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ABSTRACT      

In this work we discuss the relationship between the instantaneous-action-at-a-distance solutions of Maxwell‟s equations 
obtained using Helmholtz theorem and the Lorentz‟s invariant solutions of the same equations obtained using Special 
Relativity postulates. We show that Special Relativity postulates are not consistent with Helmholtz‟s theorem in the 
presence of charges and currents, but in the vacuum, without charges and currents, Helmholtz‟s theorem and Special 

Relativity agree because the instantaneous-action-at-a-distance solutions can be eliminated using a gauge transformation. 
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        A very common procedure in the treatment of wave propagation in an elastic solid dictates that the wave field u can 

be decomposed into transversal and longitudinal components: 
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Introduction  

A very common procedure in the treatment of wave propagation in an elastic solid dictates that the wave field u can 

be decomposed into transversal and longitudinal components: 

                                                                                𝐮 = 𝐮𝑠 + 𝐮𝑖   ,                                                                                           1  

where   𝐮𝑠 = ∇ × 𝐚 , 𝐮𝑖 = ∇𝑏   with 𝐚 as any continuous vector function and b as any continuous scalar function. The 

irrotational component  𝐮𝑖  generates primary waves (p-waves), while the solenoidal component 𝐮𝑠 is responsible for the 

secondary waves (s-waves).  It is a well-known result that the propagation velocity of s-waves is less than the finite 
propagation velocity of p-waves in the solid. 

        In general, decomposition like (1) is known   as  a  Helmholtz decomposition, a result obtained using   Helmholtz   
theorem. When such decomposition is directly applied to Maxwell equations of electrodynamics a quite surprising result is 
obtained, at least when it is compared to the results obtained for an elastic solid: electric field solenoidal component 
 ∇ ∙ 𝐄𝑠 = 0   satisfies a D‟Alembert equation, with well-known retarded solutions, while the electric field irrotational 

component  ∇ × 𝐄𝑖 = 0   satisfies Poisson equation, so it is an instantaneous field. 

An obvious objection against this result is that the irrotational component is not a physically independent field, it must 
be a mathematically introduced delusion, or it must somehow depend on the physically relevant component (see, e.g. [6] 
and [7]).   

However, as we shall show below (Section 3), the instantaneous component is not only part of the solution of the 
field equations in the Coulomb gauge,   the gauge where it naturally appears, but in the Lorentz one too using the 
Helmholtz theorem only.  But this is not the puzzling  matter, indeed, instantaneous action at a distance (IAAAD) can be 
used if it is retarded, just like in the Wheeler-Feynman theory.  It is interesting to note that   using the Helmholtz 
decomposition we get a solution of Maxwell‟s equations for the irrotational component of the electric field that is not 
Lorentz invariant but a Galileo one, so, the entire electric field is not Lorentz invariant or Galileo invariant but an invariant 
for the semi-direct product  𝑆𝑂 3 ⨁𝑠𝑇(4)  of space rotations and space-time translations. 

So, the objective of this paper is an analysis of the explicit symmetry breaking of the Lorentz group introduced by the 
Helmholtz decomposition with a very different perspective than that used in the previous work [5].  In that work a 3-
dimentionalformalism was used to tackle the question of energy transmission in classical electrodynamics, but this is not 
quite correct if we want to offer a   depth analysis of  the IAAAD solutions of the Maxwell‟s equations in flat, 4-dimensional 
spaces.  As we shall see the symmetry properties of the Maxwell‟s equations that are essential to us does not depend on 
the signature of the space-time metric, but only on the flatness condition and the general structure of the space involved, 
because with both  these conditions we determine the symmetry groups.  

Our results are, roughly, as follows: 

(1) Without the presence of charges and currents,  in the vacuum, the Helmholtz decomposition is fully compatible 
with the Lorentz group, that is:  there is no symmetry breaking, because with the help of a gauge transformation we 
achieve that  𝐄 = 𝐄𝑠  . 

(2)  In the presence of charges and convection currents in the vacuum, the Helmholtz theorem introduces an 
irrotational and isolated electric field that is not Lorentz invariant, hence there is symmetry breaking. And we cannot make 
this component zero without paradoxical consequences, as we shall see. 

Hence a conclusion is in order:  the symmetry group of the full  electric  field decomposed  according to Helmholtz 
theorem is not the Lorentz or the Galileo group, but a group common to both as it is, for example,  𝑆𝑂 3 ⨁𝑠𝑇(4). 

But obviously this symmetry group tells us that the space-time is Euclidean, a quite incorrect conclusion. 

The organization of the paper is as follows: in the next section we present a brief and rough exposition of the 
Minkowski, the Galilean and Newtonian space-time, as general frameworks for electrodynamics with a given symmetry 
group,   in the next one we show how in the Lorentz gauge the instantaneous non-retarded solutions appear as a 
consequence   of Helmholtz theorem, which in the same section is explained as a purely mathematical result. In the 
following sections we explain and demonstrate our main results. We close the paper with an   assessment of the results 
achieved in the conclusions of the last section. 

