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a b s t r a c t

Energy minibands are a basic feature of practically any superlattice. In this regard graphene
superlattices are not the exception and recently miniband transport has been reported
through magneto-transport measurements. In this work, we compute the energy mini-
band and transport characteristics for graphene superlattices in which the energy barriers
are generated by magnetic and electric fields. The transfer matrix approach and the Lan-
dauer-Büttiker formalism have been implemented to calculate the energy minibands and
the linear-regime conductance. We find that energy minibands are very sensitive to the
magnetic field and become degenerate by rising it. We were also able to correlate the
evolution of the energy minibands as a function of the magnetic field with the transport
characteristics, finding that miniband transport can be destroyed by magnetic field effects.
Here, it is important to remark that although magnetic field effects have been a key
element to unveil miniband transport, they can also destroy it.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Graphene superlattice (GSL) is a term coined to refer to a graphene sheet subjected to a periodicmodulation irrespective of
the mechanism or external effect used to create the periodic pattern. The electronic and transport properties of GSLs are
radically different to the corresponding ones in conventional semiconductor superlattices, thanks to the chiral nature of
charge carries in graphene [1,2]. Among the most remarkable properties of GSLs we can find: highly anisotropic propagation
of charge carriers [1,3e5], extra Dirac points at the Brillouin zone boundary [2e4,6e10], cloning of Dirac fermions [11], and a
zero-averaged wave-number gap [12,13]. In fact, most of these novel characteristics have been confirmed experimentally
[5,9e11].

Within this context, it is important to remark that one of the most relevant and general characteristic of practically any
superlattice, irrespective of the elemental excitation that we are dealing with, are the so-called minibands. For instance, in
conventional semiconductor superlattices energy minibands are a key factor in phenomena like negative differential
conductance, Wannier-Stark localization, Bloch oscillations, resonant tunneling and electric field domains [14]. Specifically,
guez-Vargas).
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the width of energy minibands plays a fundamental role to understand the mentioned phenomena [14]. In graphene,
energy minibands are more intricate due to the strong dependence of the electronic and transmission properties on the
transversal wave vector of electrons. Moreover, energy minibands and particularly its width, are greatly influenced by the
kind of external effects (barriers) that were used to generate the periodic modulation. From the experimental standpoint,
energy minibands have been proven by different measurement techniques [9,15e19] that take advantage of the special
features of the electronic structure, Hofstadter butterfly, that arise under the influence of a quantizing magnetic field [20].
Recently, a step forward has been given with the experimental demonstration of miniband transport in graphene [21]. In
fact, this fundamental transport phenomenon was demonstrated by implementing the so-called transverse electron
focusing (TEF) effect in graphene moir�e superlattices. Here, it is important to stress that a magnetic field plays a central role
in TEF, to such an extent that by adjusting it, ballistic miniband conduction takes place between the emitter and collector of
the graphene device. Likewise, to understand, interpret and at the end to unveil miniband transport, it is quite important to
know in detail the characteristics of miniband formation. In this regard, electrostatic, substrate, magnetic and strain gra-
phene superlattices are not the exception. So, a thorough analysis of miniband formation and more importantly a detailed
study of how minibands determine the transport characteristics of these superlattices is needed. In fact, some work has
been done in this regard [22]. Specifically, in the case of electrostatic and substrate GSLs it was shown that the start-end,
degeneration and closure of minibands determine the most important characteristics of the linear-regime conductance [22].
Under this context and taking into account the relevance of the magnetic field is that we consider that a detailed study of
miniband formation and its impact on the transport properties of the so-called magnetic GSLs is necessary.

