
Superlattices and Microstructures 113 (2018) 483e496
Contents lists available at ScienceDirect
Superlattices and Microstructures

journal homepage: www.elsevier .com/locate/superlat t ices
Asymmetrical external effects on transmission, conductance
and giant tunneling magnetoresistance in silicene

O. Oubram a, *, O. Navarro b, E.J. Guzm�an b, c, I. Rodríguez-Vargas d

a Facultad de Ciencias Químicas e Ingeniería, Universidad Aut�onoma Del Estado de Morelos, Av.Universidad 1001, Col. Chamilpa, 62209,
Cuernavaca, Morelos, Mexico
b Unidad Morelia del Instituto de Investigaciones en Materiales, Universidad Nacional Aut�onoma de M�exico, Antigua Carretera a
P�atzcuaro No. 8701, Col. Ex Hacienda de San Jos�e de La Huerta, 58190, Morelia, Michoac�an, Mexico
c Facultad de Ciencias Físico Matem�aticas, Universidad Michoacana de San Nicol�as de Hidalgo, Av. Francisco J. Mujica S/n Ciudad
Universitaria, Morelia, Michoac�an, Mexico
d Unidad Acad�emica de Física, Universidad Aut�onoma de Zacatecas, Calzada Solidaridad Esquina con Paseo La Bufa S/N, 98060,
Zacatecas, Zac., Mexico
a r t i c l e i n f o

Article history:
Received 29 June 2017
Accepted 19 November 2017
Available online 22 November 2017

Keywords:
Tunneling magnetoresistance
Silicene
Asymmetrical effects
Conductance
Electron transport
* Corresponding author.
E-mail address: oubram@uaem.mx (O. Oubram)

https://doi.org/10.1016/j.spmi.2017.11.027
0749-6036/© 2017 Elsevier Ltd. All rights reserved.
a b s t r a c t

Electron transport in a silicene structure, composed of a pair of magnetic gates, is studied
in a ferromagnetic and antiferromagnetic configuration. The transport properties are
investigated for asymmetrical external effects like an electrostatic potential, a magnetic
field and for asymmetrical geometric structure. This theoretical study, has been done using
the matrix transfer method to calculate the transmission, the conductance for parallel and
antiparallel magnetic alignment and the tunneling magnetoresistance (TMR). In Particular,
we have found that the transmission, conductance and magnetoresistance oscillate as a
function of the width of barriers. It is also found that a best control and high values of TMR
spectrum are achieved by an asymmetrical application of the contact voltage. Besides, we
have shown that the TMR is enhanced several orders of magnitude by the combined
asymmetrical magnetization effect with an adequate applied electrostatic potential.
Whereby, the asymmetrical external effects play an important role to improve TMR than
symmetrical ones. Finally, the giant TMR can be flexibly modulated by incident energy and
a specific asymmetrical application of control voltage. These results could be useful to
design filters and digital nanodevices.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Silicene is a monolayer of silicon atoms, forming a 2D dimensional honeycomb lattice [1e4]. This new material has
attractedmore attention due to its tremendous application in nanoelectronics and for its special physical properties similar to
those of graphene [5e8]. In contrast to graphene, silicene has a large intrinsic spin-orbit interaction and a buckled structure
involving valley and spin manipulation [9e13]. Recently, monolayer and multilayer silicene have been synthesized onto
metallic substrates as well as a field effect transistor at room temperature reported [6,14].
.
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On the other hand, magnetic fields effects on nanostructures have been proposed to confine massless two-dimensional
(2D) Dirac electrons [15e17] as well as a possible route to manipulate electron transport. For instance, Zai and Chang [15]
have investigated the spin tunneling magnetoresistance effect in monolayer graphene modulated by two parallel stripes.
They found a large TMR ratio of parallel to antiparallel configuration of magnetization and that this ratio can be tuned by the
inclusion of an electric field. Likewise, Wang et al. [18] have explored magnetotransport (specifically TMR) in graphene with
two tunable magnetic barriers. They have shown that TMR is sensitive to distance between the magnetic barriers. More
interestingly, they reported that with asymmetrical barriers, barriers with different height, TMR enhances an order of
magnitude with respect to the symmetrical case.

Under this context, silicene is an ideal material tomanipulate spin transport due to its intrinsic large spin-orbit coupling. In
fact, the scientific community has been committed to improve and control the spin transport properties, particularly
magnetoresistance (MR) and TMR [5,19e26]. These properties are quite important for sensors, information, medicine and
computer technology [27e29]. For example, Xu et al. [30] have predicted MR up to 1960% in zigzag silicene nano ribbons
(ZSiNR) under finite bias voltages. Besides, Kang [31] and collaborators have done a study of the transport properties in
ZSiNRs using first principles calculations. They report that the magnetoresistance effect in even-N ZSiNRs can reach
1000 000%. They proposed that this interesting property could be the basis to design logic gates, such as NOT, AND, and OR on
ZSiNRs-based devices. The same system has been analyzed by Zhang et al. [32] under asymmetric edge hydrogenation by
means of the nonequilibrium Greens function method and the spin-polarized density functional theory. They found that the
resulting giant magnetoresistance can reach 100 000 000%. Their findings could be useful in the development of high per-
formance silicene-based spin filters, spin rectifiers and logic devices.