The space-time theories  

To settle the framework of the next section,   we proceed   to discuss      three important space-time theories. The 
first one is the Special Theory of Relativity (STR) with its Minkowski space-time, the second one is the 4-dimensional  
Galilean space-time (GT) closely related to the third one, the Newtonian space-time (NT). Following Friedman [1], a 
Space-Time theory (STT) is defined once we give a 4-dimensional manifold M, the geometric objects Φ1, …, ΦM that 
satisfy the field equations of the theory, and the vector field X that define the geodesics and it is usually called 
“congruence”. We follow this pattern here.  
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The first geometric object of any of our space-time theories is an affine connection D and the first field equation 
which we need is the condition that the Riemann curvature tensor

1
 K is zero everywhere on the manifold M.  This is a 

condition common for STR, NT and GT, they must be flat. The next geometric object which we need is a metric tensor, 
and here is where our STTs differ: for the Minkowski case we just need a 4-dimensional symmetric non-singular tensor η 
such that 𝐷𝑋𝜂 = 0  for all tangent vector fields X, but for the NT and GT cases we need more geometric structures. For the 

NT case we need, in fact, two singular metric tensors because the time measures and the space measures are 
independent, so,   there are more geometric objects than in the STR case

2
.  Let us call these two tensors h and t. They

3
 

must satisfy 𝐷𝑋 = 0, 𝐷𝑋𝑡 = 0 and these are other field equations for the NT and GT case.  These conditions are enough 

for the GT but not for the NT. For the NT case we need the introduction of a time-like vector field V such that 𝐷𝑋𝑉 = 0, and 

this last condition on 𝑉 define the NT. The integral curves defined by V are used in the Newtonian space-time to relate 

different 3-spaces. 

Following Friedman, the field equations that give a structure to the space-time define not only the inertial frames as 
the frames where the metrics get a canonical form, but its specific symmetry groups as well. 

We get these symmetry groups as isometries of the metric that leave invariant the flat connection. 

Let us start a discussion of STR. 

It was shown by Friedman [1] that sufficient conditions to obtain the Lorentz group on STR are the invariance of the 
covariant derivative and the invariance of the metric under the transformations. In this way   linearity of the transformations 
is obtained from the covariant derivative invariance, and the coefficients of the linear transformations from the Killing‟s 
equations for the flat metric. 

The usual postulate:  

(A)   The linear transformations that relate with two inertial frames Σ, Σ0 leave invariant the velocity of light. 

This is not enough to obtain the proper Lorentz group without the use of extra assumptions. There is, however, a 
second postulate in STR, which is necessary in any space-time theory: 

(B)  The equations describing physical events are the same in every frame. 

With (B) we obtain a group representation of the space-time group that acts on the fields and relates them on 
different inertial frames leaving invariant the form of the field equations. 

To be more specific, we choose a particular connected component of the Lorentz group which we denote with 
𝑆𝑂+(3,1)  the proper (orientation preserving withdet = +1) orthochronous (preservation of time direction) Lorentz group.  

𝑆𝑂+(3,1)  is normal sub-group of the Lorentz group, sometimes known as the restricted Lorentz group. We shall not 

discuss the discrete symmetries of space inversion and time reversal. 

If we have at our disposal the restricted Lorentz group we get precision using the postulate (B), because now we 
know that the equations which describe physical events in any inertial frame must be invariant in front of the 
group 𝑆𝑂+(3,1).  Hence the invariance condition comes from the structure of the space-time and is previous, logically, to 

the field equations for the physical fields. Hence, historically, Maxwell equations were written for a Galilean or Newtonian 
space-time. The ether reference frame was such a Galilean frame with the property that the field equations were not 
invariant. 

So, using the transformation properties of the differential operators involved in Maxwell equations we erect a 
representation of 𝑆𝑂+(3,1) which transforms the physical fields in such a way that the equations remain invariant. If we 

make the semi-direct product of 𝑆𝑂+ 3,1  with space-time translations we get the Poincare group, but space-time 

translations leave invariant the co-vectors (1-forms), so we may skip them. 

Now we go on to discuss the GT and NT. 

There are well-known 4-dimensional   formulations of the Newtonian space-time ([1], [2]), and a rough description of 
it.  It consists of 3-spaces attached to the temporal line, so, each 3-space consists of all the simultaneous points, while the 

                                                           
1
 The curvature tensor R is defined for all pairs of vectors X, Y tangent to M as 𝑅 𝑋, 𝑌 = 𝐷𝑋𝐷𝑌 − 𝐷𝑌𝐷𝑋 − 𝐷 𝑋 ,𝑌   where 

 𝑋, 𝑌  is the Lie bracket. The Riemann curvature tensor is defined then as 𝐾 𝜔, 𝑋, 𝑌, 𝑍 = 𝜔 𝑅 𝑋, 𝑌 , 𝑍  where ω is a 1-
form, so, K is a (1,3)-tensor which we can build using  relation D. 
 
