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Abstract- In this brief paper we propose to prove a theorem on non-classical symmetries for systems of differential equations whose 
solutions are related by means of a linear constraint. What we obtain is a representation of the invariance group of the system given by 
(∩𝒊𝒊=𝟏𝟏𝑵𝑵 𝑮𝑮𝒊𝒊) ∪ 𝑮𝑮𝑵𝑵𝑵𝑵𝑵𝑵 where the groups 𝑮𝑮𝒊𝒊 are the classical Lie groups of each differential equation in the system taken separately, and 𝑮𝑮𝑵𝑵𝑵𝑵𝑵𝑵 
is the non-classical symmetry group obtained when the set of determining equations is solved for the whole coupled system. Once we have 
the theorem, we apply it to the system of equations that define the scalar potential in the Coulomb and Lorenz gauges. It is well-known 
that the solutions of the scalar potential in the Coulomb gauge are related to the solutions of the scalar potential in the Lorenz gauge by a 
gauge transformation, however, these equations have been not considered in the literature from the point of view of its constrained 
symmetries. When this is done, it is possible to prove that the scalar potential in the Lorenz gauge cannot accept the Lorentz boost as a 
symmetry, which is excluded by the linear constraint introduced by the gauge transformation. 
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I. INTRODUCTION 

Let us describe the setting and nature of the problem we propose to deal with in this paper. Consider N linear differential 
operators Fi, i=1,.., N of orders ni , i=1,..., N so that determine N functions φ i: R4 → R through the equations: Fi(φ i)=ρ i  
where ρ i: R4

The symmetry groups of the differential equations are G

 → R are given continuous functions.  

i, i=1,...,N generated by vector fields Xij, i=1,..,N, j= 1,...,Ni with 
Ni

 𝑋𝑋𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖[𝐹𝐹𝑖𝑖(𝜑𝜑𝑖𝑖) − 𝜌𝜌𝑖𝑖] = 0 (1) 

 the number of symmetries accepted by the equation i. Each vector field generator satisfies, for each i and all j, the following 
equations: 

 𝐹𝐹𝑖𝑖(𝜑𝜑𝑖𝑖) − 𝜌𝜌𝑖𝑖 = 0   (2) 

where 𝑋𝑋𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖  means the ni prolongation of the vector fields 𝑋𝑋𝑖𝑖𝑖𝑖 .When written out in coordinates these equations give us a system 

of linear overdetermined equations for the components of the vector fields 𝑋𝑋𝑖𝑖𝑖𝑖  which are known as classical Lie symmetries [1]. 
It is also well-known that classical Lie symmetries are not the only symmetries a set of differential equations accept as 
symmetries; P. Olver and E. Vorob´ev [3] have given many examples and a definition of non-classical symmetry and V. 
Fushchich and A. Nikitin [4] have generally explained why even non-classical symmetries are not the whole story. We propose 
to obtain the form of the symmetry group of system (1)-(2) when the simplest constraint equation among the variables is 
involved. Generally speaking we have a problem of non-classical symmetries when we try to solve system (1)-(2) plus a set of 
m differential constraints of the form: 𝑓𝑓𝑘𝑘( 𝜑𝜑𝑖𝑖 ,∇𝜑𝜑𝑖𝑖 , … ) = 0, 𝑘𝑘 = 1, … ,𝑚𝑚 where we use the symbol ∇𝜑𝜑𝑖𝑖  as short notation for the 
full set of first order derivatives of the 𝑁𝑁 functions 𝜑𝜑𝑖𝑖 . The problem we shall try to solve is now easily established: if we 
postulate a linear relationship among the functions φ i

II. THE THEOREM 

 of the form ∑ 𝑎𝑎𝑖𝑖𝜑𝜑𝑖𝑖𝑁𝑁
𝑖𝑖=1 = 0 with 𝑎𝑎𝑖𝑖𝜖𝜖𝐑𝐑 for all i, what is the form of the 

transformation group of this new symmetry problem with constraint? The answer of this question is proved in the next section. 

