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We consider the electromagnetic field of a charge moving with a constant acceleration
along an axis. We find that this field obtained from the Liénard–Wiechert potentials
does not satisfy Maxwell equations if one considers exclusively a retarded interaction.
We show that if and only if one takes into account both retarded interaction and direct
interaction (so-called “instantaneous action at a distance”) the field produced by an
accelerated charge satisfies Maxwell equations.

1. Introduction

The problem of a calculation of the potentials and the fields created by a point

charge moving with an acceleration was first raised approximately 100 years ago

by Liénard and Wiechert1 and is still pertinent today. The question concerning the

choice of a correct way of obtaining these fields seemed to have been solved finally

(see, e.g. Landau and Lifshitz’s well-known book2). However, many authors (see,

e.g. Refs. 3–6 and references therein) have recently taken up this problem once

more, a problem which had been abandoned by contemporary physics some time

ago. In this paper we shall establish the assertion made in the abstract.

It is well-known that the electromagnetic field created by an arbitrarily moving

charge

E(r, t) = q

{(
R−RVc

)(
1− V 2c2

)
(
R −RV

c

)3
}
t0

+ q

{[
R×

[(
R−RVc

)
× V̇
c2

]]
(
R−RVc

)3
}
t0

, (1)

B(r, t) =

{[
R

R
×E
]}
t0

, (2)
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was obtained directly from the Liénard–Wiechert potentials.2

ϕ(r, t) =

{
q(

R −RVc
)
}
t0

, A(r, t) =

{
qV

c
(
R−RVc

)
}
t0

. (3)

The notation {· · ·}t0 means that all functions of x, y, z, t in the parenthesis { }
are taken at the moment of time t0(x, y, z, t)

2 (the instant t0 is determined from

condition (8), see below).

Usually, the first terms of the right-hand sides (r.h.s.) of (1) and (2) are called

“velocity fields” and the second ones are called “acceleration fields.”

It was recently claimed by E. Comay7 that “. . . acceleration fields by themselves

do not satisfy Maxwell’s equations.8 Only the sum of velocity fields and acceleration

fields satisfies Maxwell’s equations.” We wish to argue that this sum does not satisfy

Maxwell’s equations

∇ ·E = 4π� , (4)

∇ ·B = 0 , (5)

∇×B = 4π
c
j+
1

c

∂E

∂t
, (6)

∇×E = −1
c

∂B

∂t
, (7)

in the case when one takes into consideration exclusively a retarded interaction.

The remainder of our paper is organized as follows: In Sec. 2 we derive the fields

E and B taking into account exclusively the implicit dependence of the potentials

ϕ and A on time t. In Sec. 3 we prove that the field obtained from the Liénard–

Wiechert potentials does not satisfy Maxwell equations if one considers exclusively

a retarded interaction (in other words, if one considers only the implicit depen-

dence of the potentials on observation time t). In Sec. 4 we consider another way of

obtaining the fields E and B. This way is based on a different type of calculation

of the derivatives ∂{ }/∂t and ∂{ }/∂xi in which the functions ϕ and A are con-
sidered as functions with a double dependence on (t, x, y, z): implicit and explicit

simultaneously. By this way, one obtains formally the same expressions (1) and (2)

for the fields. If one uses this manner to verify the validity of Maxwell’s equations,

one finds that fields (1) and (2) satisfy these equations. In this section, we shall

show that this way does not correspond to a pure retarded interaction between the

charge and the point of observation. Section 5 closes the paper.

2. Derivation of the Fields E and B Taking into Account the

Retarded Interaction Only

Let us try to derive the formulas (1), (2) for the electric (E) and magnetic (B)

fields taking into account that the state of the fields E and B at the instant t must
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be completely determined by the state of the charge at the instant t0. The instant

t0 is determined from the condition [see Eq. (63.1) of Ref. 2]:

t0 = t− τ = t−
R(t0)

c
. (8)

Here τ = R(t0)/c is the so called “retarded time,” R = |R|, R is the vector
connecting the site r0(x0, y0, z0) of the charge q at the instant t0 with the point of

observation r(x, y, z).