2
 In fact, we can see  from the mathematical point of view, how these two metric tensor arise.  Suppose that we have 

two bundles     given by        𝑀, 𝜏, 𝑇 ,  𝑀, 𝜀, 𝑁    with     dim 𝑇 = 1, dim 𝑁 = 3,            with     𝜏: 𝑀 → 𝑇,   𝜀: 𝑀 → 𝑁.  So, 
the fiber 𝜏−1 𝑡   over 𝑡 ∈ 𝑇 is an instantaneous space isomorphic  at a 3-space, while the fiber 𝜀−1 𝑝  over 𝑝 ∈ 𝑁 is a 
relation of duration through time of  point p. We build a singular metric tensor on each of these bundles, giving 
separate measures of time and space. 
 
3
 Freidman uses h for a 2-contratensor, here we use the h for a 2-cotensor, that is, the metric tensor on each 

instantaneous 3-space. 
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time lines are the integral lines of time-like vector field 𝑉 introduced before. These 3-spaces define a foliation of the 4-

dimensional space, and each one is a space of simultaneity because all its points, and metric relations, are defined at one 
time instant. The congruence of 𝑉 is used to define the notion of duration or time interval among the 3-spaces. 

This space-time is radically different from STR. The group acting on NT leaves invariant the time component, 
defining the absolute time, and each 3-space, defining the absolute rest. Each of these elements of the NT is independent 
of each other.  NT, like STR, is flat, so there coordinate systems exist where the singular tensors t and h have components 

                                                  

1 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

  ,  

0
0
0
0

  0
 −1

  
0
0

0
0

 −1
0

 
 
0
0

 
0
−1

  .                                                                            (NM) 

The transformation group in the Newtonian case is obtained using the same pattern described for the STR, giving as 
the result the group 𝑆𝑂 3 ⨁𝑠𝑇(4)  ([1], chapt. 3). For the GT case we shall give the following brief description of its 

symmetry groups. 

One of its symmetry groups is 𝑆𝑂(3) ⊂ 𝑆𝑂(4).   𝑆𝑂(3)  is a normal subgroup of  𝑆𝑂(4), with det = +1 ,  in such a way 

that we have a fiber bundle 𝜋: 𝑆𝑂(4) → 𝑆3 ≃ 𝑆𝑂(4) 𝑆𝑂(3)   with fiber isomorphic  to 𝑆𝑂(3) .  This is enough to define 

absolute rest (NT case), but we need a relative space
4
  plus an absolute time, so we introduce the Galileo transformations 

on our ℜ4 as follows: we choose an element  𝑥, 𝑡 ∈ ℜ4  and define an action 𝑔: 𝑆𝑂(3) ×  ℜ4 × ℜ × ℜ4 → ℜ4  

with𝑔 𝑂,𝑣,𝑠  𝑥, 𝑡 =  𝑂𝑥 + 𝑣𝑡, 𝑡 + 𝑠 .  The Galileo group Gal(4) is a semi-direct product of 𝑆𝑂 3 , ℜ4   and  ℜ.  We may 

complete  𝑆𝑂 3  to the Euclidian group introducing the space translations to get the full Galilean group. But when we use a 

frame of covectors the space-time translations are clearly trivial. 

We shall consider in detail two space-times. 

 The flat Minkowski space-time: 𝑀 =  ℜ4, 𝜂, 𝑆𝑂+(3,1)  with the Lorentz transformations that we take in the form 

                                                                        𝑥𝜇 =  𝛬𝜇𝜈 𝑥𝜈

 

𝜈

 .                                                                                           LT   

 

   The flat Galilean space-time: 𝑁 =  ℜ4 ,, 𝑡,𝐺𝑎𝑙(4)   with the Galileo transformations 

                                                     𝑥𝜇 =   𝑣𝑔
𝜇
𝑡𝜈𝑥𝜈 + 𝑜𝜇𝜈 𝑥𝜈 + 𝜉𝜇  ,

 

𝜇

                                                                        (GT) 

here  𝑣𝑔
𝜇
  has components   1, 𝑣1, 𝑣2 , 𝑣3    and  𝑡𝜈   is  1,0,0,0   numerically the same on all inertial frames (absolute time 

such that   𝜇𝜈 = 𝑡𝜇 𝑡𝜈 ). The matrix  𝑜𝜇𝜈   is such that   𝑜𝜇𝜈 = 0, for µ,ν = 0  the matrix with components  𝑜𝑖𝑗  , with latin 

indexes running from 1 to 3,  is a member of   𝑆𝑂(3).  In this way the transformation (GT) includes the pure Galileo 
transformation, the rotation and the translation. Greek indices run from 0 to 3, Latin indices run from 1 to 3. 

Each one of these space-times can be considered as the framework for electrodynamics if the equations are 
invariant with respect to its symmetry group. However, the use of Helmholtz theorem tells us that the right space is the NT 
space   𝑁𝑒 =  ℜ4, , 𝑡,𝑉, 𝑆𝑂 3 ⨁𝑠𝑇(4)  that is a completely incorrect result. 

