NECESSITY OF SIMULTANEOUS CO-EXISTENCE OF INSTANTANEOUS AND RETARDED INTERACTIONS IN CLASSICAL ELECTRODYNAMICS

ANDREW E. CHUBYKALO* and STOYAN J. VLAEV
Escuela de Física, Universidad Autónoma de Zacatecas, Apartado Postal C-580, Zacatecas 98068, ZAC., Mexico

Received 20 November 1998

Abstract

We consider the electromagnetic field of a charge moving with a constant acceleration along an axis. We find that this field obtained from the Liénard-Wiechert potentials does not satisfy Maxwell equations if one considers exclusively a retarded interaction. We show that if and only if one takes into account both retarded interaction and direct interaction (so-called "instantaneous action at a distance") the field produced by an accelerated charge satisfies Maxwell equations.

1. Introduction

The problem of a calculation of the potentials and the fields created by a point charge moving with an acceleration was first raised approximately 100 years ago by Liénard and Wiechert ${ }^{1}$ and is still pertinent today. The question concerning the choice of a correct way of obtaining these fields seemed to have been solved finally (see, e.g. Landau and Lifshitz's well-known book ${ }^{2}$). However, many authors (see, e.g. Refs. 3-6 and references therein) have recently taken up this problem once more, a problem which had been abandoned by contemporary physics some time ago. In this paper we shall establish the assertion made in the abstract.

It is well-known that the electromagnetic field created by an arbitrarily moving charge

$$
\begin{align*}
\mathbf{E}(\mathbf{r}, t)= & q\left\{\frac{\left(\mathbf{R}-R \frac{\mathbf{V}}{c}\right)\left(1-\frac{V^{2}}{c^{2}}\right)}{\left(R-\mathbf{R} \frac{\mathbf{V}}{c}\right)^{3}}\right\}_{t_{0}} \\
& +q\left\{\frac{\left[\mathbf{R} \times\left[\left(\mathbf{R}-R \frac{\mathbf{V}}{c}\right) \times \frac{\dot{\mathbf{V}}}{c^{2}}\right]\right]}{\left(R-\mathbf{R} \frac{\mathbf{V}}{c}\right)^{3}}\right\}_{t_{0}} \tag{1}
\end{align*}
$$

[^0]2 A. E. Chubykalo \& S. J. Vlaev
was obtained directly from the Liénard-Wiechert potentials. ${ }^{2}$

$$
\begin{equation*}
\varphi(\mathbf{r}, t)=\left\{\frac{q}{\left(R-\mathbf{R} \frac{\mathbf{V}}{c}\right)}\right\}_{t_{0}}, \quad \mathbf{A}(\mathbf{r}, t)=\left\{\frac{q \mathbf{V}}{c\left(R-\mathbf{R} \frac{\mathbf{V}}{c}\right)}\right\}_{t_{0}} \tag{3}
\end{equation*}
$$

The notation $\{\cdots\}_{t_{0}}$ means that all functions of x, y, z, t in the parenthesis $\}$ are taken at the moment of time $t_{0}(x, y, z, t)^{2}$ (the instant t_{0} is determined from condition (8), see below).

Usually, the first terms of the right-hand sides (r.h.s.) of (1) and (2) are called "velocity fields" and the second ones are called "acceleration fields."

It was recently claimed by E. Comay ${ }^{7}$ that ". . . acceleration fields by themselves do not satisfy Maxwell's equations. ${ }^{8}$ Only the sum of velocity fields and acceleration fields satisfies Maxwell's equations." We wish to argue that this sum does not satisfy Maxwell's equations

$$
\begin{align*}
\nabla \cdot \mathbf{E} & =4 \pi \varrho \tag{4}\\
\nabla \cdot \mathbf{B} & =0 \tag{5}\\
\nabla \times \mathbf{B} & =\frac{4 \pi}{c} \mathbf{j}+\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} \tag{6}\\
\nabla \times \mathbf{E} & =-\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \tag{7}
\end{align*}
$$