In this work, we study the electronic structure and transport properties of magnetoelectric graphene superlattices. The
transfer matrix approach and the Landauer-Büttiker formalism have been implemented to obtain the energy minibands and
the linear-regime conductance, respectively. We pay special attention to the effect of the magnetic field on the energy
minibands as well as how this effect impacts on the transport properties. Our findings indicate that the energy minibands are
pretty sensitive to themagnetic field, particularly they become degenerate by increasing it. Furthermore, we can correlate the
changes in the minibands with the modifications in the conductance caused by the magnetic field. Then, it is important to
keep in mind that when dealing with magnetoelectric graphene superlattices magnetic field effects can disrupt and even
destroy the energy miniband characteristics, hence complicating its possible detection via transport measurements.
2. Model

The system of interest is a graphene superlattice in which the barriers are generated by magnetic and electric fields. In
principle, this system can be obtained by placing ferromagnetic electrodes upon a graphene sheet in a periodic fashion, see
Fig. 1a. The graphene sheet is typically deposited on a non-interacting substrate like SiO2 with the aim that the gapless linear
dispersion relation of graphene be preserved in the free regions, regions without a magnetoelectric field. This substrate
together with a back gate also helps to control the Fermi energy of Dirac electrons. Here, it is also important to mention that
the top ferromagnetic electrodes control the shape and distribution of the magnetic and electric fields along the superlattice
Fig. 1. (a) Schematic diagram of the possible device for magnetoelectric graphene superlattices. A typical device configuration consists of a graphene sheet
deposited on a non-interacting substrate like SiO2 (gray slab) which is usually doped, a bottom gate that controls the Fermi energy of the incident electrons, top
magnetoelectric strips (MESs) that modulate the distribution and shape of the applied magnetic and electric fields, and not shown but part of the device left and
right leads. (b) Distribution of the magnetic field and electrostatic potential along the superlattice axis. The magnetic field is of delta-function type, while the
electrostatic potential comes in a step-wise fashion. The vector potential is also shown, it has a step-wise form as well.
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axis. In our particular case, we will deal with delta-function barriers for the magnetic field and step-wise barriers for the
electric field, see Fig. 1b.

To implement the transfer matrix method and consequently to obtain the transmission, transport and electronic structure
properties we need the dispersion relation, wave functions and wave vectors of the barrier and well regions. Thereby, wewill
present in first place those quantities, afterwards, we will proceed with the basics of the transfer matrix approach, the
generals of the transport formalism and the fundamentals of the electronic structure.

In the barrier regions electrons can be described by the following Dirac-like equation,

½vFs,ðpþ eAÞ þ VðxÞs0�j ¼ Ej; (1)

where vF ¼ c=300 is the Fermi velocity of the Dirac electrons in graphene, s ¼ ðsx; syÞ is the vector of Pauli matrices,

p ¼ ðpx; pyÞ is the momentum vector of electrons, A ¼ ð0;Ay;0Þ is the vector potential, and s0 is the 2� 2 unitary matrix.
Equation (1) can be solved easily giving the dispersion relation,

E ¼ U0±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2v2Fq

2
x þ v2F

�
Zqy þ eAy

�2
r

; (2)

where U0 is the electrostatic field strength, Ay is the y component of the vector potential, q represents the two-dimensional

wavevector, and the “±” signs correspond to electrons and holes, respectively. The corresponding wavefunctions, normalized
to the graphene sheet area, can be written as,

j±ðx; yÞ ¼
1ffiffiffi
2

p
�

1
v±

�
e±iqxxþiqyy; (3)

where
v± ¼
ZvF

�
±qx þ i

�
qy þ e

ZAy

��
E � U0

: (4)
In the regions without magneto-electrostatic fields or well regions we have the usual dispersion relation,

E± ¼ ±ZvF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
; (5)

and wavefunctions,
j±ðx; yÞ ¼
1ffiffiffi
2

p
�

1
u±

�
e±ikxxþikyy; (6)

with
u± ¼ ZvF
�
±kx þ iky

�
E

: (7)
This information is enough to compute the transfermatrix of the system becausewe have N
2 þ 1 identical barriers and N

2 � 1
identical wells. Moreover, this multi-barrier structure is enclosed by left and right semi-infinite regions with the same
characteristics that well regions. Then, by taking into account the conservation of the transversal momentum, ky ¼ qy, and
imposing the continuity condition to the wavefunction in the different interfaces along the longitudinal direction (x coor-
dinate), we can obtain a relation between the coefficients of the forward and backward wavefunction of the left semi-infinite
region ðA0 and B0Þ and the forward wavefunction of the right semi-infinite region ðANþ1 and BNþ1 ¼ 0Þ, through the transfer
matrix as [23],