Recently, Wang et al. [19] suggested the magnetic field as a new path to manipulate valley and spin transport in sil-
icene. They also shown that the conductance and tunneling magnetoresistance, in a silicene structure with ferromagnetic
(FM) barriers, can be controlled by magnetic field effects. In specific, they focus on the effect of the asymmetrical
magnetization on the valley/spin polarization and TMR. In the same sense, it has been reported that in two ferromagnetic
barriers on the top of monolayer silicene [5], magnetic field affects intensively the transmission of the antiferromagnetic
(AFM) configuration of the device and enlarges the forbidden transmission region for the ferromagnetic case. Qiu et al. [21]
analyzed the transport of electrons in FNF silicene junction. They show that a perfect spin and valley polarized conduc-
tance can be achieved by adjusting the barrier potential. Likewise, Saxana et al. [22] have investigated the conductance,
valley and spin polarization and tunneling magnetoresistance in FNF junction of silicene. They found that TMR can be
tuned perfectly via electric field effects as well as a fully valley and spin polarized current can be achieved by external field
effects.

In this work, we explore electron transport in a silicene structure formed by two ferromagnetic strips. The aim of this study
is to investigate asymmetric effects of our system on the transmission, transport and TMR properties. Particularly, we explore
the asymmetry between barriers created by means of magnetic and electrostatic fields, bandgap and width of barriers. Our
results indicate that the degree of asymmetry can be adjusted to improve the mentioned properties. Specifically, the barriers
can be modulated in asymmetric fashion to enhanced the conductance for the parallel configuration of the magnetic field as
well as to reduce the anti-parallel one such that the TMR improves several orders of magnitude. We also notice an oscillating
behavior of TMR as a function of the barrier width, indicating that resonant tunneling plays an important role in our system.
We consider that our results can be valuable to understand electron transport in silicene-based structure and could be useful
to design filters and digital silicene-based nanodevices.

2. Theoretical background

The ferromagnetic junction we are interested in, is a nanodevice that basically consists of a silicene sheet and two
ferromagnetic strips with different width dl and dr separated by a distance L, see Fig. 1a. This device has two ferromagnetic
configurations, parallel (P) and antiparallel (AP). When, the alignment of the strip of right side is same to the alignment to the
strip of the left side, the configuration is P, see Fig. 1b. In contrast, when they have different alignment, it is P, see Fig. 1c.

The control of the Fermi energy of the incident electrons is handled by a delta-type magnetic field (z-coordinate) localized
in the edges of the ferromagnetic strips [5,15], see Fig. 1b. The magnetic field Bz, as it is reported in previous works [5,15], is
formally described by:

BzðxÞ ¼ glBllB0
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the corresponding magnetic vector potential A is given by A ¼ ½0;AyðxÞ;0�, following the Landau gauge, with AyðxÞ deduced
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Fig. 1. (a) Schematic representation of the cross section of Ferromagnetic=Normal=Ferromagnetic ðFNFÞ asymmetrical junction on the surface of silicene. Silicene
consists of buckled honeycomb lattice of silicon atoms with two sublattices A (pink dotes) and B (blue dotes). A typical configuration in such device consists of
two ferromagnetic strips (gray rectangles) of specific widths deposited on the top of a thin dielectric layer and separated by a distance L. The width the left strip is
dl and the width of the right one is dr . Other difference between FM gates is the magnetization alignment, the right ferromagnetic gate can have the magne-
tization in the same direction that the left gate or contrary to it. The magnetization of the left ferromagnetic gate is fixed. Parallel ðPÞ (b) and antiparallel ðAPÞ (c)
magnetization alignments on FNF silicene junction are induced by a stray field BzðxÞ. Al and Ar are the corresponding transverse magnetic vector potentials (gray
rectangles) for P and AP alignment. Dashed lines in (b) represents the local electrostatic potentials Ul and Ur induced by the top gate voltage. Here, we are
interested in the control of the transport properties and consequently the improvement of TMR by structural asymmetrical effects. Specifically, we are
considering asymmetrical barriers, in which the contrast is induced by the applied magnetic and electric fields, bandgaps and the width of the barriers. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

O. Oubram et al. / Superlattices and Microstructures 113 (2018) 483e496 485
here, gl ¼ ±1 represent themagnetization of the left FM strip (FMl) parallel ðþ1Þ or antiparallel ð�1Þ to x-coordinate, similarly,
gr ¼ ±1 represent the magnetization of the right FM strip (FMr) parallel ðþ1Þ or antiparallel ð�1Þ to x-coordinate, and lB0

¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
Z=eB0

p
is the magnetic length, with B0 a reference magnetic field.

Other flexible strategy to modulate the quantum transport in silicene is to tune the locally electrostatic barrieres (EBs) Ul
and Ur (see Fig. 1ðaÞ and ðbÞ). The profile of EB is given as:

UðxÞ ¼ UlQ
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where Ul(Ur) is the height of EBs induced by FMl(FMr) and QðxÞ is Heaviside function.
Unlike to graphene, silicene is not coplanar [10] and is characterized by a difference in sublattice on-site potential, which

results in a local band-gap that can be manipulated by a perpendicular electric field. This local bandgap is considered as [5].
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where Dl(Dr) is the local bandgap on the ferromagnetic domain FMl(FMrÞ. In order to study the transport properties of our
system, it is necessary to calculate the band structure.