in the case when one takes into consideration exclusively a retarded interaction.
The remainder of our paper is organized as follows: In Sec. 2 we derive the fields \mathbf{E} and \mathbf{B} taking into account exclusively the implicit dependence of the potentials φ and \mathbf{A} on time t. In Sec. 3 we prove that the field obtained from the LiénardWiechert potentials does not satisfy Maxwell equations if one considers exclusively a retarded interaction (in other words, if one considers only the implicit dependence of the potentials on observation time t). In Sec. 4 we consider another way of obtaining the fields \mathbf{E} and \mathbf{B}. This way is based on a different type of calculation of the derivatives $\partial\left\} / \partial t\right.$ and $\partial\left\} / \partial x_{i}\right.$ in which the functions φ and \mathbf{A} are considered as functions with a double dependence on (t, x, y, z) : implicit and explicit simultaneously. By this way, one obtains formally the same expressions (1) and (2) for the fields. If one uses this manner to verify the validity of Maxwell's equations, one finds that fields (1) and (2) satisfy these equations. In this section, we shall show that this way does not correspond to a pure retarded interaction between the charge and the point of observation. Section 5 closes the paper.

2. Derivation of the Fields E and B Taking into Account the Retarded Interaction Only

Let us try to derive the formulas (1), (2) for the electric (E) and magnetic (B) fields taking into account that the state of the fields \mathbf{E} and \mathbf{B} at the instant t must
be completely determined by the state of the charge at the instant t_{0}. The instant t_{0} is determined from the condition [see Eq. (63.1) of Ref. 2]:

$$
\begin{equation*}
t_{0}=t-\tau=t-\frac{R\left(t_{0}\right)}{c} \tag{8}
\end{equation*}
$$

Here $\tau=R\left(t_{0}\right) / c$ is the so called "retarded time," $R=|\mathbf{R}|, \mathbf{R}$ is the vector connecting the site $\mathbf{r}_{0}\left(x_{0}, y_{0}, z_{0}\right)$ of the charge q at the instant t_{0} with the point of observation $\mathbf{r}(x, y, z)$.

All the quantities on the rhs of (3) must be evaluated at the time t_{0} [see the text after Eq. (63.5) in Ref. 2], which, in turn, depends on x, y, z, t :

$$
\begin{equation*}
t_{0}=f(x, y, z, t) \tag{9}
\end{equation*}
$$

Let us, to be more specific, turn to Landau and Lifshitz who write (Ref. 2, p. 161):" "To calculate the intensities of the electric and magnetic fields from the formulas

$$
\begin{equation*}
\mathbf{E}=-\nabla \varphi-\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}, \quad \mathbf{B}=[\nabla \times \mathbf{A}] \tag{10}
\end{equation*}
$$

we must differentiate φ and \mathbf{A} with respect to the coordinates x, y, z of the point, and the time t of observation. But the formulas (3) express the potentials as a functions of t_{0}, and only through the relation (8) as implicit functions of x, y, z, t. Therefore to calculate the required derivatives we must first calculate the derivatives of t_{0}."

Now, following this note of Landau and Lifshitz, we can construct a scheme of calculating the required derivatives, taking into account that φ and \mathbf{A} must not depend on x, y, z, t explicitly:

$$
\left.\begin{array}{rl}
\frac{\partial \varphi}{\partial x_{i}} & =\frac{\partial \varphi}{\partial t_{0}} \frac{\partial t_{0}}{\partial x_{i}} \\
\frac{\partial \mathbf{A}}{\partial t} & =\frac{\partial \mathbf{A}}{\partial t_{0}} \frac{\partial t_{0}}{\partial t} \tag{11}\\
\frac{\partial A_{k}}{\partial x_{i}} & =\frac{\partial A_{k}}{\partial t_{0}} \frac{\partial t_{0}}{\partial x_{i}}
\end{array}\right\}
$$

To obtain Eqs. (1) and (2), let us rewrite Eqs. (10) taking into account Eqs. (11): ${ }^{\text {b }}$

$$
\begin{align*}
& \mathbf{E}=-\nabla \varphi-\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}=-\frac{\partial \varphi}{\partial t_{0}} \nabla t_{0}-\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t_{0}} \frac{\partial t_{0}}{\partial t} \tag{12}\\
& \mathbf{B}=[\nabla \times \mathbf{A}]=\left[\nabla t_{0} \times \frac{\partial \mathbf{A}}{\partial t_{0}}\right] . \tag{13}
\end{align*}
$$