�
A0
B0

�
¼ M

�
ANþ1
0

�
; (8)

where the transfer matrix M is given by,

M ¼ D�1
0

0
@YN

j¼1

DjPjD
�1
j

1
ADt ; (9)

which is defined in terms of the dynamic Dj and propagation Pj matrices,
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Dj ¼
�

1 1
vþ;j v�;j

�
; (10)

and

Pj ¼
�
e�iqx;jdj 0

0 eiqx;jdj

�
; (11)

here j ¼ 1, 2, 3,…, N. Where D0 and Dt are the dynamic matrix of the semi-infinite left and right regions, which in our model
are the same, D0 ¼ Dt . Likewise, qx;1 ¼ qx;3 ¼ qx;5 ¼ … ¼ qx is the x-component of the wave vector of the barriers, and kx;2 ¼
kx;4 ¼ kx;6 ¼ … ¼ kx corresponds to the longitudinal component of the wave vector of the inter-well and semi-infinite re-
gions. According to the characteristics of the system turns out that v±;1 ¼ v±;3 ¼ v±;5 ¼ … ¼ v±, u±;2 ¼ u±;4 ¼ v±;6 ¼ … ¼ u± as
well as D0 ¼ D2 ¼ D4 ¼ … ¼ DNþ1 and D1 ¼ D3 ¼ D5 ¼ … ¼ DN . Here, D0 and DNþ1 correspond to the dynamic matrices of
the left and right semi-infinite regions.With the transfermatrix at hand, we can calculate readily the transmission probability
or transmittance,

T ¼
				ANþ1

A0

				 ¼ 1

jM11j2
; (12)

with M11 the ð1;1Þ element of the transfer matrix M. The linear-regime conductance is obtained through the Landauer-
Bütiker formula [24],
Fig. 2. Transmission probability versus the energy of incident electrons for GSLs under different magnetic field strengths: (a) 0B0, (b) 1B0, (c) 3B0 and (d) 5B0. In
this case the angle of incidence, the number of periods (barriers), the widths of barriers and wells, and the height of the electrostatic barriers were q ¼ 15� ,
NP ¼ 11, dB ¼ lB and dw ¼ lB , and U0 ¼ 2E0, respectively.



Fig. 3. Angular distribution of the transmittance of GSLs for different magnetic field strengths: (a) 0B0, (b) 1B0, (c) 3B0 and (d) 5B0. The energy considered for the
impinging electrons is Ei ¼ 1:5E0. The other superlattice parameters are: NP ¼ 7, dB ¼ dw ¼ lB and U0 ¼ 2E0.
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G=G0 ¼ E*F

Zp=2

�p=2

T
�
E*F ; q

�
cos qdq; (13)

where E�F ¼ EF=E0 is the dimensionless Fermi energy with E0 the energy unit, G0 ¼ 2e2LyE0=h2vF is the fundamental
conductance factor with Ly thewidth of the system in the transversal y-coordinate, and q is the angle of the incident electrons
with respect to the x-coordinate. Finally, the spectrum of bound states is calculated changing from open boundary conditions
to hard-wall boundary conditions, this is, the widths of the first and last barrier of the multiple structure are extended to
infinity. Likewise, we have to require a pure imaginary wave vector for the semi-infinite barrier regions, which turns out in a
transcendental equation between energy and transversal wave vector of Dirac electrons as,

MBS
11
�
E; ky; qx/iax

� ¼ 0; (14)

where qx is the wave vector along x-coordinate defined through Equation (2) and MBS
11 the (1,1) matrix transfer of,

MBS ¼ D�1
1

0
@ YN�2

j¼2

DjPjD
�1
j

1
AD1: (15)

here, the superscript BS has been included to differentiate Equation (15) from Equation (9) as well as to state that it corre-
spond to the bound state case.



