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ABSTRACT Bacillus subtilis 2C-9B, obtained from the rhizosphere of wild grass, ex-
hibits inhibition against root rot causal pathogens in Capsicum annuum, Pb and Zn
tolerance, and plant growth promotion in medium supplemented with Pb. The ge-
nome of B. subtilis 2C-9B was sequenced and the draft genome assembled, with a
length of 4,215,855 bp and 4,723 coding genes.

Biocontrol of phytopathogens in horticultural crops can greatly benefit from the
identification of new strains of bacterial species as alternatives to counteract

specific crop diseases. In addition, tolerance to heavy metals and plant growth-
promoting activity are other characteristics that, if present in the isolated bacterial
strain, could be of great biotechnological relevance for the bioremediation of heavy
metal soil-polluted regions. Bacillus subtilis is well known to possess properties of
phytopathogen inhibition, plant growth promotion, and heavy metal absorption (1–3);
moreover, in other Bacillus and Halobacillus species, the improvement of resistance in
plants to heavy metals has been reported (4, 5). In this study, we report the draft
genome sequence of Bacillus subtilis 2C-9B, which has inhibitory activity against
Phytophthora capsici, Fusarium solani, and Rhizoctonia solani, pathogens that cause root
rot in chili pepper. Moreover, this strain shows tolerance to Pb (2,500 ppm) and Zn
(400 ppm), promotes plant growth in Arabidopsis thaliana in medium supplemented
with Pb, and synthesizes indoleacetic acid. The genome was sequenced using the
MiSeq platform (Illumina, San Diego, CA, USA) in a 2 � 75 paired-end run. The genome
library was prepared according to Nextera kit instructions, and the library quality was
analyzed in a Bioanalyzer 2010 (Agilent Technologies). Genome assembly was per-
formed using the SPAdes genome assembler (6), and the quality was analyzed using
QUAST 4.1 (7). For genome annotation, the NCBI Prokaryotic Genome Annotation
Pipeline was used (8). In the draft genome of B. subtilis strain 2C-9B, a total of 4,823
genes are reported, of which, 4,000 are coding genes, 100 are RNA genes (22 rRNAs, 73
tRNAs, and 5 noncoding RNAs [ncRNAs]), and 723 are pseudogenes.

Two nonribosomal peptide synthetases and a beta-glucanase gene were found in
the genome of this bacterium, suggesting a role of these genes in the observed
antifungal activity (9). Also, a butanediol dehydrogenase gene and a spermidine
synthase gene were found, with butanediol being a potential inducer of systemic
resistance in plants (10) and the spermidine gene associated with plant growth
promotion (11). Although no pbr genes were found, other genes related to heavy
metal resistance were identified by sequence homology. Among these were zntR,
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which mediates the expression of the zinc export protein zntA; zntB, which is involved
in the transport of zinc (12); and a merR family transcriptional regulator which activates
transcription in response to metal ions (13). Also, a cadmium-translocating P-type
ATPase, a copper-translocating P-type ATPase, a copper-binding protein, and the
copper transporter CopZ were found. Furthermore, CheA and CheC are present in the
genome of this bacterium; these proteins are usually involved in chemotaxis and
adaptation (14, 15). An endoglucanase and an N-acetylglucosamine-6-phosphate
deacetylase, which are enzymes involved mainly in the consumption of carbon sources,
were also found.

Considering the gene profile of this bacterial strain, B. subtilis 2C-9B can be seen
from the perspective of a biotechnological tool with multipurpose applications, includ-
ing biocontrol of phytopathogens, bioremediation of Pb- and/or Zn-contaminated
areas, and increase in crop yields.

Accession number(s). This whole-genome shotgun project has been deposited
at DDBJ/ENA/GenBank under the accession number MOXE00000000. The version
described in this paper is version MOXE01000000.
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