${ }^{\text {a }}$ We use here our numeration of formulas: our (3) is (63.5) of Ref. 2, (8) is (63.1) of Ref. 2.
${ }^{\mathrm{b}}$ In Eqs. (12) and (13) we have used the well-known formulas of the vectorial analysis:

$$
\nabla u=\frac{\partial u}{\partial \xi} \nabla \xi, \quad \text { and } \quad[\nabla \times \mathbf{f}]=\left[\nabla \xi \times \frac{\partial \mathbf{f}}{\partial \xi}\right]
$$

where $u=u(\xi), \mathbf{f}=\mathbf{f}(\xi)$ and $\xi=\xi(x, y, z)$.

4 A. E. Chubykalo \& S. J. Vlaev

To calculate Eqs. (12) and (13) we use relations $\partial t_{0} / \partial t$ and $\partial t_{0} / \partial x_{i}$ obtained in Ref. 2:

$$
\begin{equation*}
\frac{\partial t_{0}}{\partial t}=\frac{R}{R-\mathbf{R V} / c} \quad \text { and } \quad \frac{\partial t_{0}}{\partial x_{i}}=-\frac{x_{i}-x_{0 i}}{c[R-\mathbf{R V} / c]} \tag{14}
\end{equation*}
$$

From Eqs. (3) we find:

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t_{0}}=-\frac{q}{(R-\mathbf{R} \boldsymbol{\beta})^{2}}\left(\frac{\partial R}{\partial t_{0}}-\frac{\partial \mathbf{R}}{\partial t_{0}} \boldsymbol{\beta}-\mathbf{R} \frac{\partial \boldsymbol{\beta}}{\partial t_{0}}\right) \tag{15}
\end{equation*}
$$

where $\boldsymbol{\beta}=\mathbf{V} / c$. Hence, taking into account that ${ }^{\mathrm{c}}$

$$
\frac{\partial R}{\partial t_{0}}=-c, \quad \frac{\partial \mathbf{R}}{\partial t_{0}}=-\frac{\partial \mathbf{r}_{0}}{\partial t_{0}}=-\mathbf{V}\left(t_{0}\right) \quad \text { and } \quad \frac{\partial \mathbf{V}}{\partial t_{0}}=\dot{\mathbf{V}}
$$

we have (after an algebraic simplification):

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t_{0}}=\frac{q c\left(1-\beta^{2}+\mathbf{R} \dot{\boldsymbol{\beta}} / c\right)}{(R-\mathbf{R} \boldsymbol{\beta})^{2}} \tag{16}
\end{equation*}
$$

In turn

$$
\begin{equation*}
\frac{\partial \mathbf{A}}{\partial t_{0}}=\frac{\partial \varphi}{\partial t_{0}} \boldsymbol{\beta}+\varphi \dot{\boldsymbol{\beta}} . \tag{17}
\end{equation*}
$$

Putting φ from Eqs. (3), (16) and (17) together, we have (after simplification):

$$
\begin{equation*}
\frac{\partial \mathbf{A}}{\partial t_{0}}=q c \frac{\boldsymbol{\beta}\left(1-\beta^{2}+\mathbf{R} \dot{\boldsymbol{\beta}} / c\right)+(\dot{\boldsymbol{\beta}} / c)(R-\mathbf{R} \boldsymbol{\beta})}{(R-\mathbf{R} \boldsymbol{\beta})^{2}} \tag{18}
\end{equation*}
$$