Fig. 4. Transmission probability versus the energy of incident electrons for GSLs with different width ratios of barrier to well (bw=ww): (a) and (b) bw=ww ¼ 1, (c)
bw=ww ¼ 1=2, (d) bw=ww ¼ 2, (e) bw=ww ¼ 1=3 and (f) bw=ww ¼ 3. Here, the magnetic field strength, the angle of incidence, the number of periods (barriers),
and the height of the electrostatic barriers were B ¼ 1B0, q ¼ 15� , NP ¼ 7 and U0 ¼ 2E0, respectively.
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3. Results and discussion

Magnetic superlattices have been widely studied [25e45]. However, as far as we know there is no a systematic study of
how a magnetic field modifies the energy minibands, in specific its width. Moreover, how these changes in the energy
minibands are reflected in the transport properties. In a previous work [22] we have addressed the energy miniband
formation and its impact on the transport properties of electrostatic superlattices. The aim of the present study is to see
how a magnetic field changes the mentioned miniband formation as well as how the linear-regime conductance is affected
by these changes. In order to avoid the complexities associated with an arbitrary magnetic field profile, we have considered
a pretty simple deltaic magnetic field arrange in a periodic fashion in the same regions in which we have an electrostatic
field, see Fig. 1b. Here, it is also important to mention that to give a complete description of the miniband characteristics we
will show firstly the transmission properties, then we will proceed with the miniband structure and finally we will present
the linear-regime conductance and specifically, we will try to correlate the miniband structure with the transport
properties.

As it is well known the transmission properties of GSLs are pretty sensitive to the angle of incidence of the impinging
electrons. So, wewill focus our attention on the effect of the magnetic field strength by keeping the angle of incidence and the
other parameters of the superlattice (well and barrier widths, barrier heights and number of periods) fixed. In the present
study, the magnetic field strength will come in terms of a reference field B0 ¼ 0.1 T. Likewise, the lengths and the energies will
be given in terms of the so-called magnetic length lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Z=eB0
p ¼ 811 Å and its associated energy E0 ¼ ZvF=lB ¼ 7.0 meV,

respectively. The y-component of the vector potential will come in terms of the magnetic field strength as well as the
magnetic length, Ay ¼ BðB0ÞlB. As we are primordially interested in the magnetic field effects, the height of the electrostatic



Fig. 5. Miniband structure versus ky for GSLs under different magnetic field strengths: (a) 0B0, (b) 1B0, (c) 2B0, (d) 3B0, (e) 4B0 and (f) 5B0. In this case the number
of periods (barriers), the widths of barriers and wells, and the height of the electrostatic barriers were NP ¼ 7, dB ¼ lB and dw ¼ lB , and U0 ¼ 2E0, respectively. The
solid-blue lines divide the regions of bound and propagating states. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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barriers will be the same throughout the study. In specific, we will work with U0 ¼ 2E0. At this point, it is important to
mention that we need to consider oblique incidence (q ¼ 15�) because otherwise there is no miniband formation due to the
so-called Klein tunneling. In Fig. 2 we show how energy minibands evolve as the magnetic filed increases. The case of B ¼ 0 T
corresponds to a pure electrostatic superlattice, and consequently, we can see well-defined minibands in which the number
of resonances within them correspond to the number of superlattice periods. Once the magnetic field is incorporated the
width of minibands is reduced and the resonances within the minibands tend to overlap. Even more, if the magnetic field is
strong enough, the minibands collapse and become a simple resonance, in other words, minibands degenerate as the
magnetic field rises. We also want to remark that the angle of incidence should guarantee miniband structure. Even more, if
we are interested in analyzing the evolution of minibands as a function of the magnetic field. Regarding this, it is well known
that in electrostatic GSLs minibands collapse if the angle of incidence is large [46]. This can be even more dramatic if we
consider magnetic field effects. For instance, the angular distribution of the transmittance is quite sensitive to the magnetic
field, see Fig. 3. Actually, once themagnetic field is incorporated the angular distribution is no longer symmetric. Furthermore,
for large magnetic fields the transmittance is reduced to a very narrow angular range, see Fig. 3d. Under this context, q ¼ 15�

in Fig. 2 is not a special angle, but it is an angle that allows us to analyze the evolution of minibands for differentmagnetic field
strengths.