Silicene under the influence of magnetic and electric fields as well as a local bandgap (ferromagnetic field effects) can be
described by the following low-energy effective Hamiltonian around the Dirac point [20].

H ¼ nF
�
pxtx � hpyty

�� ðhsGSO � DzÞtz þ UI; (5)

where nF is the Fermi velocity of the charge carriers in silicene, pxðyÞ ¼ PxðyÞ þ eAxðyÞ is the canonical momentumwith PxðyÞ the
electron momentum and AxðyÞ the magnetic vector potential, t ¼ ðtx; ty; tzÞ correspond to the sublattice (pseudospin) Pauli
matrices, I is the 2�2matrix unity, h ¼ ±1 denotes the K and K′ valleys, respectively, and s ¼ ±1 denotes the spin indices. GSO
specifies the spin-orbit coupling, which in silicene has a large value 3.9 meV [33]. This is a clear difference with respect to
graphene. By solving the eigenvalue equation for this Hamiltonian it is possible to obtain the eigenfunctions and eigenvalues
(wave vectors). As our system is composed of different regions (barriers, well and semi-infinite regions) we will have specific
wave functions and wave vectors for those regions.

In generic terms we can write the wave function as:



O. Oubram et al. / Superlattices and Microstructures 113 (2018) 483e496486
jjðx; yÞ ¼ Aj

�
1
vþj

�
eþikx;jxþiky;jy þ Bj

�
1
v�j

�
e�ikx;jxþiky;jy (6)

where
kx;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E � Uj

�2 � �
hsGSO � DZ;j

�2 � �
ky;j þ Aj

�2q
(7)

and
v±j ¼ �E � Uj þ
�
hsGSO � Dj

�
±kx;j þ ih

�
ky;j þ Aj

� : (8)
For the region between the barriers and the semi-infinite regions to the left and right of the barriers Uj ¼ Dz;j ¼ Aj ¼ 0.
The unknown coefficients Aj and Bj are inter-related by the continuity condition at the interface along the x-coordinate

jjþ1
�
xj;jþ1; y

� ¼ jj
�
xj;jþ1; y

�
; (9)

as well as by the conservation of the y component of the momentum
ky;j ¼ ky: (10)
The relationship between the coefficients of the left semi-infinite region (A0 and B0) and the coefficients of the right semi-
infinite one (AN and BN) can be write in a more compact form through the transfer matrix, namely
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is defined in terms of the dynamic D and propagation P matrices:
j j
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�
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�
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�
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Here j ¼ 1;2;…;N. In our case N ¼ 3, represents the first barrier ferromagnetic region, the interwell region and the second

barrier. D0 is the dynamic matrix of the semi-infinite left and right regions, which are the same in this model. Likewise, kx;j
and dj are the x-component of the wave vector and the width of the j� th region, respectively. Knowing the transfer matrix,
we can calculate easily the tunneling probability of each scattering channel,

tP=AP
�
E; ky; h; s

� ¼
����ANþ1

A0

���� ¼ 1

jM11ðh; sÞj2
; (15)

with theM11ðh; sÞ being the first element of the transfermatrixMðh; sÞ for a h and s representation. The corresponding global

quantum transmission in the silicene sheet for a specific magnetization configuration is

TP=AP ¼ 1
4

X1
h¼�1

X1
s¼�1

tP=APðh; sÞ: (16)
With the transmission probability at hand, the conductance for a particular spin channel and magnetization can be ob-
tained through the Landauer-Büttiker formula [34]:
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GP=APðEF ; h; sÞ ¼ G0

Zp
2

�p
2

tP=APðEF ; q; h; sÞcosðqÞdq: (17)
The global conductance according to the alignment is

GP=APðEFÞ ¼
1
4

X1
h¼�1

X1
s¼�1

GP=APðEF ; h; sÞ; (18)

where EF is the Fermi energy, G0 ¼ e2LykF=p2Z is the fundamental conductance factorwith Ly being thewidth of the system in

the transversal y-coordinate, kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2F � G2

SO

q
is the Fermi wave-vector, and q is the angle of incident electrons with respect to

the x-coordinate, given by the relation between the transversal wave vector and the Fermi wave vector ky ¼ kFsinðqÞ.
Once the conductance is computed TMR for specific spin and valley channels can be obtained through the following

expression:

TMRðh; sÞ ¼ GPðh; sÞ � GAPðh; sÞ
GAPðh; sÞ

: (19)
Equivalently, the global TMR is given by,

TMR ¼ GP � GAP

GAP
: (20)
3. Numerical and theoretical results

We nowapply the above formulation to calculate the transmission, conductance and TMR of Dirac fermions on the silicene
structure for parallel and antiparallel alignment. The structure consists of a quantum well and ferromagnetic barriers of
widths dw, dl and dr , respectively. An asymmetrical system or asymmetrical barriers can be obtained by having a contrast
(difference) between the magnetic fields, the electrostatic potentials, the local bandgaps and the widths between the left and
right barrier. In order to understand all these asymmetrical possibilities we will analyze them individually, that is, we will
vary one of them by keeping all other constant. Other aspect that it is important to mention is the relevance of the valley and
spin degrees of freedom. So, we have four transmission and transport channels, two (spin up and down) per valley (K and K0).
Fig. 2. Parallel transmission (TP) as a function of the energy and the angle of incidence for: (a) and (b) the spin-up component in the K and K0 valley; and (c) and
(d) the spin-down component in the K and K0 valley. Here, Ul ¼ Ur ¼ 2, Bl ¼ Br ¼ 3, Dl ¼ 0, Dr ¼ 3 and dl ¼ dr ¼ L