We want to know the structure of the symmetry group of the following constrained system of differential equations: 

 𝐹𝐹𝑖𝑖(𝜑𝜑𝑖𝑖) − 𝜌𝜌𝑖𝑖 = 0 (3) 

 ∑ 𝑎𝑎𝑖𝑖𝜑𝜑𝑖𝑖𝑁𝑁
𝑖𝑖=1 = 0 (4) 

Instead of directly applying the prolongation of the vector fields we change (3)-(4) by the following equivalent set of 
differential equations i =1... N: 

 ∑ 𝑎𝑎𝑘𝑘𝐹𝐹𝑖𝑖(𝜑𝜑𝑘𝑘)𝑘𝑘≠𝑖𝑖 − 𝑎𝑎𝑖𝑖𝜌𝜌𝑖𝑖 = 0, (5) 
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where the sum is over all values of k except i. This change can be obtained using 

𝜑𝜑𝑖𝑖 = − 1
𝑎𝑎𝑖𝑖
∑ 𝑎𝑎𝑘𝑘𝜑𝜑𝑘𝑘𝑘𝑘  where, again, the sum is over all values of k except i. In their paper, M. Aguero and R. Alvarado [5] has 

given an extended discussion of this sort of substitutions. Now the problem of symmetries is:  

 𝑋𝑋𝑛𝑛𝑖𝑖[∑ 𝑎𝑎𝑘𝑘𝐹𝐹𝑖𝑖(𝜑𝜑𝑘𝑘)𝑘𝑘≠𝑖𝑖 − 𝑎𝑎𝑖𝑖𝜌𝜌𝑖𝑖] = 0        𝑖𝑖 = 1, … ,𝑁𝑁 (6) 

 ∑ 𝑎𝑎𝑘𝑘𝐹𝐹𝑖𝑖(𝜑𝜑𝑘𝑘)𝑘𝑘≠𝑖𝑖 − 𝑎𝑎𝑖𝑖𝜌𝜌𝑖𝑖 = 0            𝑖𝑖 = 1, … ,𝑁𝑁 (7) 

System (6)–(7) is impressive; fortunately we do not have to solve it to achieve our goal. 

Theorem. The symmetry group of the system (6)-(7) is of the form (∩𝑖𝑖=1
𝑁𝑁 𝐺𝐺𝑖𝑖) ∪ 𝐺𝐺0 where for all i we have 𝐺𝐺𝑖𝑖 ∩ 𝐺𝐺0 = ∅. 

Proof. If in the system (1)-(2) we use the constraint (4) we obtain the system (6)-(7), but with symmetries Xij as solutions 
for each i, i.e. for a given i the symmetry Xij

III. AN APPLICATION 

 is a symmetry of the equation i but not necessarily for all i. So we choose only 
those infinitesimal symmetries that generate each 𝐺𝐺𝑖𝑖  which are symmetries of the differential equations (6)-(7) for all i. That is: 
we build the group ∩𝑖𝑖=1

𝑁𝑁 𝐺𝐺𝑖𝑖𝑖𝑖 . However, these are not the only solutions, because there could be non-Lie symmetries which can 
be obtained by solving the system (6)-(7) only. These symmetries generate the group 𝐺𝐺0. Hence the symmetry group of (6)-(7) 
has the structure: (∩𝑖𝑖=1

𝑁𝑁 𝐺𝐺𝑖𝑖) ∪ 𝐺𝐺0 as claimed, and the symmetries contained in 𝐺𝐺0 are not in any of the groups 𝐺𝐺𝑖𝑖 , otherwise, 
they would be redundant. 

Maxwell´s equations of classical electrodynamics can be solved introducing potentials [2] which are abelian gauge fields  
[6]. The gauge is fixed using conditions involving the potentials, like the Coulomb gauge, the Lorenz gauge or the several 
possible axial gauges. So when one wants the symmetries of the differential equations for the potentials, the gauge must be 
taken into account, and for just that reason the symmetries involved should be non-classical.  

In the Lorenz gauge we can form a 4-vector function 𝐴𝐴𝜇𝜇 (𝑥𝑥) that satisfies the equations: 𝐴𝐴𝜇𝜇 (𝑥𝑥) = 4𝜋𝜋𝑖𝑖𝜇𝜇  where ⎕ is the 

D´Alembert operator. Because the Lorentz gauge is relativistically covariant, the current  𝑖𝑖𝜇𝜇  a 4-vector and ⎕ an operator 
invariant under the Lorentz group, the whole system of Maxwell´s equations for the potentials in the Lorenz gauge is 
the same on all Lorentz frames. 

However, this is not the case of the Coulomb´s gauge. It is well-known that the Coulomb´s gauge constraint is not 
relativistically invariant being valid only on a fixed reference system [4]. This can be proved directly making a Lorentz boost 
on the Coulomb´s gauge constraint, or over the Laplace equation for the scalar potential. 