In the next section we discuss Helmholtz theorem and we show how the instantaneous non-retarded solutions arise 
from Coulomb and Lorentz gauges. 

Helmholtz decomposition 

         Any continuous and differentiable vector function E can be decomposed in an irrotational component  𝐄𝑖   and a 

solenoidal one   𝐄𝑠.  The idea is quite simple:  at every point of space we construct a local 3-dimensional coordinate 
system, we choose one of the axes as a propagation axis, and this is the axis of the irrotational component, while the 
other two axes are the polarization axes, where the solenoidal component is projected.  So, it is not difficult to suppose 
that 

                                                                                     𝐄 = 𝐄𝑖 + 𝐄𝑠  .                                                                                           (2) 

         Fourier transforms show us that   𝐤 × 𝐄𝑖 𝐤, 𝑡 = 0, 𝐤 ∙ 𝐄𝑠 𝐤, 𝑡 = 0,   so if k is the vector in the propagation direction, 

the irrotational component is parallel to it and the solenoidal one is orthogonal. 

The decomposition (2)   is known as Helmholtz theorem, and in any Banach space  ℑ  we can always get a 

decomposition of the form ℑ = 𝑁⨁𝑁⊥   with  𝑁⊥  the orthogonal space to N.   But this decomposition is not the Helmholtz 
decomposition yet. We shall see this in detail at the end of the section. 

If we apply (2) to the Maxwell equations we get for the solenoidal fields (see [5]): 

                                                           
4
 In this relative space there is a law of transformation of velocities, or, to be more specific, the usual Galilean addition 

of velocities is valid. 
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                                                                               ∇ × 𝐄𝑠 = −
1

𝑐

𝜕𝐁𝑠

𝜕𝑡
,                                                                                    (S1) 

                                                                 ∇ × 𝐁𝑠 =  
1

𝑐

𝜕𝐄𝑠

𝜕𝑡
+

4𝜋

𝑐
𝐉𝑠 ,                                                                            (S2) 

                                                                                  ∇ ∙ 𝐄𝑠 = 0,                                                                                         (S3) 

                                                                                                                                   ∇ ∙ 𝐁𝑠 = 0.                                                                                 (S4) 

And for the irrotational field we obtain: 

                                                                        ∇ × 𝐄𝑖 = 0,                                                                                  (I1) 

                                                                 ∇ ∙ 𝐄𝑖 = 4 𝜋𝜚,                                                                               (I2) 

                                                                  
𝜕𝐄𝑖

𝜕𝑡
= −4𝜋𝐉𝑖  .                                                                             (I3) 

We applied the Helmholtz theorem to the convection current     𝐉 = 𝐉𝑖 + 𝐉𝑖  .  The equations (S1-4) can be reduced to the 

following two equations: 

                                                                      𝐄s =
4𝜋

𝑐2

∂𝐉𝑠
𝜕𝑡

 ,                                                                           (s1) 

                                                                    𝐁𝑠 = −
4𝜋

c
∇ × 𝐉𝑠  .                                                                   (s2) 

 

Meanwhile the equations (I1-I3) are reduced to 

                                                                        ∆𝐄𝑖 = 4𝜋∇𝜚,                                                                               (i1) 

                                                                   
𝜕𝐄𝑖

𝜕𝑡
= −4𝜋𝐉𝑖  ,                                                                             (i2) 

Where ∆  is the Laplace operator,   is the D‟Alembert one.  Obviously, solutions of (s1-2) are retarded, while solutions of 

(i1-2) are instantaneous.  This   one   and other simple considerations lead us to propose two mechanisms of energy 
transfer in electromagnetic theory ([5]-[7]). 

Helmholtz decomposition appears quite naturally for the electric field in the Coulomb gauge. It is very easy to write 
down, in general, the following expression for the electric field: 

                                                                                     𝐄 = −∇𝜑 −
1

𝑐

𝜕𝐀

𝜕𝑡
 .                                                                    (3) 

If we use the Coulomb gauge  ∇ ∙ 𝐀 = 0  for the vector potential A we can look at (3) as a Helmholtz decomposition with  

 𝐀 = 𝐀𝑠 .  For the Lorentz gauge an expression like (3) is valid, but now using Helmholtz theorem we obtain  𝐀 = 𝐀𝑠 − ∇ℵ , 

where  𝐀𝑖 = −∇ℵ . In this way the equation (3) in the Lorentz gauge becomes: 

                                                                               𝐄 = −∇ 𝜑 −
1

c

∂ℵ

∂𝑡
 −

1

c

∂𝑨s

∂t
 .                                                     (L1) 

This is a Helmholtz-like decomposition.  Let us show how instantaneous non-retarded solutions arise in this gauge. The 
field equations for (L1) are: 

                                                                                      − ∇ℵ = −
4𝜋

c
𝐉𝑖  ,                                                                  (L2) 

                                                                                       𝐀𝑠 = −
4𝜋

𝑐
𝐉𝑠 ,                                                                   (L3) 

                                                                                            𝜑 = −4𝜋𝜚 ,                                                                      (L4) 

                                                                                         −∆ℵ +
1

c

∂𝜑

∂𝑡
= 0 .                                                                (L5) 

Equation (L5) is the Lorentz gauge. We must find a way to solve the coupled equations (L2), (L4), (L5) for the scalar 
functions   𝜑  and  ℵ .  We claim that when we achieve this goal, instantaneous non-retarded   solutions   arise. 