2.
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The first asymmetrical aspect that we will analyze is the one related to the local bandgap (DlsDr). Specifically, we are
considering a local bandgap of Dl ¼ 0, and Dr ¼ 3 for the left and right barrier, respectively, by keeping all other parameters
constant, namely: Bl ¼ Br ¼ 3, Ul ¼ Ur ¼ 2, dw ¼ L and dl ¼ dr ¼ L=2. In Fig. 2 we show our outcomes for the transmission
probability or transmittance in the case of the parallel configuration of the magnetic field (TP). Fig. 2aed correspond to
transmission contours as a function of the energy and angle of incidence for the spin-up component in the K and K0 valleys
(TP(UK) and TP(UK0)) and the spin-down component in the K and K0 valleys (TP (DK) and TP (DK0)), respectively. As we can see
in practically all contour plots there are a plethora of electron states, from propagating states (red regions) to forbidden ones
(deep blue regions), depending on the energy and angle of incidence. We can also notice that the spin-up and spin-down
components of the transmittance for the same valley have different characteristics. For instance, we can see that even
when the negligible transmission region is nearly the same in both components the non negligible regions have different
branches with different degrees (probabilities) of transmission. It is also noted a similarity of the transmission components
between valleys. In specific, the transmission map of the spin-up component in the K valley (Fig. 2a) is nearly the same that
the transmission map of the spin-down component in the K0 valley (Fig. 2d). The same applies for TP (DK) and TP(UK0), Fig. 2c
and b, respectively. This similarity can be understood by taking into account the component of the wave vector in the
propagation direction kxj, see eq. (7), and more precisely by realizing that the term hs is the same for TP(UK) and TP (DK0) as
well as for TP (DK) and TP(UK0). As we already mentioned the two barriers are practically transparent, propagating states, for
different energies and angles of incidence. This effect is a result of the confabulation of resonance conditions, F�abry-Perot
resonances, in the well region and the left and right barriers. It is also important to remark that the transmission gap reaches
almost E ¼ 5. Moreover, the transmission domain is stretched to the left, mainly due to the magnetic field effects.

For AP alignment we can see that the non negligible transmission domain is greatly reduced, whence, the forbidden zone
increases, see Fig. 3. In addition, the transmission gap rises beyond of a critical value of incident energy E>6. As in the case of
parallel alignment, the contour plot for TAP(UK) is similar to the corresponding one for TAP (DK0), Fig. 3a and d, the same
applies for TAP (DK) and TAP(UK0), see Fig. 3c and b. As we already mentioned this similarity comes from the equivalence of the
wave vectors between the these components. If we see in more detail the contours, they are not totally equivalent, in fact the
differences that we can notice are a result of the discrepancies in the components of the wave functions between the
mentioned transmission channels. Another important characteristic of the transmission maps is a mild asymmetry around
q ¼ 0 toward the left. Precisely, this asymmetry is due to the asymmetrical effect of the local bandgap DlsDr . At this point, it
also is important to mention that the reduction of the AP transmission could be beneficial for TMR since this quantity (TMR)
can be improved by reducing the antiparallel component of the conductance as well as by enhancing the parallel one.

Here, it is important to remark that TMR is a preponderant quantity due to its physical significance and technological
implications. This quantity depends directly on the conductance characteristics for parallel and anti-paraller configurations.
Then, in order to understand TMR results we firstly show and analyze the conductance characteristics for the mentioned
configurations as well as for the different spin and valley components. In Fig. 4, the P conductance (GP) and AP conductance
(GAP) for the four dispersion channels as a function of the Fermi energy are shown. We can notice that GP and GAP tends to 0,
when the Fermi energy is below a critical value EF <5 and EF <6, respectively. Thereupon, it tends to grow in an oscillatory
Fig. 3. Contours of the antiparallel transmission TAP as a function of the energy and the angle of incidence for the different spin components and valleys. (a) and
(c) correspond to the spin up and down components for the K valley, TAP(UK) and TAP (DK), respectively, while (b) and (d) correspond to the spin up and down
components for the K0 valley, TAP(UK0) and TAP (DK0), respectively. Here, Ul ¼ Ur ¼ 2, Bl ¼ Br ¼ 3, Dl ¼ 0, Dr ¼ 3 and dl ¼ dr ¼ L

2.



Fig. 4. Parallel (GP) and antiparallel (GAP) conductance as a function of Fermi energy EF . (a) and (c) correspond to the spin-up and spin-down channels in the K
valley, while (b) and (d) to the same channels but in the K0 valley. In this case the asymmetry comes from the difference between the left and right local bandgaps,
Dl ¼ 0 and Dr ¼ 3. The other parameters are Ul ¼ Ur ¼ 2, Bl ¼ Br ¼ 3 and dl ¼ dr ¼ L=2. The solid and dashed lines correspond to GP and GAP , respectively.