All the quantities on the rhs of (3) must be evaluated at the time t0 [see the

text after Eq. (63.5) in Ref. 2], which, in turn, depends on x, y, z, t:

t0 = f(x, y, z, t) . (9)

Let us, to be more specific, turn to Landau and Lifshitz who write (Ref. 2,

p. 161):a “To calculate the intensities of the electric and magnetic fields from the

formulas

E = −∇ϕ− 1
c

∂A

∂t
, B = [∇×A] , (10)

we must differentiate ϕ and A with respect to the coordinates x, y, z of the point,

and the time t of observation. But the formulas (3) express the potentials as a

functions of t0, and only through the relation (8) as implicit functions of x, y, z, t.

Therefore to calculate the required derivatives we must first calculate the derivatives

of t0.”

Now, following this note of Landau and Lifshitz, we can construct a scheme of

calculating the required derivatives, taking into account that ϕ and A must not

depend on x, y, z, t explicitly:

∂ϕ

∂xi
=
∂ϕ

∂t0

∂t0

∂xi
∂A

∂t
=
∂A

∂t0

∂t0

∂t

∂Ak

∂xi
=
∂Ak

∂t0

∂t0

∂xi



. (11)

To obtain Eqs. (1) and (2), let us rewrite Eqs. (10) taking into account

Eqs. (11):b

E = −∇ϕ− 1
c

∂A

∂t
= − ∂ϕ
∂t0
∇t0 −

1

c

∂A

∂t0

∂t0

∂t
, (12)

B = [∇×A] =
[
∇t0 ×

∂A

∂t0

]
. (13)

aWe use here our numeration of formulas: our (3) is (63.5) of Ref. 2, (8) is (63.1) of Ref. 2.
bIn Eqs. (12) and (13) we have used the well-known formulas of the vectorial analysis:

∇u = ∂u
∂ξ
∇ξ , and [∇× f ] =

[
∇ξ × ∂f

∂ξ

]
,

where u = u(ξ), f = f(ξ) and ξ = ξ(x, y, z).
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To calculate Eqs. (12) and (13) we use relations ∂t0/∂t and ∂t0/∂xi obtained

in Ref. 2:

∂t0

∂t
=

R

R−RV/c and
∂t0

∂xi
= − xi − x0i
c[R−RV/c] . (14)

From Eqs. (3) we find:

∂ϕ

∂t0
= − q

(R−Rβ)2
(
∂R

∂t0
− ∂R
∂t0
β −R ∂β

∂t0

)
, (15)

where β = V/c. Hence, taking into account thatc

∂R

∂t0
= −c , ∂R

∂t0
= −∂r0

∂t0
= −V(t0) and

∂V

∂t0
= V̇ ,

we have (after an algebraic simplification):

∂ϕ

∂t0
=
qc(1− β2 +Rβ̇/c)
(R −Rβ)2 . (16)

In turn

∂A

∂t0
=
∂ϕ

∂t0
β + ϕβ̇. (17)

Putting ϕ from Eqs. (3), (16) and (17) together, we have (after simplification):

∂A

∂t0
= qc

β(1− β2 +Rβ̇/c) + (β̇/c)(R−Rβ)
(R−Rβ)2 . (18)

Finally, substituting Eqs. (14), (16) and (18) in Eq. (12) we obtain

E =
qc(1− β2 +Rβ̇/c)
(R −Rβ)2

(
− R

c(R−Rβ)

)

− q β(1− β
2 +Rβ̇/c) + (β̇/c)(R−Rβ)

(R−Rβ)2
(

R

R−Rβ

)

= q
R(1− β2 +Rβ̇/c)−Rβ(1− β2 +Rβ̇/c)− (Rβ̇/c)(R−Rβ)

(R−Rβ)3 . (19)