Because we believe that the correct description of nature must be relativistically covariant, the Coulomb gauge cannot be 
correct, but that using a gauge transformation to the Lorenz gauge this situation is changed. We assert, however, that such a 
hope is unwarranted. 

Corollary. Let us suppose that for whatever reason we want a relationship of the form: 

𝜑𝜑𝑐𝑐 = 𝜑𝜑𝐿𝐿 + 𝜕𝜕𝑡𝑡𝛾𝛾 among a solution 𝜑𝜑𝑐𝑐  of the Poisson equation, 𝜑𝜑𝐿𝐿 R 

Proof. Let us call 𝐺𝐺𝑃𝑃  and 𝐺𝐺𝐿𝐿 the classical Lie groups of the Poisson and D´Alembert equations, respectively, which are not 
the same because the Coulomb´s gauge is not relativistically covariant like the Lorenz gauge, and the group of the function 𝜕𝜕𝑡𝑡𝛾𝛾 
is, applying the previous theorem: (𝐺𝐺𝑃𝑃 ∩ 𝐺𝐺𝐿𝐿) ∪ 𝐺𝐺𝛾𝛾  where 𝐺𝐺𝛾𝛾  is the non-classical symmetry group of the differential equations 
of the function 𝜕𝜕𝑡𝑡𝛾𝛾 not contained in any one of the groups 𝐺𝐺𝑃𝑃 ,𝐺𝐺𝐿𝐿. So, the group of symmetries of the new problem is, again 
invoking the previous theorem:  

of the D´Alembert equation and a function 𝜕𝜕𝑡𝑡𝛾𝛾 that is 
determined from differential equations arising from the postulated relationship and the Poisson and D´Alembert equations; in 
Ref. [7] Jackson calculates just one of this equations, and the pair equations are given in [8]. Hence this relationship defines a 
function that is not a solution of the D´Alembert equation under Lorentz boosts. 

(((𝐺𝐺𝑃𝑃 ∩ 𝐺𝐺𝐿𝐿) ∪ 𝐺𝐺𝛾𝛾 ) ∩ 𝐺𝐺𝑃𝑃 R ∩ 𝐺𝐺𝐿𝐿 )  𝐺𝐺𝑃𝑃𝐿𝐿𝛾𝛾  = (𝐺𝐺𝑃𝑃 ∩ 𝐺𝐺𝐿𝐿) ∪ 𝐺𝐺𝑃𝑃𝐿𝐿𝛾𝛾  

The Lorentz boosts are not shared neither by 𝐺𝐺𝑃𝑃  nor 𝐺𝐺𝑃𝑃𝐿𝐿𝛾𝛾 . This last group is the group of genuine non-Lie symmetries. 
Hence the relationship 𝜑𝜑𝑐𝑐 = 𝜑𝜑𝐿𝐿 + 𝜕𝜕𝑡𝑡𝛾𝛾  is not a solution of the D´Alembert equation when Lorentz boosts are applied upon it; 
i.e. if g is such a Lorentz boost, and we accept that 𝜑𝜑𝐿𝐿 = 𝜑𝜑𝐶𝐶 − 𝜕𝜕𝑡𝑡𝛾𝛾  is a solution to D´Alembert equation, then the transformed 
function 𝑔𝑔∗𝜑𝜑𝐿𝐿 is not a solution because of the existence of a gauge transformation.  

IV. CONCLUSIONS 

The corollary to the theorem of the previous section looks quite unacceptable, because it means that when we introduce a 
gauge transformation to change from a non-covariant gauge to a covariant gauge, what we obtain is that the covariant gauge is 
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transformed into a non-covariant gauge, quite the opposite of our intentions. 

If one looks at the literature, it is possible to find proofs that indeed quantum electrodynamics in any gauge, in Heisenberg 
operator formalism for quantum field theory, is covariant [9]. However, such a case is not related to the one focused in this 
paper because we are using c-fields not q-fields, so the transformations properties are not identical, but, more importantly, the 
Lorenz gauge constraint is valid all over the space for c-fields, but when q-fields are considered it can only be valid for a 
subset of the total Hilbert space to avoid contradictions with the commutation rules for the q-fields (see [10] Chapter 9). In this 
paper our results are related to c-fields and the proper way in which symmetries are restricted by the gauge transformation, a 
topic that has not been of the concern in the literature of classical electrodynamics, a subject that is full of surprises from the 
point of view of its symmetries yet, can be seen by reading Symmetries of Maxwell´s Equations [4].  
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