Let us give a proof of this claim.  We start with the first differential consequence of (L5): 

                                                                   −∆
1

𝑐

𝜕ℵ

∂𝑡
= −

1

𝑐2

𝜕2𝜑

𝜕𝑡2  ,                                                                  (L6) 

Which we can use in (L4) to get 
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                                                              ∆𝜑 = −4𝜋𝜚 +
1

𝑐

𝜕

∂𝑡
∇ ∙  ∇ℵ  .                                                         (L7) 

From equation (L7) we can write down 

                                                                         ∆  𝜑 −
1

c

∂ℵ

∂𝑡
 = −4𝜋𝜚                                                                 (L8) 

With the solution 

                                                                   𝜑 −
1

c

∂ℵ

∂𝑡
= −4𝜋 

𝜚

𝑟
𝑑3𝑥 ,                                                               (L9) 

Showing   that   the electric field in the Lorentz gauge is the addition of instantaneous and retarded solution.  Hence the 
conclusion is the following:  Helmholtz theorem predicts an instantaneous field in   the Coulomb and the Lorentz gauges. 

However, the equations (S1-S4), (I1-I3) do not depend on the gauge: they can be deduced from using only 
Helmholtz decomposition, because we are using the electric and magnetic fields directly, not the potentials. So, there are 
grounds to believe   that no mathematical trick will avoid the instantaneous field, but with the help of STR we can take it 
away, as we shall see in the next section. In other words: only in the flat, relativistic, Minkowski space-time there are no 
instantaneous solutions of Maxwell equations. 

Now we shall discuss the Helmholtz theorem in the context of differential forms. 

To get a decomposition of the space of 2-forms Λ
2 ℜ4   over  ℜ4  we use a projection operator PV   defined according 

to: 𝑃𝑉𝐹 = 𝑑𝑥0 ∧  𝜄𝑉𝐹    𝑤𝑒𝑟𝑒  𝜄𝑉  is the contraction operator with the vector field V.  So we easily get:
5
  1 − 𝑃𝑉 𝐹 =

𝜄𝑉 𝑑𝑥0 ∧ 𝐹 . Hence it is clear that for the electromagnetic field tensor 𝐹 we have the decomposition: 

                             𝐹 =  1 − 𝑃𝑉 𝐹 + 𝑃𝑉𝐹 = 𝜄𝑉 𝑑𝑥0 ∧ 𝐹 + 𝑑𝑥0 ∧  𝜄𝑉𝐹 .                                      (3a) 

So: 

Λ
2 ℜ4 = Λ1⨁Λ2   

Decomposes our  tensor space  Λ
2 ℜ4   on a spatial  Λ1 part and  a temporal   Λ2  one. 

Let us choose for our vector field V a time-like vector field   𝜄𝑉𝑑𝑥0 = 1, such that  𝜄𝑉𝑑𝑥𝑖 = 0,  𝑖 = 1,2,3  and an inertial 

reference system such that we can get: 

 1 − 𝑃𝑉 𝐹 =
1

2
 𝐹𝜇𝜈 𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈

 

𝜇𝜈

−  𝑑𝑥0 ∧   𝐹0𝑖𝑑𝑥𝑖

3

𝑖=1

  ,   𝑃𝑉𝐹 = 𝑑𝑥0 ∧   𝐹0𝑖𝑑𝑥𝑖

3

𝑖=1

  .                     (3b) 

The form we choose for 𝑉 is quite convenient to our objectives, and can be achieved using a rectification theorem. 

Besides, the field 𝑉 now introduced can be identified with the congruence field of NT space-time previously discussed. 

This is not Helmholtz decomposition yet, but it is very instructive to achieve the Helmholtz decomposition in our 4-
dimensional setting using identity (3a).  To do that, we have to remember that we must find an adequate characterization 
of a curl and a divergence on a 4-dimensional manifold. This characterization in terms of 2-covectors involves its specific 
form, because  a divergence and a curl must be obtained from the closure condition on the 2-covector; which is a natural 
condition on the electromagnetic field tensor F. We can see that the decomposition obtained using (3a) is such that each 
of its pieces behaves differently when the exterior derivative is used: 

                                          𝑑 𝜄𝑉 𝑑𝑥0 ∧ 𝐹     is a divergence-like, 

                                          𝑑 𝑑𝑥0 ∧  𝜄𝑉𝐹     is a curl-like. 