Another parameter that can be quite useful to control the number of minibands, as well as the width of them within an
energy range, is the ratio betweenwidths of the barrier and well, bw=ww. In Fig. 4 we show our results for ratios less than one
and greater than one, first and second column of the panel, respectively. As we can see for bw=ww<1, that is, for well widths
greater then the barrier widths, the number of minibands is increased as the ratio is reduced. For instance, when bw=ww ¼ 1
the number of well-formed minibands is two, but for bw=ww ¼ 1=2 this number increases to four and for bw=ww ¼ 1=3 the
number becomes five. On the contrary, when bw=ww>1 the already established minibands for bw=ww ¼ 1 diminish in its



Fig. 6. Miniband structure versus ky for GSLs with different width ratios of barrier to well: (a) bw=ww ¼ 1, (b) bw=ww ¼ 2, (c) bw=ww ¼ 3 and (d) bw=ww ¼ 4.
Here, the magnetic field strength, the number of periods (barriers), and the height of the electrostatic barriers were B ¼ 1B0, NP ¼ 7 and U0 ¼ 2E0, respectively.
The solid-blue lines divide the regions of bound and propagating states. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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width and eventually tend to collapse to very narrow minibands, even to a single resonance. This latter case is equivalent to
the effect caused by the magnetic field. These results are quite relevant because the current experimental techniques allow to
discriminate the transport properties at angular level [47e50]. Then, if we want to observe miniband transport it is very
important to choose appropriately the structural parameters of the superlattice as well as the strength of the applied
magnetic field.

As we previously pointed out the computation of the miniband structure is fundamental to understand the features of the
conductance curves. Thereby, wewill show the energy level structure as a function of the transversal wave vector for different
magnetic field strengths, Fig. 5. In fact, when there is no magnetic field applied to the system we can see the typical energy
level structures for electrostatic superlattices, that is, we haveminibands that depend strongly on the transversal wave vector.
Particularly, minbands have a well-defined width for small transversal wave vectors and they become degenerate for large
wave vectors. Once the magnetic field is considered, at first instance, the relevant region for the computation of bound states
is modified. Specifically, this region is bigger and spans to negative wave vectors [51]. At second instance, the number of
minibands increases as the magnetic field rises. And third instance, and more importantly, the width of minibands at small
wave vectors diminishes as the strength of the magnetic field increases. In fact, minibands can degenerate at a critical
magnetic field in staircase fashion, that is, the first, second and thirdminibands will degenerate consecutively as themagnetic
field rises. A similar effect can be achieved with the ratio between the width of the barrier and well, while keeping the
magnetic field fixed, see Fig. 6.

Now it is turn to analyze the conductance as a function of the Fermi energy for different magnetic field strengths. We have
considered the samemagnetic fields as in the case of theminiband structure, namely: 0, 1, 2, 3, 4 and 5 in units of B0, Fig. 7a, b,
c, d, e and f, respectively. For B ¼ 0 we can see the well known oscillating behavior of the conductance for electrostatic GSLs.
Here, it is important to remark that the conductance peaks are smooth and with practically no internal structure. Once the
magnetic field is incorporated the conductance peaks present internal structure. In concrete, each peak has a series of small
peaks (oscillations) that in number correspond to the number of wells in the superlattice. Another important feature of the
conductance curves under magnetic field effects is that its line-shape resembles the one of substrate-based GSLs [22]. This
result is quite interesting because the magnetic field effects and the substrate-based effects are not at all equivalent. It is also



Fig. 7. Conductance versus Fermi energy for GSLs under different magnetic field strengths: (a) 0B0, (b) 1B0, (c) 2B0, (d) 3B0, (e) 4B0 and (f) 5B0. In this case, the
number of periods (barriers), the widths of barriers and wells, and the height of the electrostatic barriers were NP ¼ 7, dB ¼ lB and dw ¼ lB , and U0 ¼ 2E0,
respectively.
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worth mentioning that the small oscillations are direct evidence of miniband transport. In this sense, the magnetic field
effects are welcomed because they unveil the characteristics of minibands directly on the transport properties. Aspect that is
not at all reachable in electrostatic GSLs. Unfortunately, not all is goodwith themagnetic field because for largemagnetic field
strengths the characteristics of miniband transport tend to disappear, see Fig. 7d, e and f. Even more, if the magnetic field is
large enough, a huge conductance gap is created. This gap could be important for certain applications, but certainly not for
miniband transport. Similar results are achievable by changing the ratio between the widths of barriers and wells, see Fig. 8.
Therefore, to get the characteristics of miniband transport it is quite important to take care of the fundamental parameters of
the superlattice as well as the strength of the applied magnetic field.