Fig. 5. TMR ratio versus Fermi energy for channels (a) UK, (b) UK0 , (c) DK and (d) DK’. The asymmetry in our system is provided by the difference between the
local bandgaps between the left and right barriers, Dl ¼ 0 and Dr ¼ 3. The other parameters of our structure are the same as in Fig. 4.
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way. The oscillations are due precisely to the resonances shown in Figs. 2 and 3. We can also notice that as the energy in-
creases the difference between the P and AP conductance is keeping at the same order of magnitude and at the same time the
AP conductance increases. This trend is not beneficial for TMR because this quantity is inversely proportional to the AP
conductance. The best scenario for TMR is that the parallel component of the conductance be maximize and the anti-parallel
one be minimized. That is a hard task, so other possibilities are welcomed. A reasonable option is to keep P conductance at
good levels and at the same time to diminish AP conductance as much as possible, under detectable levels. Under this context
the energy range of interest is 5< E<7.Wherein, GAP is evanescent and GP is finite. In Fig. 5 we showour results for TMR in the
mentioned range 5< E<7. Fig. 5a and c correspond to the spin-up and spin-down components in the K valley, while Fig. 5b
and d represent our outputs for the spin-up and spin-down components in the K0 valley. We can notice that TMR is not
equivalent for the different channels as well as UK and DK 0 channels are dominant. In fact, the maximum TMR value for these



Fig. 6. (a) Global conductance as a function of Fermi energy EF . The solid-black and dashed-red lines correspond to GP and GAP , respectively. (b) Global TMR
versus the Fermi energy. The asymmetry in our system is provided by the difference between the local bandgaps between the left and right barriers, Dl ¼ 0 and
Dr ¼ 3. The other parameters of our structure are the same as in Figs. 4 and 5. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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dominant channels is nearly 7 times the maximum TMR value for DK and UK 0 channels. Thereby, the overall conductance is
mainly determined by the dominant channels, see Fig. 6a. In this figure we also show the global conductance for the parallel
and anti-parallel configurations. As we can see global conductances are similar to the conductances of the different channels.
However, in this case the energy range for which GAP is evanescent and GP is finite is reduced to 5< E<5:5, which corresponds
to the energy range for maximum TMR, see Fig. 6b. Precisely, this figure presents the global TMR, which is shaped by the
dominant channels.

Now it is turn to analyze another effect that canmake our system asymmetric, namely electrostatic field effect. Specifically,
we will consider electrostatic potentials in the left and right barriers applied in asymmetric fashion, that is, the left and right
electrostatic potentials will have a contrast. As in the case of the local bandgapwewill showand analyze the transmission and
transport properties in order to understand in a better way TMR characteristics.We can also carry out a similar analysis for the
different spin components and valleys, however instead of doing that, we will show our global results for different potential
strengths. In Figs. 7 and 8 we show the transmission contours for P and AP configurations as a function of the angle of
incidence q and the height of the right barrier for different strengths of the left barrier: (a) Ul ¼ 2, (b) Ul ¼ 4, (c) Ul ¼ 6 and (d)
Ul ¼ 7. The Fermi energy has been kept fixed at EF ¼ 5. As we can see there is a high anisotropy in practically all the
transmission maps. The anisotropy in the angular part is caused by the shifting of the Dirac cones in the barrier region due to
the appliedmagnetic field. In Fig. 7 we can also notice that the active region of TP is reduced as Ul is closed to EF ¼ 5, see Fig. 7b
and c. This reduction is a consequence of the wave vector filtering. Specifically, when the height of Ul approaches to the Fermi
Fig. 7. Transmission maps for parallel alignment. The coordinates of the maps are the angle of incidence and the height of the right electrostatic barrier Ur.
Different heights of the left barrier have been considered: (a) Ul ¼ 2, (b) Ul ¼ 4, (c) Ul ¼ 6 and (d) Ul ¼ 7. Here, Br ¼ Bl ¼ 3, EF ¼ 5, Dl ¼ Dr ¼ 0 and dl ¼ dr ¼ L

2.



Fig. 8. The same as in Fig. 7, but for the antiparallel configuration.
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energy (EF¼5), the character of electrons changes from propagating to evanescent (see Eq. (7)). It is also important tomention
that we can find resonant states in practically all transmission maps, however for Ul ¼ 2 these states become preponderant
around Ur ¼ 2 and Ur ¼ 8, that is, they covered an important angular range. In the case of the antiparallel configurationwe can
see that for different Ul the TAP spectrum diminish drastically, 3 orders of magnitude. As we can notice the change in the
magnetic field alignment gives rise to totally different transmission maps. In particular, most of the transmission contours are
dominated by negligible transmission probability regions. The high transmission regions, associated to resonant states,
correspond to small angles as well as to high and low Ur. It is also worth noting that the high transmission regions are
separated by a transmission bandgap, which is enlarged as Ul increases. This reduction of the transmission properties for AP
alignment in conjunction with the high transmission regions for P alignment will determine the TM characteristics.