Finally, substituting Eqs. (14), (16) and (18) in Eq. (12) we obtain

$$
\begin{align*}
\mathbf{E}= & \frac{q c\left(1-\beta^{2}+\mathbf{R} \dot{\boldsymbol{\beta}} / c\right)}{(R-\mathbf{R} \boldsymbol{\beta})^{2}}\left(-\frac{\mathbf{R}}{c(R-\mathbf{R} \boldsymbol{\beta})}\right) \\
& -q \frac{\boldsymbol{\beta}\left(1-\beta^{2}+\mathbf{R} \dot{\boldsymbol{\beta}} / c\right)+(\dot{\boldsymbol{\beta}} / c)(R-\mathbf{R} \boldsymbol{\beta})}{(R-\mathbf{R} \boldsymbol{\beta})^{2}}\left(\frac{R}{R-\mathbf{R} \boldsymbol{\beta}}\right) \\
= & q \frac{\mathbf{R}\left(1-\beta^{2}+\mathbf{R} \dot{\boldsymbol{\beta}} / c\right)-R \boldsymbol{\beta}\left(1-\beta^{2}+\mathbf{R} \dot{\boldsymbol{\beta}} / c\right)-(R \dot{\boldsymbol{\beta}} / c)(R-\mathbf{R} \boldsymbol{\beta})}{(R-\mathbf{R} \boldsymbol{\beta})^{3}} \tag{19}
\end{align*}
$$

Grouping together all terms with acceleration, one can reduce this expression to

$$
\begin{equation*}
\mathbf{E}=q \frac{\left(\mathbf{R}-R \frac{\mathbf{V}}{c}\right)\left(1-\frac{V^{2}}{c^{2}}\right)}{\left(R-\mathbf{R} \frac{\mathbf{V}}{c}\right)^{3}}+q \frac{(\mathbf{R} \dot{\boldsymbol{\beta}} / c)(\mathbf{R}-R \boldsymbol{\beta})-(R \dot{\boldsymbol{\beta}} / c)(R-\mathbf{R} \boldsymbol{\beta})}{(R-\mathbf{R} \boldsymbol{\beta})^{3}} \tag{20}
\end{equation*}
$$

Now, using the formula of the double vectorial product, it is not worth reducing the numerator of the second term of Eq. (20) to $[\mathbf{R} \times[(\mathbf{R}-R \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}} / c]]$. As a result we have Eq. (1).
${ }^{\mathrm{c}}$ This follows from the expressions $R=c\left(t-t_{0}\right)$ and $\mathbf{R}=\mathbf{r}-\mathbf{r}_{0}\left(t_{0}\right)$. See Ref. 2.

Analogically, substituting Eqs. (14) and (18) in Eq. (13) we obtain

$$
\begin{equation*}
\mathbf{B}=\left[\frac{\mathbf{R}}{R} \times q \frac{-R \boldsymbol{\beta}\left(1-\beta^{2}+\mathbf{R} \dot{\boldsymbol{\beta}} / c\right)-(R \dot{\boldsymbol{\beta}} / c)(R-\mathbf{R} \boldsymbol{\beta})}{(R-\mathbf{R} \boldsymbol{\beta})^{3}}\right] \tag{21}
\end{equation*}
$$

If we add $\mathbf{R}\left(1-\beta^{2}+\mathbf{R} \dot{\boldsymbol{\beta}} / c\right)$ to the numerator of the second term of the vectorial product (21) ${ }^{\mathrm{d}}$ we obtain Eq. (2) [see Eq. (19)]

In the next section we shall consider a charge moving with a constant acceleration along the X axis and we shall show that the Eq. (7) is not satisfied if one substitutes \mathbf{E} and \mathbf{B} from Eqs. (1) and (2) in Eq. (7) and takes into consideration exclusively a retarded interaction. To verify this we have to find the derivatives of x-, y-, z-components of the fields \mathbf{E} and \mathbf{B} with respect to the time t and the coordinates x, y, z. The functions \mathbf{E} and \mathbf{B} depend on x, y, z, t through t_{0} from the conditions (8)-(9). In other words, we shall show that these fields \mathbf{E} and \mathbf{B} do not satisfy the Maxwell equations if the differentiation rules (11) that were applied to φ and \mathbf{A} (to obtain \mathbf{E} and \mathbf{B}) are applied identically to \mathbf{E} and \mathbf{B}.