Grouping together all terms with acceleration, one can reduce this expression

to

E = q

(
R−RVc

)(
1− V 2c2

)
(
R−RVc

)3 + q
(Rβ̇/c)(R−Rβ)− (Rβ̇/c)(R−Rβ)

(R−Rβ)3 . (20)

Now, using the formula of the double vectorial product, it is not worth reducing

the numerator of the second term of Eq. (20) to [R× [(R−Rβ)× β̇/c]]. As a result
we have Eq. (1).

cThis follows from the expressions R = c(t− t0) and R = r− r0(t0). See Ref. 2.
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Analogically, substituting Eqs. (14) and (18) in Eq. (13) we obtain

B =

[
R

R
× q −Rβ(1− β

2 +Rβ̇/c)− (Rβ̇/c)(R−Rβ)
(R−Rβ)3

]
. (21)

If we add R(1− β2 +Rβ̇/c) to the numerator of the second term of the vectorial
product (21)d we obtain Eq. (2) [see Eq. (19)]

In the next section we shall consider a charge moving with a constant accelera-

tion along the X axis and we shall show that the Eq. (7) is not satisfied if one

substitutes E and B from Eqs. (1) and (2) in Eq. (7) and takes into consideration

exclusively a retarded interaction. To verify this we have to find the derivatives

of x-, y-, z-components of the fields E and B with respect to the time t and the

coordinates x, y, z. The functions E and B depend on x,y, z, t through t0 from the

conditions (8)–(9). In other words, we shall show that these fields E and B do not

satisfy the Maxwell equations if the differentiation rules (11) that were applied to

ϕ and A (to obtain E and B) are applied identically to E and B.

3. Does the Retarded Electromagnetic Field of a Charge Moving

with a Constant Acceleration Satisfy Maxwell Equations?

Let us consider a charge q moving with a constant acceleration along the X axis.

In this case its velocity and acceleration have only x-components, respectively

V(V, 0, 0) and a(a, 0, 0). Now we rewrite the Eqs. (1) and (2) by components:

Ex(x, y, z, t) = q

{
(V 2 − c2)[RV − c(x− x0)]
[(cR− V (x− x0)]3

}
t0

+ q

{
ac[(x− x0)2 −R2]
[(cR − V (x− x0)]3

}
t0

, (22)

Ey(x, y, z, t) = −q
{
c(V 2 − c2)(y − y0)
[(cR − V (x− x0)]3

}
t0

+ q

{
ac(x− x0)(y − y0)
[(cR − V (x− x0)]3

}
t0

, (23)

Ez(x, y, z, t) = −q
{
c(V 2 − c2)(z − z0)
[(cR − V (x− x0)]3

}
t0

+ q

{
ac(x− x0)(z − z0)
[(cR − V (x− x0)]3

}
t0

, (24)

Bx(x, y, z, t) = 0 , (25)

dThe meaning of Eq. (21) does not change because [R×R] = 0.
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By(x, y, z, t) = q

{
V (V 2 − c2)(z − z0)
[(cR − V (x− x0)]3

}
t0

− q
{

acR(z − z0)
[(cR − V (x− x0)]3

}
t0

, (26)

Bz(x, y, z, t) = −q
{
V (V 2 − c2)(y − y0)
[(cR − V (x− x0)]3

}
t0

+ q

{
acR(y − y0)

[(cR − V (x− x0)]3
}
t0

. (27)

Obviously, these components are functions of x, y, z, t through t0 from the con-

ditions (8) and(9). This means that when we substitute the field components given

by Eqs. (22)–(27) in the Maxwell Eqs. (4) and (7), we once again have to use the

differentiation rules as in (11):

∂E{or B}k
∂t

=
∂E{or B}k
∂t0

∂t0

∂t

∂E{or B}k
∂xi

=
∂E{or B}k
∂t0

∂t0

∂xi


 , (28)

where k and xi are x,y, z.