Therefore our Helmholtz theorem in 4-dimensional space for any 2-covector F is given by the following two local 

conditions: 

                                                                             𝑑 𝜄𝑉 𝑑𝑥0 ∧ 𝐹  = 0 ,                                                                        (1H) 

                                                                            𝑑 𝜄𝑉𝐹 = 0 .                                                                                 (2H) 

Let us state the previous remarks as a: 

Helmholtz theorem   

Necessary and sufficient conditions for the decomposition (3a) of a 2-cotensor F in a 4-dimensional manifold for the 
equivalence with Helmholtz decomposition are (LV is the Lie derivative with respect to the vector field V): 

1. The congruence field V is a time-like rectifiable vector field; 

                                                           
5
 The decomposition comes from the following identity: 𝜄𝑉 𝑑𝑥0 ∧ 𝐹 =  𝜄𝑉 𝑑𝑥0 𝐹 − 𝑑𝑥0 ∧ 𝜄𝑉𝐹 .  If we use a time-like 

vector field V such that  𝜄𝑉 𝑑𝑥0 = 1 , we obtain the decomposition. 
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2.   𝑑 𝜄𝑉 𝑑𝑥0 ∧ 𝐹  = 0; 

3.   𝑑 𝜄𝑉𝐹 = 0 = 𝐿𝑉𝐹 = 0. 

Proof   

Let us suppose the conditions are fulfilled, then every congruence can be written as 𝑉 =
𝜕

𝜕𝑥0
   using the right 

coordinates, and the decomposition of F is (3a).  If  𝜄𝑉𝐹  is a closed 1-form, then   1 − 𝑃𝑉 𝐹  contains the electric field with 

its non-integrated part. The  condition   𝑑(𝜄𝑉𝐹) = 0   is, in 3-dimensional Gibbs‟ notation, equivalent to  ∇ × 𝐄𝑖 = 0 . 

So, the condition  𝑑(𝜄𝑉 𝑑𝑥0 ∧ 𝐹 ) = 0 is equivalent to a zero divergence, as it is required. 

On the other hand, let us suppose that (3a) is a Helmholtz decomposition, that is, when it is written in 3-dimensional 
Euclidean space, we obtain a typical Helmholtz decomposition.  Hence, we should have: 

 𝜄𝑉𝑑𝑥0 = 1 , 

 𝜄𝑉𝑑𝑥𝑖 = 0, 𝑖 = 1,2,3 , 

𝑑 𝜄𝑉 𝑑𝑥0 ∧ 𝐹  = 0 , 

𝑑 𝑑𝑥0 ∧  𝜄𝑉𝐹  = 0 . 

The first two conditions are obtained when the congruence vector field is time-like rectifiable vector field,   and the 
other two are the ones stated in the theorem; so, the conditions are necessary and sufficient.  QED 

In this way we can reproduce the Helmholtz theorem of 3-dimensional space in the very simple expression, which is 
almost a tautology: 

𝐹 = 𝐹𝑠 + 𝐹𝑖 

with   𝐹𝑠 = 𝜄𝑉 𝑑𝑥0 ∧ 𝐹    𝑎𝑛𝑑  𝐹𝑖 =  𝑑𝑥0 ∧  𝜄𝑉𝐹  . 

There is an interesting literature on the subject of the Helmholtz theorem and its applicability to time-dependent or 
time-independent vector fields showing that, ultimately, it is widely applicable [8-14].  Our Helmholtz theorem shows that 

a Helmholtz-like decomposition can be achieved for closed 2-cotensors in a 4-dimensional space when a quite trivial 
identity and some additional conditions are used. Obviously in the cited literature the Helmholtz theorem is obtained using 
a known identity of 3-dimensional vector analysis plus some manipulations of weak solutions (Green functions) of the 
Poisson equation (a nice explanation is contained in ref. [14].  Following this way the Helmholtz decomposition is obtained. 
However, conditions on the infinity are necessary to rule out the boundary terms. 

In our case the decomposition of the 2-cotensor we make is obtained using an identity for any p-tensor, identifying 

the pieces that must have a zero divergence and a zero curl because in our 4-dimensional setting they are not obvious 
from the notation, as in the 3-dimensional Gibbs notation, but we need not boundary conditions; or, at least, we believe 
that we have not used them implicitly or explicitly. So, our Helmholtz theorem is not a big achievement, but perhaps a 
useful reformulation for our objective. 

The STR and Helmholtz theorem  

         In this section we shall enunciate the results in the form of theorems, to facilitate the discussion.  When we say that 
STR and the Helmholtz theorem are compatible or incompatible we mean that some premises of one or another are 
contradictory. In this section we shall write down Maxwell equations with the help of differential forms, that is, we shall use 
an explicit invariant formulation. 