3. Does the Retarded Electromagnetic Field of a Charge Moving with a Constant Acceleration Satisfy Maxwell Equations?

Let us consider a charge q moving with a constant acceleration along the X axis. In this case its velocity and acceleration have only x-components, respectively $\mathbf{V}(V, 0,0)$ and $\mathbf{a}(a, 0,0)$. Now we rewrite the Eqs. (1) and (2) by components:

$$
\begin{align*}
E_{x}(x, y, z, t)= & q\left\{\frac{\left(V^{2}-c^{2}\right)\left[R V-c\left(x-x_{0}\right)\right]}{\left[\left(c R-V\left(x-x_{0}\right)\right]^{3}\right.}\right\}_{t_{0}} \\
& +q\left\{\frac{a c\left[\left(x-x_{0}\right)^{2}-R^{2}\right]}{\left[\left(c R-V\left(x-x_{0}\right)\right]^{3}\right.}\right\}_{t_{0}} \tag{22}\\
E_{y}(x, y, z, t)= & -q\left\{\frac{c\left(V^{2}-c^{2}\right)\left(y-y_{0}\right)}{\left[\left(c R-V\left(x-x_{0}\right)\right]^{3}\right.}\right\}_{t_{0}} \\
& +q\left\{\frac{a c\left(x-x_{0}\right)\left(y-y_{0}\right)}{\left[\left(c R-V\left(x-x_{0}\right)\right]^{3}\right.}\right\}_{t_{0}} \tag{23}\\
E_{z}(x, y, z, t)= & -q\left\{\frac{c\left(V^{2}-c^{2}\right)\left(z-z_{0}\right)}{\left[\left(c R-V\left(x-x_{0}\right)\right]^{3}\right.}\right\}_{t_{0}} \\
& +q\left\{\frac{a c\left(x-x_{0}\right)\left(z-z_{0}\right)}{\left[\left(c R-V\left(x-x_{0}\right)\right]^{3}\right.}\right\}_{t_{0}} \tag{24}\\
B_{x}(x, y, z, t)= & 0, \tag{25}
\end{align*}
$$

[^1]6 A. E. Chubykalo \& S. J. Vlaev

$$
\begin{align*}
B_{y}(x, y, z, t)= & q\left\{\frac{V\left(V^{2}-c^{2}\right)\left(z-z_{0}\right)}{\left[\left(c R-V\left(x-x_{0}\right)\right]^{3}\right.}\right\}_{t_{0}} \\
& -q\left\{\frac{a c R\left(z-z_{0}\right)}{\left[\left(c R-V\left(x-x_{0}\right)\right]^{3}\right.}\right\}_{t_{0}} \tag{26}\\
B_{z}(x, y, z, t)= & -q\left\{\frac{V\left(V^{2}-c^{2}\right)\left(y-y_{0}\right)}{\left[\left(c R-V\left(x-x_{0}\right)\right]^{3}\right.}\right\}_{t_{0}} \\
& +q\left\{\frac{a c R\left(y-y_{0}\right)}{\left[\left(c R-V\left(x-x_{0}\right)\right]^{3}\right.}\right\}_{t_{0}} \tag{27}
\end{align*}
$$

Obviously, these components are functions of x, y, z, t through t_{0} from the conditions (8) and(9). This means that when we substitute the field components given by Eqs. (22)-(27) in the Maxwell Eqs. (4) and (7), we once again have to use the differentiation rules as in (11):

$$
\left.\begin{array}{l}
\frac{\partial E\{\text { or } B\}_{k}}{\partial t}=\frac{\partial E\{\text { or } B\}_{k}}{\partial t_{0}} \frac{\partial t_{0}}{\partial t} \\
\frac{\partial E\{\text { or } B\}_{k}}{\partial x_{i}}=\frac{\partial E\{\text { or } B\}_{k}}{\partial t_{0}} \frac{\partial t_{0}}{\partial x_{i}} \tag{28}
\end{array}\right\}
$$

where k and x_{i} are x, y, z.
Remember that we are considering the case with $\mathbf{V}=(V, 0,0)$, so, one obtains

$$
\begin{equation*}
\frac{\partial t_{0}}{\partial t}=\frac{R}{R-\left(x-x_{0}\right) V / c}, \quad \text { and } \quad \frac{\partial t_{0}}{\partial x_{i}}=-\frac{x_{i}-x_{0 i}}{c\left[R-\left(x-x_{0}\right) V / c\right]} \tag{29}
\end{equation*}
$$