In order to better understand the transmission results, we investigate the conductance GP and GAP as a function of Ur , see
Fig. 9. From this figure we see that GP is almost symmetric around Ur ¼ 5. In fact, it drops monotonically with Ur until reaches
a minimum value around Ur ¼ 5. Afterward, it increases with Ur , see Fig. 9a. Whereas, GAP drops monotonically, but it stays
finite and then increases with Ur , see Fig. 9b. Moreover, GP and GAP decrease as Ul increases (Ul¼2,4,5), afterward tend to
increase as Ul >5. This behavior can be explained by the parity of kx function around EF ¼ 5 (see Eq. (7)), where
kxðUrðlÞ � Ef Þ ¼ kxð�ðUrðlÞ � Ef ÞÞ. Another important characteristics is that GP exhibits oscillatory behavior with pronounced
amplitude close toUr ¼ 2 and Ur ¼ 8. This behavior is originated by the resonance phenomenamanifested at Ur ¼ 2 and 8 (see
Fig. 7), which highly intensified for Ul ¼ 2. Then the amplitude of GP conductances can be controlled perfectly by Ur or Ul. In
the case of GAP a wide forbidden region is presented. This region comes from the dominant evanescent mode for
E � B<UrðlÞ < E þ B, where in this domain the electron transmission is blocked by high left barrier. In contrast, we note a
localized resonance peaks at different heights of the right barrier. For instance, for Ul ¼ 4 the peak is localized at Ur ¼ 6.
Precisely, this manifestation is expected from Fig. 8b, where, a resonance channel for Ul ¼ 4 is manifested at Ur ¼ 6. The same
behavior is observed for Ur ¼ 3.4, 4 and 5, see Fig. 9b and c.

Now it is turn to analyze how GP and GAP shape TMR. As in the preceding cases we show TMR as a function of Ur for
different heights of the left barrier Ul, see Fig. 10. We can notice that the suppression of the left electrostatic barrier induces
TMR peaks localized at low Ur (see the inset in Fig. 10). This is a consequence of the transmission blocking of AP alignment,
whereby, it is dominant in the low field domain. Similar result is reported by Zhai and Chang in graphene [15]. Additionally,
we notice that TMR has a blue shifting for Ul � 4, while a red shifting is presented for Ul � 5. We can also see that TMR can be
practically null for different values of Ur as well as that those regions for negligible TMR can be modulated by changing the
height of the left barrier. Here, it is also important to remind the other values that we are considering as the Fermi energy
EF ¼ 5, the magnetic field in the left and right barriers Bl ¼ Br ¼ 3, and the local bandgaps Dl ¼ Dr ¼ 0 have an impact in the
nature of the wave vector. Actually, for the specific values of these parameters the wave vector argument is complex in both
barriers. Physically, it means that the propagation mode is suppressed in both barriers. The same behavior is noted around
Ur ¼ 4.5 for Ul ¼ 6 and Ur ¼ 3 for Ul ¼ 7 (see Eq. (7)). At this point is important to remark that the asymmetry caused by having
a contrast between the heights of the left and right barrier really improves TMR. In fact, as we can notice the maximums for
TMR do not correspond to symmetric barriers Ul ¼ Ur . For instance, for Ul ¼ 2 and Ul ¼ 5 the peaks are localized at Ur ¼ 3 and
Urx6.8, respectively. Furthermore, the active region of TMR, the non zero region of TMR, is larger as Ul increase. This feature is
consequent of themaximization of wave vector filteringmechanism as Ul increases. It means that thewidth of the TMR active



Fig. 9. (a) Parallel conductance GP and (b) antiparallel conductance GAP as function of Ur . Different values for Ul have been considered, specifically: Ul ¼ 2, 4, 5, 6
and 7. The other parameters are the same as in the cases of parallel and antiparallel transmission contours, Figs. 7 and 8. The inset (c) corresponds to GAP in
logarithmic scale.

Fig. 10. TMR ratio as a function of Ur for different Ul , namely: Ul ¼ 0, 2, 4, 5, 6, 7. The Fermi energy, the magnetic fields and the local bandgaps in the left and right
barriers are the same as in Fig. 9. The inset shows the variation of TMR for Ul ¼ 0.
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region depends on the strength of the left electrostatic barrier Ul. In other words, this dependence is caused by the change of
the TAP gap induced by Ul (see Fig. 8).

As we have corroborated external voltages applied in asymmetrical fashion are a perfect tool to modulate the trans-
mission, transport and TMR properties. These properties can be improved by fixing Ul and tuning Ur . Then asymmetrical
applied voltages represent an additional strategy to control the transport properties of nanoelectronics based in silicene.

To better understand the effect of Ur on the transport properties, we have computed P and AP conductances as well as TMR
versus the applied voltage Ur and incident energy E, see Fig. 11. Qualitatively, for energy below a critical value (E<4), GP is
attenuated for all Ur . Besides, GAP is attenuated in practically all the energy and Ur range considered, except for high energy
and low Ur. These characteristics will have a huge impact on TMR. In fact, we obtain a giant TMR (more than 104) around
E¼ 4.5 and E¼ 3.5, see Fig. 11c. This indicate that giant TMR can be flexibly manipulated by the gate voltage Ur while keeping
the energy constant, or vice versa.