So, the equations (i1-i3) for the irrotational component 𝐄𝑖  are written with the help of the field tensor: 

                                 𝐹𝑖 = 𝑑𝑥0 ∧   𝐹0𝜈
𝑖 𝑑𝑥𝜈

4

𝜈=0

 = 𝑑𝑥0 ∧   𝐹0𝑘
𝑖 𝑑𝑥𝑘

3

𝑘=0

 = 𝑑𝑥0 ∧ 𝜔                                        (4) 

with    𝜔 =  𝐹0𝑘
𝑖 𝑑𝑥𝑘 + 

𝑘 𝑓𝑑𝑥0  in the form: 

                                                                                  𝑑𝐹𝑖 = 0 ,                                                                                   (5a) 

                                                                              𝑑𝜔 = −4𝜋𝐽𝑖  ,                                                                              (5b) 

                                                                             𝑑 ∗ 𝐹𝑖 =  ∗ 𝜃 ,                                                                              (5c) 

                                                                      𝐽𝑖 = 𝑑𝑥0 ∧   𝐹𝑘
𝑖𝑑𝑥𝑘

3

𝑘=1

   ,                                                              (5d) 

                                                                          𝜃 = 4𝜋𝜚𝑑𝑥0   ,                                                                             (5e) 
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The Hodge operator  ∗  is taken with respect to the Newtonian metric, so the inner product of forms is:  𝜎 𝜃 =
𝜎𝑖1 ,⋯,𝑖𝑝𝜃𝑗1 ,⋯,𝑗𝑝𝑔𝑖1𝑗1

, … , 𝑔𝑖𝑝 𝑗𝑝    where  𝜎 ,𝜃  are p-co-tensors   with components  𝜎𝑖1 ,⋯,𝑖𝑝  , 𝜃𝑗1 ,⋯,𝑗𝑝  and 𝑔𝑖𝑗 . the components of 

the metric. We use coordinates  𝑥0, 𝑥1 , 𝑥2 ,𝑥3   for our flat space times according to the canonical metrics. 

The solenoidal component  𝐹𝑠  is: 

                                                      𝐹𝑠 =
1

2
 𝐹𝜇𝜈

𝑠

 

𝜇𝜈

𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈   ,                                                                        (6) 

while the  equations  (s1), (s2)  are: 

                                                                    𝑑𝐹𝑠 = 0 ,                                                                                       (7a) 

                                                                  𝑑 ∗ 𝐹𝑠 =  ∗ 𝜆 ,                                                                                 (7b) 

                                                               𝜆 =  𝐽𝑘
𝑠𝑑𝑥𝑘

3

𝑘=1

 .                                                                                 (7c) 

Now we must introduce the group transformations. We shall do this by means of its action upon differential 
generators 𝑑𝑥0 , …𝑑𝑥3 .   So we have the Lorentz transformations: 

                                                        𝜙𝐿
∗𝑑𝑥𝜇 =  𝛬𝜇𝜈 𝑑

 

𝜈

𝑥𝜈                                                                                (8) 

and  the Galileo transformations: 

                                                    𝜙𝐺
∗𝑑𝑥𝜇 =  𝑣𝜇𝑔

 𝑡𝜈

 

𝜈

𝑑𝑥𝜈 +  𝑜𝜇𝜈
 

 

𝜈

𝑑𝑥𝜈  .                                                   (9) 

Our calculations will show how the Helmholtz decomposition behaves from one inertial frame to another. Before proceed 
we must comment a little on our use of the concepts of “invariance” and “covariance”. As we shall see from the lemmas, 
sometimes the tensor 𝐹 is invariant under a transformation 𝜑, which means that 𝜑∗𝐹 = 𝐹, so the form of 𝐹 is preserved, 

but its components are not, because under the transformation these components are “covariant”, that is, they follow a 
tensor transformation law as must be, so its form is no preserved but linearly changed. We know that transformations are 
natural operations in relation to the operator 𝑑 in the DeRham complex, hence we have that for any transformation 𝜑 we 

can write down 𝜑∗𝑑 = 𝑑𝜑∗, so, to check invariance of the Maxwell equations we just need to check the invariance of 𝐹. 

When we follow this path we obtain the tensor transformation law of the components of 𝐹. As we shall see, sometimes this 
transformation law can be absorbed in the form of 𝐹, but sometimes not. When we obtain the last situation we say that the 

Maxwell equations are not invariant under the transformation. Clearly this procedure is the non-infinitesimal form of the 
infinitesimal condition of invariance given by: 𝐿𝑋𝐹 = 0 where 𝐿 is the Lie derivative, 𝑋 is the infinitesimal generator of the 

transformation and 𝐹a tensor. 

Lemma 1. The irrotational component of the electromagnetic field tensor is Galileo invariant. 

