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It is generally accepted that solutions of so called "free" Maxwell
equations for Q = 0 (null charge density at every point of the whole
space) describe a free electromagnetic field for which flux lines nei-
ther begin nor end in a charge). In order to avoid ambiguities and
unacceptable approximation which have place in the conventional
approach in respect to the free field concept, we explicitly consider
three possible types of space regions: (i) uisolated charge-free" re-
gion, where a resultant electric field with the flux lines which either
begin or end in a charge is zero in every point, for example, inside
a hollow conductor of any shape or in a free-charge universe; (ii)
"non-isolated charge-free" region, where this electric [see (i)] field
is not zero in every point; and (Hi) "charge-neutral" region, where
point charges exist but their algebraic sum is zero. According to
these definitions a strict mathematical interpretation of Maxwell's
equations gives following conclusions: (1) In "isolated charge-free"
regions electric free field cannot be unconditionally understood nei-
ther as a direct consequence of Maxwell's equations nor as a valid
approximation: it may be introduced only as a postulate; neverthe-
less, this case is compatible is the existence of a time-independent
background magnetic field. (2) In both "charge-neutral" and "non-
isolated charge-free" regions, where the condition Q = 6 function
or g = 0 respectively holds, Maxwell's equation for the total elec-
tric field have non-zero solutions, as in the conventional approach.
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However, these solution cannot be strictly identified with the electric
free field. This analysis gives rise to the reconsideration of the free-
electromagnetic field concept and leads to the simplest implications
in respect to charge-neutral universe.

Key words: free field, empty space, charge-free region, massive pho-
ton.

1. INTRODUCTION

It is well-known that the set of four Maxwell's equations (ME) [1,2]
describes different phenomena according to particular initial and
boundary conditions (BC). The authors of this note have indepen-
dently found that the structure of solutions of ME may be different
that it is conventionally believed [3-5]. As part of the process to
establish BC for our generic problem, we explore here the meaning
of the solutions of ME in regions of space with null charge density
(e = o).

Conventionally, Q — 0 in every point of the whole space rep-
resents "empty space" (see, e.g., [l], page 331, or [2], §46). Under
this condition, both Eqs. (5) and (6) (see below) describe solenoidal
fields, which imply that the electric and magnetic fields (E and H) in
that region of space are transverse to the instantaneous [6] direction
of propagation. Moreover, since there are no charges in such region,
the electromagnetic wave corresponds to a so called free field, whose
flux lines neither begin nor end in a charge.

Note that there is a uncertainty1 in the definition of so called
free electric field in text-books and monographs. For example, from
the one hand, one can find in [2] (§46) that non-zero solutions of
so called free Maxwell equations admit us to claim that an moving-
charge-independent electric field can exist. From the other hand, in
[7] (§97) it is claimed that displacement currents Q^) cannot exist
independently on a movement of charges. In turn in [2] (§62) it is
also proved that a field, radiated by a system of a moving charges,
depends on these charges (retarded potentials).

Let us elucidate this situation. We consider inhomogeneous
wave equations in the potential form:

1 It would be better to say "a confusion"!
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where y>* and A* are general solutions of (1), (2) without a rhs.
These solutions (without <p* and A*) represent the field pro-

duced by the system, while <p* and A* must be set equal to the ex-
ternal field acting on the system. Note that in any text-books3 and
monographs fields <£* and A* are identified with a radiation falling
on a system. The system under consideration consists of moving
charges and fields, the latter produced by moving charges inside an
arbitrary and fixed volume V. In other words, field components y>*
and A* do not depend on currents j, i.e., this field cannot be asso-
ciated with the moving charges. In the terminology accepted in the
conventional approach, it is so called free field. Then the question
arises: where does the field {}* come from? In finding an answer one
may suggest that this field is produced by currents which are placed
outside our system. Nevertheless, it is not the only suggestion be-
cause nobody will forbid us to insert these currents into our system.
Thus, using once again Eqs. (3) and (4), we obtain another solution
{}* which in no way depends on currents of our new system as it
was assumed in the previous case! We can continue this reasoning
infinitely (i.e. V —> oo). Then, after having extended the integration
over all space, there will be no place left for external sources used
in the conventional approach for justifying a free field concept. In
other words, where does this free field {}* come from? It may mean
that free field either does not exist or exists always and it cannot be
produced by any current!

We want to argue here that such "free-field" interpretation
is not completely consistent with the physics behind ME. The re-
mainder of this note is organized as follows: in Sec. 2 we critically
revisit the conventional interpretation to find that Q = 0 does not
lead to obligatory existence the free electric field. Sec. 3 explores
some implications of our findings and Sec. 4 closes the paper.