Now it is turn to analyze the asymmetry that can be obtained by applying non-equivalent magnetic field to the left and
right barriers. In Fig. 12 we show the conductance for both alignment with respect to the right magnetic barrier for different
electrostatic barriers: Ul ¼ Ur ¼ 2,3,6,7. In Fig. 12a we can see that GP has a symmetrical behavior around a critical value
between Br ¼ 2 and Br ¼ 3. This characteristic is presented irrespective of the strength of the electrostatic barriers.We can also
notice that as the strength of electrostatic barriers increases GP diminishes in general. This trend is presented for most barrier
strengths considered, except for Ur ¼ Ul ¼ 7. This mechanism is expected by the physical parity of the wave vector kx around
EF ¼ 5 (see Eq. (7)). In Fig. 12b the results for GAP are shown. In this case the conductance presents a decreasing trend as Br
increases. Other important aspect to notice is that GAP is various orders of magnitude lower than GP , observe the logarithmic
scale for GAP. The rising of the electrostatic barriers causes a similar effect as in the case of the parallel conductance, that is, GAP



Fig. 11. The incident energy E and the right contact voltage Ur-dependent (a) parallel conductance GP and (b) antiparallel conductance GAP . The effect of E and Ur

on (c) tunneling magnetoresistance TMR. The results are evaluated at Bl ¼ Br ¼ 3, Dl ¼ Dr ¼ 0 and Ul ¼ 2.

Fig. 12. Linear-regime conductance for (a) parallel alignment GP and (b) antiparallel alignment GAP versus the right magnetic barrier Br for different electrostatic
barriers, in specific Ul ¼ Ur ¼ 2, 3, 6, 7. In this case, we have considered EF ¼ 5, Bl ¼ 3 and Dl ¼ Dr ¼ 0. The inset is for linear quantum conductance for antiparallel
alignment GAP .
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decreases monotonically, expect for Ur ¼ Ul ¼ 7. An important parameter to understand this transport characteristics is the
transversal wave vector. Actually, by incorporating a magnetic field the transversal wave vector is modified by a term that is
proportional to the magnetic field strength. More explicitly, we are pinning up Bl ¼ 3 and varying Br . By increasing the Br from
0 to 5, the transversal wave vector of the antiparallel alignment intensifies. This induces a blockage of the carriers that
propagate to the second barrier. Hence, the GAP declines strongly. In the parallel alignment case, the wave vectors difference
between both magnetic barriers decreases from Br ¼ 0 to Br ¼ 3. Hence, the propagating modes in this domain will be
favoured and consequently GP will be enhanced. On the other hand, the decrement of GP from Br ¼ 3 to Br ¼ 5 is due to the
intensification of the transversal wave vector difference between both barriers. In other words, the decrement is a result of
magnification of evanescent modes in this region (3<Br <5).

As consequence of the variation of GP and GAP with Br for different strengths of the electrostatic barriers, the TMR peak is
increased several orders of magnitude, see Fig. 13. By introducing the asymmetric magnetic field effect, it is observed that
TMR increases at various orders of magnitude, note the peak at Br ¼ 3 for Ul ¼ Ur ¼ 3 and at Br ¼ 4.5 for Ul ¼ Ur ¼ 6. As we can
see TMR is enhanced 3 to 5 orders of magnitude. In addition, the magnitude and the region of operation can be controlled by



Fig. 13. TMR ratio as a function of Br for different strengths of the electrostatic barriers, namely, Ul ¼ Ur ¼ 2, 3, 6, 7. In this case EF ¼ 5, Bl ¼ 3 and Dl ¼ Dr ¼ 0. The
inset shows the variation of TMR for Ul ¼ Ur ¼ 2, 3.
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changing the strength of the magnetic and electrostatic barriers. In fact, we find that TMR reaches more than 105 for Br ¼ 4.5
(asymmetrical case BlsBr), which represents 10 times the TMR value for the symmetrical case (Bl¼Br ¼ 3). In this case the
electrostatic barriers are fixed at Ul ¼ Ur ¼ 6. Then, as we have corroborated by adjusting the magnetic barriers in asym-
metrical fashion as well as appropriately choosing the electrostatic barriers TMR can be improved significantly, more than 3
orders of magnitude. It is also important to remark that this enchantment is not reported previously in silicene structures.
This property could be of great importance in the silicene-based sensor and nanodevices industry where high TMR values are
required.

Up to this point, we have testified that regardless of the simplicity of a double barrier system, it has a set of asymmetric
possibilities that can be exploited to improve TMR. So far we have studied external asymmetrical effects, however there is
another possibility related to the structural characteristics of the device. In specific, the width of the barriers represents
another option of asymmetry. So, we have studied the transmission of both configurations depending on the size of the right
barrier dr and fixing the left one (dl¼L

2). In Fig. 14, we show the transmission maps of the parallel and antiparallel configu-
rations. The vertical axis corresponds to the width of the right barrier, while the horizontal axis to the angle of incidence. The
panels of the left and right column correspond to TP and TAP , while first and second row to Ul ¼ Ur ¼ 0 and Ul ¼ Ur ¼ 2,
Fig. 14aed, respectively. As we can notice the change in the alignment has a significant impact on the transmission properties.
In particular, the transmission is reduced drastically in most parts of the transmission map, being different from zero at
regions close to normal incidence, q ¼ 0. By changing from parallel to antiparallel alignment the transmission landscape is
Fig. 14. Transmission maps for (a) (c) parallel and (b) (d) antiparallel alignment. In this case the coordinates of the maps are the width of the right barrier (vertical
axis) and the angle of incidence (horizontal axis). Two height of the electrostatic barriers have been considered: (a) (b) Ul ¼ Ur ¼ 0 and (c) (d) Ul ¼ Ur ¼ 2,
respectively. The other parameters are: dl ¼ L=2, Br ¼ Bl ¼ 3, EF ¼ 5 and Dl ¼ Dr ¼ 0.



