axis, maintaining the envelope of the
curves. So, it is possible that other scaling rules, in which the mag-
netic field strength be involved, describe these transmission patterns.
Furthermore, if we change the height of the electrostatic barriers it is
necessary to adjust the length of the system as well as to modify the
magnetic field strength in order to have self-similar transmission pat-
terns. In Fig. 5 we show the corresponding results for: (a) U0 = 3E0, (b)
U0 = 4E0 and (c) U0 = 5E0. In the first case U0 = 3E0, we need to adjust
w and B to 25 lB and 3B0, respectively; while for U0 = 4E0 these param-
eters need to adopt the values w = 40 lB and B = 4B0; and for the third
case U0 = 5E0, the length of the system and the magnetic field strength
required are w = 40 lB and B = 6B0, respectively. Here, it is also impor-
tant to mention that the generations of the self-similar structure need to
be adjusted as well. In fact, for (a), (b) and (c) the self-similar transmis-
sion patterns are presented for N = 8 and N = 9, N = 10 and N = 11,
and N = 9 and N = 10, respectively. This is a quite relevant because the
interplay between these parameters will determine the characteristics
of the transmission patterns. From the experimental standpoint it is also
preponderant because we need to choose accessible values for the elec-
trostatic field intensity, the magnetic field strength and the length of the
system that guarantee self-similar transmission patterns. Likewise, it is
important to remark that the scaling rule between generations remains
the same regardless of the height of the electrostatic barriers, see Fig. 6.

The third and last aspect that we want to address is the one related
to resonant states. In fact, the well regions in our structure serve as res-
onant cavities. For instance, the second generation N = 2 of our system
has a well with a width w∕3, while in the case of N = 3 in addition
to the well region w∕3 there is another well with a width w∕9. Then,
every time that we increase the generation we add an extra well region
that is a third of the last added in the previous generation. With this in
mind, the condition for resonant states in one of these regions can be
written as,

kxw∕3N−1 = n𝜋, (18)

where n is an integer. From this condition the energy of the resonant
states is given as

En(N) = 3N−1 sec 𝜃
w

n𝜋, (19)

or equivalently in terms of the resonant states of N = 2,

En(N) = 3N−2En(2). (20)

Here, En(N) and w are given in units of E0 and lB, respectively.
Then, for example, En(3) and En(2) determine the resonant states for

the third generation. For the fourth generation En(4), En(3) and En(2)
provide the resonant state energies. For the specific case presented in
Fig. 2, the difference between generation 7 and 8 is En(8). However,
from the resonant states standpoint these generations are the same,
because the resonant states provided by En(8) lie outside the energy

region considered. Actually, above generation 4 we do not have differ-
ences in the resonant states that come from the well regions. In fact, the
first resonant level of En(5) lies outside the energy range, E1(5) ≈ 18E0.

A similar analysis can be done for the barriers. However, in this case
all barriers, for a given generation, have the same size. Another impor-
tant aspect and a substantial difference with respect to Schrödinger
electrons is that barriers can support resonant states, even for energies
below the barrier height.

As in the case of well regions the condition for resonant states in the
barriers comes as

qxw∕3N−1 = m𝜋, (21)

with m an integer. By replacing qx and solving for the energy we obtain,

|Em(N)| = (U0 − B sin 𝜃)
cos2𝜃

×
⎡⎢⎢⎣−1 +

√
1 + cos2𝜃

(U0 − B sin 𝜃)2

(
m2𝜋2

w2 32(N−1) + B2 − U2
0

)⎤⎥⎥⎦ .
(22)

Here, U0 and B are dimensionless quantities given in units of E0 and B0,
respectively. It is also important to mention that this expression is valid
for holes. For the specific case of U0 = B, Eq. (22) can be simplified to

|Em(N)| = U𝜃

[
−1 +

√
1 + 1

U2
𝜃
cos2𝜃

m2𝜋2

w2 32(N−1)
]
, (23)

where U𝜃 = U0(1 − sin 𝜃)∕cos2𝜃.
For the parameters and the energy range considered in Fig. 2 we

obtain 6 and 2 resonant hole states for generations 3 and 4, whereas
generations 5, 6, 7 and 8 have their first resonant level outside the
energy range. These characteristics are quite interesting because pre-
cisely the transmission patterns that are self-similar have practically the
same resonant states. Further studies in other self-similar structures are
needed in order to see if these characteristics about resonant states are
preponderant and determined in some way the self-similar transmission
patterns.

5. Conclusions

In summary, we have investigated the self-similar transmission
properties in Cantor-like graphene-based structures. The Dirac-like
equation and the transfer matrix approach were implemented to
describe the charge carriers in graphene and to obtain the transmis-
sion properties, respectively. We obtained that once the magnetic field
is incorporated self-similar patterns arise in the transmittance. Further-
more, these patterns obey well-defined scaling rules that account for
the connection between patterns at different generations and lengths of
the system. Finally, it is important to remark that the relativistic char-
acter of the charge carriers, the time-reversal symmetry breaking and
the special nanostructuration of the material are confabulated to give
rise to this peculiar transmission properties. Our results also support
the thesis that the breaking of some symmetry is fundamental to obtain
self-similar transmission and transport properties in graphene [35,37].
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