Let us rewrite Eq. (7) by components taking into account the rules (28) and Eq. (25):

$$
\begin{align*}
\frac{\partial E_{z}}{\partial t_{0}} \frac{\partial t_{0}}{\partial y}-\frac{\partial E_{y}}{\partial t_{0}} \frac{\partial t_{0}}{\partial z} & =0 \tag{30}\\
\frac{\partial E_{x}}{\partial t_{0}} \frac{\partial t_{0}}{\partial z}-\frac{\partial E_{z}}{\partial t_{0}} \frac{\partial t_{0}}{\partial x}+\frac{1}{c} \frac{\partial B_{y}}{\partial t_{0}} \frac{\partial t_{0}}{\partial t} & =0 \tag{31}\\
\frac{\partial E_{y}}{\partial t_{0}} \frac{\partial t_{0}}{\partial x}-\frac{\partial E_{x}}{\partial t_{0}} \frac{\partial t_{0}}{\partial y}+\frac{1}{c} \frac{\partial B_{z}}{\partial t_{0}} \frac{\partial t_{0}}{\partial t} & =0 \tag{32}
\end{align*}
$$

In order to calculate the derivatives $\partial E(\text { or } B)_{k} / \partial t_{0}$ we need the values of the expressions $\partial V / \partial t_{0}, \partial x_{0} / \partial t_{0}$ and $\partial R / \partial t_{0}$. In our case we have to use ${ }^{\mathrm{e}}$

$$
\begin{equation*}
\frac{\partial R}{\partial t_{0}}=-c, \quad \frac{\partial x_{0}}{\partial t_{0}}=V, \quad \text { and } \quad \frac{\partial V}{\partial t_{0}}=a \tag{33}
\end{equation*}
$$

Now, using Eqs. (29) and (33), we want to verify the validity of Eqs. (30)-(32). The result of the verification is as follows:

$$
\begin{align*}
\frac{\partial E_{z}}{\partial t_{0}} \frac{\partial t_{0}}{\partial y}-\frac{\partial E_{y}}{\partial t_{0}} \frac{\partial t_{0}}{\partial z} & =0 \tag{34}\\
\frac{\partial E_{x}}{\partial t_{0}} \frac{\partial t_{0}}{\partial z}-\frac{\partial E_{z}}{\partial t_{0}} \frac{\partial t_{0}}{\partial x}+\frac{1}{c} \frac{\partial B_{y}}{\partial t_{0}} \frac{\partial t_{0}}{\partial t} & =-\frac{a c\left(z-z_{0}\right)}{\left[c R-V\left(x-x_{0}\right)\right]^{3}} \tag{35}\\
\frac{\partial E_{y}}{\partial t_{0}} \frac{\partial t_{0}}{\partial x}-\frac{\partial E_{x}}{\partial t_{0}} \frac{\partial t_{0}}{\partial y}+\frac{1}{c} \frac{\partial B_{z}}{\partial t_{0}} \frac{\partial t_{0}}{\partial t} & =\frac{a c\left(y-y_{0}\right)}{\left[c R-V\left(x-x_{0}\right)\right]^{3}} \tag{36}
\end{align*}
$$

The verification ${ }^{f}$ shows that Eq. (30) is valid. But instead of Eqs. (31) and (32) we have Eqs. (35) and (36) respectively. A reader has to agree that this result is rather unexpected.

However, another way to obtain the fields (1) and (2) exists. If one uses this manner to verify the validity of Maxwell's equations, one finds that fields (1) and (2) satisfy these equations. In the next section we shall consider this way in detail and we shall show that it does not correspond to a pure retarded interaction between the charge and the point of observation.

4. Double (Implicit and Explicit) Dependence of φ, A, E and B on t and x_{i}. Total Derivatives: Mathematical and Physical Aspects

First at all, let us consider in detail Landau's method ${ }^{2}$ of obtaining the derivatives $\partial t_{0} / \partial t$ and $\partial t_{0} / \partial x_{i}$. Landau and Lifshitz considered two different expressions of the function R :

$$
\begin{equation*}
R=c\left(t-t_{0}\right), \quad \text { where } \quad t_{0}=f(x, y, z, t), \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
R=\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{1 / 2}, \quad \text { where } \quad x_{0 i}=f_{i}\left(t_{0}\right) . \tag{38}
\end{equation*}
$$