Fig. 15. (a) Parallel and (b) logarithm antiparallel conductance as a function of dr for two different heights of the electrostatic barriers, Ul ¼ Ur ¼ 0 and
Ul ¼ Ur ¼ 2, solid-black and dashed-red curves, respectively. The other relevant parameters come as: dl ¼ L=2, EF ¼ 5, Bl ¼ Br ¼ 3 and Dl ¼ Dr ¼ 0. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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changing from a dominant propagating mode to a dominant evanescent mode. Likewise, by increasing the height of the
electrostatic barriers an extra reduction takes place for both alignments. This reduction comes from the filtering of the wave
vector (see Eq. (7)) as Ul ¼ Ur increases. An even more interesting characteristic, it is the periodic pattern of the transmission
that is presented as a function of dr . Actually, the barriers are resonant cavities, so a change in its width also represents a
change in the resonant condition. In the case of Ul ¼ Ur ¼ 0 the patterns are spaced closely for both TP and TAP , while for
Ul ¼ Ur ¼ 2 the space between the patterns is enlarged. In other words the period of the patterns can be modulated by the
electrostatic barriers. Interestingly, the same resonance periodicity has been observed in structures based on graphene [35].
Specifically, the periodicity is induced when the relation kxDr ¼ np is fulfilled. On the same footing, we can confirm that the
periodicity arises when the resonant condition kxdr ¼ np is established. Here, it is also important to mention that as the wave
vector depends on height of electrostatic barriers, then a change in Ur ¼ Ul also implies a change in the resonant condition,
and hence a change in the period of the transmission patterns. As the conductances as well as TMR depend directly on the
transmission properties it is expected that these quantities also present a periodic dependence with respect to the barrier
width.

In Fig. 15 we show the conductance for the parallel and antiparallel alignment as a function of dr for two different values of
the electrostatic barriers, Ul ¼ Ur ¼ 0 and Ul ¼ Ur ¼ 2, solid-black and dashed-red curves, respectively. As we can see both
conductance configurations have an oscillating behavior. We can also notice that a damping is taking place as the barrier
width increases, that is, the amplitude of the oscillations diminish as dr grows. In addition, the conductances diminish as the
electrostatic barriers grow, being more dramatic the reduction for GAP, consider the logarithmic scale for this configuration.
Here, it is also worth mentioning that our results agree with the oscillations obtained in normal/ferromagnetic/normal sil-
icene junctions [20]. In fact, these oscillations are attributed to the anomalous tunneling of massless Dirac fermions [20,35].
Fig. 16. TMR ratio as a function of dr for two different heights of the electrostatic barriers, Ul ¼ Ur ¼ 0 and Ul ¼ Ur ¼ 2, solid-black and dashed-red curves,
respectively. The other relevant parameters of the system are the same as in Fig. 15. The inset shows the variation of TMR for Ul ¼ Ur ¼ 0. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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In Fig. 16 we present TMR as function of the size of the right strip dr for two values of the electrostatic barriers, Ul ¼ Ur ¼ 0
and 2, solid-black and dashed-red curves, respectively. As we can see the oscillating-damping behavior of the conductances is
also reflected in TMR. Likewise, TMR for Ul ¼ Ur ¼ 2 is larger, by 3 orders of magnitude, than for Ul ¼ Ur ¼ 0. This results is a
consequence of the reduction of GAP , several orders of magnitude, as the electrostatic barriers grow. In addition, we notice
that the dominant TMR peak is located at dr ¼ L

2 for Ul ¼ Ur ¼ 2, which corresponds to the resonant conditions between the
barriers dl ¼ dr ¼ L=2. In short, the asymmetry provided by non equivalent barrier widths, in conjunction of an appropriate
election of the other relevant effects in the system such as the electrostatic and magnetic fields as well as the local bandgap,
can help to improve TMR characteristics.

4. Conclusions

In summary, we have investigated the electron transport in double magnetic barrier on the top of silicene monolayer in
ferromagnetic and antiferromagnetic configuration. The transport properties have been studied under asymmetrical elec-
trostatic potential and magnetic field for asymmetrical geometrical structure. The results indicated the asymmetric applied
voltage along with incident energy can tuned the TMR spectrum. Furthermore, the combined asymmetrical magnetization
effect with an adequate electrostatic potential can enhance TMR up to more than three orders of magnitude. Particularly, we
have shown also that the effect of asymmetric magnetization improves the TMR more than two orders of magnitude
compared with the symmetrical effect. Finally, we found the increase of the degree of asymmetric barriers does not
contribute on the enhancing of TMR, but, it produces oscillatory phenomena of TMR and conductivity, due to the resonance
periodicity behavior of transmission. This finding is highlighted in graphene and silicene structure ref. [20,35]. We hope ours
results will guide experiment efforts to development of the silicene-based sensor and nanodevices industry where high TMR
values are required.
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