2 Equations (62.9) and (62.10).
3 See, for example, the text in fin of §62 [2].
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Now let us consider general solutions of these equations [2]2



We consider three types of regions: (i) "isolated charge-free"
region, where a resultant electric field with the flux lines which either
begin or end in a charge is zero in every point, for example, inside
a hollow conductor of any shape or in a free-charge Universe; (n)
"non-isolated charge-free" region, where this electric [see (i)] field
is not zero in every point; and (Hi) "charge-neutral" region, where
point charges exist but their algebraic sum is zero. Usually, one set5

Q = 0 in (5) and (7) at the whole space (or in "isolated charge-free"
region, see (i)) and obtains equations for free field. We argue here
that this straightforward procedure does not rigorously lead to free-
field solution of ME. For our reasoning, it is important to recall how
Eqs. (5) and (7) are obtained in the conventional approach.

Let us introduce vectors E0 and E*. The vector E0 represents
an electric field with the flux lines which either begin or end in a
charge; the vector E* represents a certain free field for which flux
lines neither begin nor end in a charge. According to the Gauss' law
[1]: The flux of the electric field E0 through any closed surface, that
is, the integral <f E0 • da over the surface, equals 4?r times the total
charge enclosed by the surface:

4 As argued elsewhere [4], Eqs. (7)-(9) are expressed as total time
derivatives. However, such modification is not important for our
argument here, so that they can be substituted by the conventional
partial time derivatives. Recall also that E = D and H = B in
vacuum in cgs units.
5 I n ( 7 ) o V = j c o n d
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2. THE CONVENTIONAL INTERPRETATION
CRITICALLY REVISITED

In CGS units, Maxwell's equations are4

Charge conservation is assured by the standard continuity condition:



This statement is equivalent to the Coulomb's law and it could be
accepted equally well as the basic law of electrostatic interactions,
after charge ana field have been defined. In other words, Gauss' and
Coulomb's laws are not independent physical laws, but the same law
expressed in different ways. Note this well known fact that a proof
of Eq. (10) hinged on the inverse-square nature of the interaction
and, therefore, Gauss' theorem (law) in physics makes sense solely
to inverse-square fields.6 In this respect, we would like to stress two
aspects:

(a) Coulomb's law is defined in terms of the individual qi,
so that the expression for charge Q (Eq.(lO)) in terms of charge
density g is only strictly valid as a limit when a very large number
of charges is present. (We can add that, of course, Q may be treated
as ̂ -function).

(b) The right-hand-sides of Eq.(l0) may be zero in two differ-
ent ways: (*) Charge-free condition, Q = 0 when qi = 0, all "i". (**)
Charge-neutral condition, Q = 0 when qi ^ 0, all "i" independently.

Prom the mathematical point of view, for cases (*) and (**),
one should not expect the same solution for electric field value E0
on the basis of Gauss' law (10). Indeed, for an isolated charge-free
region the only solution is

Both Eq. (10) and Eq. (12) hold for any volume we are allowed to
choose—of any shape, size, or location. Comparing them, we see
that this can only be true if at every point,

Or superposition of such fields.
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which simply means that a non-existing charge cannot produce the
electric field E0 • Note that previous assertion is qualitatively different
to saying that there exists an electric field in the region that becomes
zero when Q = 0.

Let us recall now the formulation of Ostrogradsky-Gauss' the-
orem. Being valid for every vector field, it certainly holds for E0:

In the isolated charge-free region Q is equal to zero by definition.
Thus, V • E0 is automatically zero in every space point of this region
because of E0 is zero in such region.
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Now let us recall the origin of the displacement current term in
the Eq. (7). Really, Maxwell discovered his famous paradox: without
this term Eq. (7) is not compatible with the continuity Eq. (9)):

so the term (?) is jd i s p and it has to satisfy:

Using (13), one obtains

The general solution of this equation is

where F1,2 are arbitrary vectors.
In the conventional approach all additional time-dependent

terms but not time derivative are set to zero without any special
consideration:

This is the simplest way to obtain the Eq. (7). Then after having
obtained the Eq. (7), a next step (attention!) is habitually done to
establish Maxwell's equations for free field (see, e.g., [2], §46):

In empty space, all terms with Q and jcond = <?V are set to
zero at whole space, and Maxwell's equations take the following form



In other words, the value of electric field E0 should be zero in ev-
ery point of this region7. Nevertheless, we have to stress here that
for non-zero field values (the flux lines of this field begin or end in
charges) Eqs. (21)-(24) make sense in the case of non-isolated charge-
free region as well as in the case of charge-neutral region8

Let us now, however, do very important remark:
Regardless the formulation of boundary-value problem for

Max-well's equations, it is obviously that Gauss' law (10) is invari-
ant with respect to any additional vector field F*add(x,y,z,t) for
which flux lines neither begin nor end in a charge (for this vector
V • F*add = 0 in every point of whole space by definition).