Then one calculates the derivatives $\left(\partial / \partial t\right.$ and $\left.\partial / \partial x_{i}\right)$ of functions (37) and (38), and equating the results, obtains $\partial t_{0} / \partial t$ and $\partial t_{0} / \partial x_{i}$. While Landau and Lifshitz use here a symbol ∂ (see the expression before Eq. (63.6) in Ref. 2) in order to emphasize that R depends also on other independent variables x, y, z, it is easy to show that they calculate here total derivatives of the functions (37), (38) with respect to t and x_{i}. The point is that if a given function is expressed by two different types of functional dependencies, then exclusively total derivatives of these expressions

[^2]8 A. E. Chubykalo \& S. J. Vlaev
with respect to a given variable can be equated (contrary to the partial ones). Here we adduce the scheme ${ }^{\mathrm{g}}$ which was used in Ref. 2 to obtain $\partial t_{0} / \partial t$ and $\partial t_{0} / \partial x_{i}$:

If one takes into account that $\partial t / \partial x_{i}=\partial x_{i} / \partial t=0$, as a result obtains the same values of the derivatives which have been obtained in (14).

Let us now, as it was mentioned above in the end of Sec. 3, calculate the expressions (10) taking into consideration that the functions φ and \mathbf{A} depend on t (or on $\left.x_{i}\right)^{\mathrm{h}}$ implicitly and explicitly simultaneously. In this case we have:

$$
\begin{align*}
\frac{\partial \varphi}{\partial x_{i}} & =-\frac{q}{(R-\mathbf{R} \boldsymbol{\beta})^{2}}\left(\frac{\partial R}{\partial x_{i}}-\frac{\partial \mathbf{R}}{\partial x_{i}} \boldsymbol{\beta}-\mathbf{R} \frac{\partial \boldsymbol{\beta}}{\partial x_{i}}\right) \tag{40}\\
\frac{\partial \varphi}{\partial t} & =-\frac{q}{(R-\mathbf{R} \boldsymbol{\beta})^{2}}\left(\frac{\partial R}{\partial t}-\frac{\partial \mathbf{R}}{\partial t} \boldsymbol{\beta}-\mathbf{R} \frac{\partial \boldsymbol{\beta}}{\partial t}\right) \tag{41}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial \mathbf{A}}{\partial t}=\frac{\partial \varphi}{\partial t} \boldsymbol{\beta}+\varphi \frac{\partial \boldsymbol{\beta}}{\partial t} \tag{42}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\partial \boldsymbol{\beta}}{\partial t}=\frac{\partial \boldsymbol{\beta}}{\partial t_{0}} \frac{\partial t_{0}}{\partial t} \quad \text { and } \quad \frac{\partial \boldsymbol{\beta}}{\partial x_{i}}=\frac{\partial \boldsymbol{\beta}}{\partial t_{0}} \frac{\partial t_{0}}{\partial x_{i}} \tag{43}
\end{equation*}
$$

g In this scheme we have used a symbol d for a total derivative. In the original text ${ }^{2}$ we have

$$
\begin{aligned}
\frac{\partial R}{\partial t} & =\frac{\partial R}{\partial t_{0}} \frac{\partial t_{0}}{\partial t}=-\frac{\mathbf{R V}}{R} \frac{\partial t_{0}}{\partial t}=c\left(1-\frac{\partial t_{0}}{\partial t}\right), \\
\nabla t_{0} & =-\frac{1}{c} \nabla R\left(t_{0}\right)=-\frac{1}{c}\left(\frac{\partial R}{\partial t_{0}} \nabla t_{0}+\frac{\mathbf{R}}{R}\right) .
\end{aligned}
$$

${ }^{\mathrm{h}}$ This depends on the choice of the expression for R in (37) and (38).

Now, let us consider all derivatives in (10), (40)-(43) as total derivatives with respect to t and x_{i}. Then, if we substitute the expressions (40)-(43) in (10) (of course, taking into account either l.h.s. or r.h.s. of the scheme (39)), we obtain formally the same expressions for the fields (1) and (2)! Then if one substitutes the fields (1) and (2) in Maxwell's equation (7), considering all derivatives in (7) as total ones and, of course, considering the functions \mathbf{E} and \mathbf{B} as functions with both implicit and explicit dependence on t (or on x_{i}), one can see that Eq. (7) is satisfied!