Remember that we are considering the case with V = (V, 0, 0), so, one obtains

∂t0

∂t
=

R

R − (x− x0)V/c
, and

∂t0

∂xi
= − xi − x0i
c[R− (x− x0)V/c]

. (29)

Let us rewrite Eq. (7) by components taking into account the rules (28) and

Eq. (25):

∂Ez

∂t0

∂t0

∂y
− ∂Ey
∂t0

∂t0

∂z
= 0 , (30)

∂Ex

∂t0

∂t0

∂z
− ∂Ez
∂t0

∂t0

∂x
+
1

c

∂By

∂t0

∂t0

∂t
= 0 , (31)

∂Ey

∂t0

∂t0

∂x
− ∂Ex
∂t0

∂t0

∂y
+
1

c

∂Bz

∂t0

∂t0

∂t
= 0 . (32)

In order to calculate the derivatives ∂E(orB)k/∂t0 we need the values of the

expressions ∂V/∂t0, ∂x0/∂t0 and ∂R/∂t0. In our case we have to use
e

∂R

∂t0
= −c , ∂x0

∂t0
= V , and

∂V

∂t0
= a . (33)

eSee footnote c.
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Now, using Eqs. (29) and (33), we want to verify the validity of Eqs. (30)–(32).

The result of the verification is as follows:

∂Ez

∂t0

∂t0

∂y
− ∂Ey
∂t0

∂t0

∂z
= 0 , (34)

∂Ex

∂t0

∂t0

∂z
− ∂Ez
∂t0

∂t0

∂x
+
1

c

∂By

∂t0

∂t0

∂t
= − ac(z − z0)
[cR− V (x− x0)]3

, (35)

∂Ey

∂t0

∂t0

∂x
− ∂Ex
∂t0

∂t0

∂y
+
1

c

∂Bz

∂t0

∂t0

∂t
=

ac(y − y0)
[cR− V (x− x0)]3

. (36)

The verificationf shows that Eq. (30) is valid. But instead of Eqs. (31) and (32)

we have Eqs. (35) and (36) respectively. A reader has to agree that this result is

rather unexpected.

However, another way to obtain the fields (1) and (2) exists. If one uses this

manner to verify the validity of Maxwell’s equations, one finds that fields (1) and (2)

satisfy these equations. In the next section we shall consider this way in detail and

we shall show that it does not correspond to a pure retarded interaction between

the charge and the point of observation.

4. Double (Implicit and Explicit) Dependence of ϕ, A, E and B on

t and xi. Total Derivatives: Mathematical and Physical Aspects

First at all, let us consider in detail Landau’s method2 of obtaining the derivatives

∂t0/∂t and ∂t0/∂xi. Landau and Lifshitz considered two different expressions of

the function R:

R = c(t− t0) , where t0 = f(x, y, z, t) , (37)

and

R = [(x− x0)2 + (y − y0)2 + (z − z0)2]1/2 , where x0i = fi(t0) . (38)

Then one calculates the derivatives (∂/∂t and ∂/∂xi) of functions (37) and (38),

and equating the results, obtains ∂t0/∂t and ∂t0/∂xi. While Landau and Lifshitz

use here a symbol ∂ (see the expression before Eq. (63.6) in Ref. 2) in order to

emphasize that R depends also on other independent variables x, y, z, it is easy to

show that they calculate here total derivatives of the functions (37), (38) with respect

to t and xi. The point is that if a given function is expressed by two different types

of functional dependencies, then exclusively total derivatives of these expressions

fThere is another manner of verifying the validity of Eqs. (30)–(32). If one substitutes E and
B from (10) in Eq. (7), one only has to satisfy oneself that the operators “∇×” and “∂/∂t”
commute. In our case, because of V = (V, 0, 0) and A = (Ax, 0, 0), it means the commutation of
the operators ∂/∂y(or z) and ∂/∂t. The verification shows that these operators do not commute
if one uses the rules (11).
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with respect to a given variable can be equated (contrary to the partial ones). Here

we adduce the schemeg which was used in Ref. 2 to obtain ∂t0/∂t and ∂t0/∂xi:


∂R

∂t (=c)
+
∂R

∂t0 (=−c)

∂t0

∂t︸ ︷︷ ︸ =
dR

dt︸︷︷︸ =
∑
k

∂R

∂x0k

∂x0k

∂t0

∂t0

∂t︸ ︷︷ ︸
↑ ↑ ↑

R{t, t0(xi, t)} = R(t0) = R{xi, x0i[t0(xi, t)]}

� � �

c(t− t0) = R(t0) =

{∑
i

[(xi − x0i(t0)]2
}1/2

↓ ↓ ↓︷ ︸︸ ︷
∂R

∂t0 (=−c)

∂t0

∂xi
=

︷︸︸︷
dR

dxi
=

︷ ︸︸ ︷
∂R

∂xi (=xi−x0iR )
+
∑
k

∂R

∂x0k

∂x0k

∂t0

∂t0

∂xi




. (39)

If one takes into account that ∂t/∂xi = ∂xi/∂t = 0, as a result obtains the same

values of the derivatives which have been obtained in (14).

Let us now, as it was mentioned above in the end of Sec. 3, calculate the ex-

pressions (10) taking into consideration that the functions ϕ and A depend on t

(or on xi)
h implicitly and explicitly simultaneously. In this case we have:

∂ϕ

∂xi
= − q

(R−Rβ)2
(
∂R

∂xi
− ∂R
∂xi
β −R ∂β

∂xi

)
, (40)

∂ϕ

∂t
= − q

(R−Rβ)2
(
∂R

∂t
− ∂R
∂t
β −R∂β

∂t

)
, (41)

and

∂A

∂t
=
∂ϕ

∂t
β + ϕ

∂β

∂t
, (42)

where

∂β

∂t
=
∂β

∂t0

∂t0

∂t
and

∂β

∂xi
=
∂β

∂t0

∂t0

∂xi
. (43)

gIn this scheme we have used a symbol d for a total derivative. In the original text2 we have

∂R

∂t
=
∂R

∂t0

∂t0

∂t
= −RV

R

∂t0

∂t
= c

(
1− ∂t0

∂t

)
,

∇t0 = −
1

c
∇R(t0) = −

1

c

(
∂R

∂t0
∇t0 +

R

R

)
.

hThis depends on the choice of the expression for R in (37) and (38).
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Now, let us consider all derivatives in (10), (40)–(43) as total derivatives with

respect to t and xi. Then, if we substitute the expressions (40)–(43) in (10) (of

course, taking into account either l.h.s. or r.h.s. of the scheme (39)), we obtain

formally the same expressions for the fields (1) and (2)! Then if one substitutes

the fields (1) and (2) in Maxwell’s equation (7), considering all derivatives in (7)

as total ones and, of course, considering the functions E and B as functions with

both implicit and explicit dependence on t (or on xi), one can see that Eq. (7) is

satisfied!

5. Conclusion

If we consider only the implicit functional dependence of E and B with respect

to the time t this means that we describe exclusively the retarded interaction: the

electromagnetic perturbation created by the charge at the instant t0 reaches the

point of observation (x, y, z) after the time τ = R(t0)/c. Surprisingly, the Maxwell

equations are not satisfied in this case!

If we take into account a possible explicit functional dependence of E andB with

respect to the time t, together with the implicit dependence, the Maxwell equations

are satisfied. The explicit dependence of E and B on t means that, contrary to the

implicit dependence, there is not a retarded time for electromagnetic perturbation

to reach the point of observation. A possible interpretation may be an action-at-

a-distance phenomenon, as a full-value solution of the Maxwell equations within

the framework of the so called “dualism concept.”9,10,i This interpretation differs

from the well-known “retarded action at a distance” concept (see, e.g. Refs. 12

and 13 and references therein) and could be an alternative point of view. In other

words, there is a simultaneous and independent coexistence of instantaneous and

retarded interactions which cannot be reduced to each other.
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