In the conventional approach, this zero-divergence term be-
comes identified with a free electric field E* in the approximation
when charges and currents are found itself very far from the region
under consideration. According to this conventional procedure free
field has not been derived from basic equations but introduced as
an arbitrary term which satisfies Gauss' law (10) or Eq. (13). In
the other words, we only can postulate an existence of the free field
E*. In this case instead of Eqs. (21)-(24) one, repeating the cal-
culations (14)-(19), obtains another displacement current +^r^--

7 The sense of (?) in Eq. (27) we explain in Sec. 3.1 of Sec. 3.
8 Note that thus one resolves Maxwell's paradox without introduc-
ing any field nonconnected with a charge, i.e., without introducing
"free field"! Actually, in this case the Maxwell equation (7) one
writes as (for a single moving particle [4]):
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However, as we have already seen, setting Q = 0 in the whole
space is equivalent to the imposing charge-free condition (when qi = 0
for all i). Strictly speaking, it corresponds only to the isolated charge-
free region with no field at all:

(Obviously, 6(r — rq(t)) in "non-isolated charge-free" region is zero).
So, Maxwell paradox is resolved but it is obviously that "free" electric
field E* cannot be solution of this equation by definition.



While the (free) field E*, undoubtedly, satisfies Maxwell equations,
it is not the consequence of Maxwell equations (contrary to generally
accepted point of view).9

To summarize this, we would like to recall a generally ac-
cepted point of view that due to the accelerated (or, in particular,
oscillating) motion of the charges making up the radiating globally
neutral source, the flux lines of the electric field leave the charges,
close by themselves and form a free, progressively propagating (to-
ward infinity), electromagnetic field.

Unfortunately, this reasoning is no more than words which are
not supported by mathematical formulas. In this respect, it is well-
known that in classical electrodynamics there is no any mathemati-
cal approach for describing a process of "leaving" and "closing (see,
e.g., the expression 63.8 for the electric field obtained from Lienard-
Wiechert potentials [2]). It is well-known fact that "Coulomb" part
of the field as well as "accelerated" part cannot be described by
the flux of lines that have no connection to the charge (in generally
acepted interpretation these lines are closing near the surface of the
charge and then leave the near region being already disconnected
from the charge). In our work we show that the absence of this
mechanism in the framework of conventional theory is not a mere
coincidence or accident. As a matter of fact, according to the rigor-
ous mathematical interpretation of Maxwell's equation (without any
approximation) this mechanism cannot exist for the total electric
field.

Thus, in the framework of Maxwell's theory, a free field can
be understood only as a valid approximation for regions far from
charges and current but not as an adequate concept by itself. Many
physicist might not give importance to this fact (as the accustomed
to work with approximation). Nevertheless, this subtle point is im-
portant to find out where this approximation (by the way, adopted
also for quantum electrodynamics) is already not valid. Clarification
of these points can give us additional information about limitations
and hidden difficulties of classical electromagnetic theory (which, as

9 Any nonelectric zero-divergence field also satisfies Maxwell equations!

580 Chubykalo et al.

Then, setting g = 0 in the whole space, one obtains



we know, recently is put very much in doubt10). These investigations
will show us whether Maxwell theory may be improved without or
with modification of its basic equations.

We turn now to some implications of our interpretation with-
out postulating an existence of the free field E*.

3. IMPLICATIONS OF OUR INTERPRETATION

3.1 Isolated Charge-Free Region

Consider an isolated region R0 where no charges are present, i.e.,
Q = 0,, e = 0 everywhere. Eq. (11) applies, so that E = 0 every-
where in the whole space spanning R0. Assuming that Maxwell's
equations are valid in R0 it follows that magnetic field H may still
exist, because Maxwell's Eq. (6) is completely independent of Q. In-
deed, in addition to the trivial solution H = 0, many other solutions
of V • H = 0 are possible. For instance, H = Hxi + Hyj + Hzk with
Hx = Fx(ct;y,z), Hy = Fy(ct;x,z), Hz = Fz(ct;x,y).