5. Conclusion

If we consider only the implicit functional dependence of \mathbf{E} and \mathbf{B} with respect to the time t this means that we describe exclusively the retarded interaction: the electromagnetic perturbation created by the charge at the instant t_{0} reaches the point of observation (x, y, z) after the time $\tau=R\left(t_{0}\right) / c$. Surprisingly, the Maxwell equations are not satisfied in this case!

If we take into account a possible explicit functional dependence of \mathbf{E} and \mathbf{B} with respect to the time t, together with the implicit dependence, the Maxwell equations are satisfied. The explicit dependence of \mathbf{E} and \mathbf{B} on t means that, contrary to the implicit dependence, there is not a retarded time for electromagnetic perturbation to reach the point of observation. A possible interpretation may be an action-at-a-distance phenomenon, as a full-value solution of the Maxwell equations within the framework of the so called "dualism concept." $9,10, \mathrm{i}$ This interpretation differs from the well-known "retarded action at a distance" concept (see, e.g. Refs. 12 and 13 and references therein) and could be an alternative point of view. In other words, there is a simultaneous and independent coexistence of instantaneous and retarded interactions which cannot be reduced to each other.

Acknowledgments

We are grateful to V. Dvoeglazov, F. Brau and L. M. Gaggero-Sager for many stimulating discussions and critical comments.

References

1. A. Liénard, L'Éclairage Électique 16, 5 (1898); E. Wiechert, Ann. Phys. 4, 676 (1901).
2. L. D. Landau and E. M. Lifshitz, Teoria Polia (Nauka, Moscow, 1973) [English translation: The Classical Theory of Field (Pergamon, Oxford, 1975)].
3. D. G. Boulware, Ann. Phys. 124, 169 (1980).
4. J. L. Agudin and A. M. Platzeck, Phys.Lett. A90 (4), 173 (1982).
5. L. Herera, Il Nouovo Cimento B78 (2), 156 (1983).
6. F. J. Alexander and U. H. Gerlach, Phys. Rev. D44 (12), 3887 (1991).
[^3]10 A. E. Chubykalo \& S. J. Vlaev
7. E. Comay, Am. J. Phys. 65, 862 (1997).
8. C. Teitelboim, D. Villarroel, and Ch. G. van Weert, Riv. Nuovo Cimento 3, 1 (1980).
9. A. E. Chubykalo and R. Smirnov-Rueda, Phys. Rev. E53, 5373 (1996); E55, 3793(E) (1997); T. Ivezić and L. Škovrlj, Phys. Rev. E57, 3680 (1998); A. E. Chubykalo and R. Smirnov-Rueda, Phys. Rev. E57 (3), 3683 (1998).
10. A. E. Chubykalo and R. Smirnov-Rueda, Mod. Phys. Lett. A12 (1), 1 (1997).
11. A. E. Chubykalo, Mod. Phys. Lett. A13 (26), 2139 (1998).
12. J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 21, 425 (1949).
13. F. Hoyle and J. V. Narlikar, Rev. Mod. Phys. 67, 113 (1995).

[^0]: *E-mail:andrew@cantera.reduaz.mx

[^1]: ${ }^{\mathrm{d}}$ The meaning of Eq. (21) does not change because $[\mathbf{R} \times \mathbf{R}]=0$.

[^2]: ${ }^{f}$ There is another manner of verifying the validity of Eqs. (30)-(32). If one substitutes \mathbf{E} and B from (10) in Eq. (7), one only has to satisfy oneself that the operators " $\nabla \times$ " and " $\partial / \partial t$ " commute. In our case, because of $\mathbf{V}=(V, 0,0)$ and $\mathbf{A}=\left(A_{x}, 0,0\right)$, it means the commutation of the operators $\partial / \partial y$ (or z) and $\partial / \partial t$. The verification shows that these operators do not commute if one uses the rules (11).

[^3]: ${ }^{\mathrm{i}}$ In fact, a considerable number of works have recently been published which directly declare: classical electrodynamics must be reconsidered. See, e.g. Ref. 11 and corresponding references.