Another aspect that wewant to address is the connection that we can be established between the miniband structure and
the transport properties. In particular, the onset and end of the minibands at small wave vectors determine the main features



Fig. 8. Conductance versus Fermi energy for GSLs with different width ratios of barrier to well: (a) bw=ww ¼ 1, (b) bw=ww ¼ 2, (c) bw=ww ¼ 3 and (d)
bw=ww ¼ 4. Here, the magnetic field strength, the number of periods (barriers), and the height of the electrostatic barriers were B ¼ 1B0, NP ¼ 7 and U0 ¼ 2E0,
respectively.
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of the peaks of the conductance curves [22]. For instance, the oscillations in each conductance peak start at the onset of the
minibands and the sudden slump that defines the line-shape of the conductance peaks coincides with the end of the
minibands. The miniband degeneration, the collapsing of minibands into a practically a single subband, also plays an
important role, since the minimums and the sudden rise of the conductance are taking place at energy regions in which the
degeneration is presented. Furthermore, the small peaks that define the oscillations within each main conductance peak
agree quite well with the location of the subband levels at small wave vectors within each miniband. All these characteristics
can be destroyed if the magnetic field is large and/or if the ratio of the width of the barrier to well is large as well. In Fig. 9 we
show in the same graphs the miniband structure and the conductance in order to illustrate the matching between the energy
level structure and the main characteristics of the transport properties as mentioned.

Finally, wewould like to explain as far as possible the origin of the degeneration of minibands undermagnetic field effects.
In order to do that, we will consider the fundamental aspect that gives place to the formation of minibands, which is the
overlapping of wave functions between neighboring quantumwells. In fact, it is well known that if the overlapping between
wave functions is negligible there is no splitting between energy levels and consequently there is no formation of energy
minibands. In conventional semiconductor superlattices, the parameters, that in great extent, mediate the mentioned
overlapping are the width and height of the barriers. In GSLs we have two additional factors that can affect greatly the wave
function overlapping, one is the transversal wave vector ky and the other is the appliedmagnetic field. These parameters enter

directly in the barrier wave vector ZvFqx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE � V0Þ2 � vFðZqy þ eAyÞ2

q
. Hence, when the magnetic field is increased the

electronic structure of GSLs is greatly modified, particularly the overlapping of the wave functions diminishes. For instance, if

the term of the magnetic field, for fixed transversal wave vector, dominates over the term ðE � V0Þ2 the wave functions
become evanescent and their penetration into the barriers, if the magnetic field is strong, will be practically negligible,
consequently there will be no room to formation of energy minibands. Likewise, if the magnetic field dominates there will be
no room for propagation, and consequently a conductance gap will arise. This gap will increase as the magnetic field rises.
Lastly, as we have testified the fundamental properties of GSLs can be modified readily through magnetic field effects. So,
these effects can be useful in possible technological applications such as electronic filters, transistors, diodes and laser based
on GSLs.

4. Conclusions

In summary, we study the electronic and transport properties of magnetoelectric graphene superlattices. The transfer
matrix approach and the Landauer-Büttiker formalism have been implemented to obtain the energy minibands structure and
the linear-regime conductance, respectively. We have paid special attention to the effects of the magnetic field on the energy



Fig. 9. Correspondence of the conductance characteristics (blue curves) with the miniband structure (red lines) for GSLs under different magnetic field strengths:
(a) 1B0, (b) 2B0, (c) 3B0 and (d) 4B0. As we can notice the width of the main conductance peaks corresponds to the effective width of minibands at small wave
vectors and the oscillations (small peaks) within each mean peak correspond to subbands within each miniband. The basic parameters of the superlattice were
NP ¼ 7, dB ¼ dw ¼ lB and U0 ¼ 2E0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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minibands as well as how these effects change the transport characteristics. Our findings indicate that the already intricate
energy minibands structure of GSLs is greatly affected by the magnetic field. Particularly, energy minibands become
degenerate as themagnetic field is increased. In the case of the linear-regime conductancewewere able to identify the energy
and wave vector regions inwhich miniband transport is taking place. We also find that the magnetic field can disrupt, modify
and even destroy those characteristics associated with miniband transport.
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