In a charge-free region Faraday's equation (8) reduces to dH/dt
= 0, hence H is time-independent. Our generic solution thus be-
comes HZ = F ( y , z ) , Hy = F(x,z), and Hz = F(x,y), where we
have noted that in isotropic region there is no reason for the func-
tional dependence to be different along arbitrary orientations.

Finally, Ampere's law (7) may lead (see Eqs. (19) and (27))
to

10 See a brilliant review "Essay on Non-Maxwellian theories of elec-
tromagnetism," by V.V.Dvoeglazov [8].
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where jmag may be some magnetic displacement current density. Eq.
(33) does not impose further constraints onto H, but rather defines
the magnetic current jmag. It may be immediately verified that the
continuity condition V • jmag = 0 is fulfilled by all jmag defined by
Eq. (33). As an explicit example, let Hx = F(y,z) = sin[k(y + z)],
et cyclicum. Then jx = (ck/4n}{cos[k(x + y) — cos[fc(x + z)]}, et
cyclicum, where k is in inverse length units.

Summarizing, in a charge-free region described by ME no
electric field is internally generated, but there may exist a time-
independent magnetic background.



3.2 Non-Isolated Charge-Free Region

Consider now a region R0 where no charges are present, Q = 0,
surrounded by a universe U where charges do exist. Prom the su-
perposition principle, total electric field in the region is E(R) =
E(R0) + E(U) = E(W), where E(R0) denotes the field internally
generated, and E(Z/) represents the field externally produced; from
Eq. (11), E(R0) = 0. Likewise, for the total magnetic field in the
region, H(R) = H(R0) + H(Z/), where H(ft0) is time-independent
(see the discussion in previous Sec. 3.1).

It is thus clear that the electric field E(R) existing inside a
charge-free region is not a free field; rather, it is generated by charges
outside the region. Of course, there is no contradiction with Gauss'
law (10), which refers to E(W) entering and leaving the charge-free
region.

3.3 The Simplest Charge-Neutral Universe

Consider a universe containing two equal charges of opposite sign.
We can easily obtain from ME with Q = 0 different solutions {E(£/),
H(W)}, depending upon the initial velocities and separation of the
charges.

Consider now a phenomenon that was unknown to Maxwell:
charge annihilation. What happens to the electric field E(£/) if the
charges meet to annihilate and form two photons? The obvious an-
swer is nothing, the electromagnetic field (E(W), H(£/)} continues
its existence associated to the photons. None the less, there is a
difficulty because we are now in situation of Q = 0.11

So, in a universe populated by two photons there are several
fundamental questions to answer. Firstly, do ME apply to them? Let
us assume a positive answer. Then, secondly, are we in a charge-free
or in a charge-neutral situation? Each possibility has different impli-
cations for the inner structure of photons. If photons do not contain
charge at all, we are in a charge-free situation where the electric field
has disappeared: E(photons) — 0 (recall Eq. (11)). Hence, all infor-
mation about the photons must be contained in the time-dependent
magnetic field H(W). However, as discussed in Sec. 3.1 above, in a
charge-free region H(7£o) is time-independent, which means that the
field H(£/) is frozen in time at the moment of annihilation.

Alternatively, if we are in a charge-neutral situation, then
the electromagnetic field (E(Z/),H(£/)} may continue to exist asso-
ciated now to the two photons. But then, it means that inside each
charge-neutral photon there must exist at least a hidden dipole! This
interpretation nicely blends with the current view from field theory

11 See point (b) in Sec. 2
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that attaches electric dipole fields to photons.

4. CONCLUDING REMARKS

In this paper we argued that a rigorous application of Gauss' law to
the solution of Maxwell's equations leads to the identification of two
situations: charge-free and charge-neutral. This immediately implies
that electric free field is not a consequence of Maxwell's equations:
one only may postulate it.

In an isolated charge-free vacuum, electric field does not exist,
but there may exist a time-independent background magnetic field.
A consideration of the simplest charge-neutral universe leads to some
interesting conjectures regarding the inner structure of photons.

Concerning the Sec. 3.3: There we intended to underline that
if the free electric field cannot be considered as direct consequence
of Maxwell equation (without generally accepted approximation),
then this can lead to subtle but drastic reconsideration of approxi-
mations adopted in quantum electrodynamics. This can give rise to
the opinion that classical as well as quantum electrodynamics might
become compatible with the photon finite mass conception which, as
we know, independently have arisen in different modern approaches
on quantum theory of light (de Broglie, etc).

In concluding this letter, we would like to emphasize that in
this work we considered only a classical theory and every comment
on quantum electrodynamics had a purely suggestive character.
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