Proof    

The simplest way to show this is to write down (9) in temporal and spatial  pieces: 

                                                                        𝜙𝐺
∗𝑑𝑥0 =  𝑑𝑥0  ,                                                                       (10) 

                                                        𝜙 𝐺
∗ 𝑑𝑥𝑖 = 𝑣𝑖𝑔𝑑𝑥0 +   𝑜𝑖𝑗𝑑𝑥𝑗  

 

𝑗

,                                                       (11) 

So, when we applied this to the irrotational part  𝐹𝑖   of the electromagnetic field tensor we get: 

𝜙𝐺
∗𝐹𝑖 = 𝜙𝐺

∗𝑑𝑥0 ∧   𝐹0𝑘
𝑖

 

𝑘

∘ 𝜙𝑔𝜙𝑔
∗𝑑𝑥𝑘 = 

𝑑𝑥0 ∧   𝜙𝑔
∗𝐹0𝑘

𝑖  𝑣𝑘𝑔𝑑𝑥0 +  𝑜𝑘𝑗 𝑑𝑥𝑗  

 

𝑗

 

 

𝑘

 = 𝑑𝑥0 ∧     𝜙𝑔
∗𝐹0𝑘

𝑖 𝑜𝑘𝑗

 

𝑘

 𝑑𝑥𝑗  

 

𝑗

  .                  (12) 

If  we define  𝐹0𝑗

𝑖
=  𝜙𝑔

∗ 
𝑘 𝐹0𝑘

𝑖 𝑜𝑘𝑗   we finally obtain: 

                                               𝜙𝐺
∗𝐹𝑖 =  𝑑𝑥0 ∧   𝐹0𝑗

𝑖
 

𝑗

𝑑𝑥𝑗    .                                                                   (13) 

QED . 
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This is an expected result, because the irrotational component of the electromagnetic field tensor is like a Newtonian 
gravitational theory. But it is very interesting, probably quite surprising, that Maxwell equations play no role on the proof. 
The proof relies on the form of the tensor field only. 

Lemma 2. The irrotational component of the electromagnetic field tensor is not Lorentz invariant. 

Proof   

we write down: 

                                                              𝜙𝐿
∗𝑑𝑥𝜇 =  𝛬𝜇𝜈 𝑑

 

𝜈

𝑥𝜈                                                                       (14) 

for the Lorentz transformation.  Then 

                                  𝜙𝐿
∗𝐹𝑖 =   𝛬0𝜈𝑑𝑥𝜈

 

𝜈

 ∧     𝜙𝐿
∗𝐹0𝑗

𝑖   𝛬𝑗𝜈

 

𝜈

𝑑𝑥𝜈 

 

𝑗

                                                                                                                

=   𝛬0𝜈

 

𝜈

𝑑𝑥𝜈 ∧     𝜙𝐿
∗𝐹0𝑗

𝑖

 

𝜈 ,𝑗

𝛬𝑗𝜈 𝑑𝑥𝜈  .                                                                                                                        (15) 

We define       𝐹0𝜈

𝑖
=  𝜙𝐿

∗𝐹0𝑗
𝑖 

𝑗 𝛬𝑗𝜈       to get 

                                           𝜙𝐿
∗𝐹𝑖 =   𝛬0𝜈

 

𝜈

𝑑𝑥𝜈 ∧    𝐹0𝜈

𝑖
 

𝜈

 𝑑𝑥𝜈  .                                                   (16) 

Finally: 

               𝜙𝐿
∗𝐹𝑖 =   𝛬0𝑘𝐹0𝑗

𝑖
− 𝛬0𝑗𝐹0𝑘

𝑖
 

 

𝑘 ,𝑗

𝑑𝑥𝑘 ∧ 𝑑𝑥𝑗 + 𝛬00𝑑𝑥0 ∧    𝐹0𝑘

𝑖
 

𝑘

 𝑑𝑥𝑘   .                      (17) 

QED . 

Another expected result.  But, again, we can see that the non-invariance comes from a tensor field‟s form. 

Lemma 3. The transversal component of the electromagnetic field tensor is not Galileo invariant. 

Proof 

We take as transversal component: 

                                                              𝐹𝑠 =
1

2
 𝐹𝜇𝜈

𝑠 𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈

 

𝜇 ,𝜈

  ,                                                             (18) 

hence under a Galileo transformation we have 

 𝜙𝐺
∗𝐹𝑠 =  𝜙𝐺

∗𝐹𝜇𝜈
𝑠

 

𝜇 ,𝜈

 𝑑𝑥0 ∧    𝑜𝜈𝜆𝑣𝜇𝑔 − 𝑣𝜈𝑔𝑜𝜇𝜆  𝑑𝑥𝜆

 

𝜆

  + 

   𝑜𝜇𝜆𝑜𝜈𝜂 − 𝑜𝜇𝜂 𝑜𝜈𝜆  𝑑𝑥𝜆

 

𝜆 ,𝜂

∧ 𝑑𝑥𝜂  = 

1

2
𝑑𝑥0 ∧  𝐹𝜆

𝑠
 

𝜆

𝑑𝑥𝜆 +
1

2
 𝐹𝜆𝜂

𝑠
 

𝜆 ,𝜂

 𝑑𝑥𝜆 ∧ 𝑑𝑥𝜂  

with    𝐹𝜆

𝑠
=   𝑜𝜈𝜆𝑣𝜇𝑔 − 𝑣𝜈𝑔𝑜𝜇𝜆  

 
𝜇 ,𝜈 𝜙𝐺

∗𝐹𝜇𝜈
𝑠  ,    𝐹𝜆𝜂

𝑠
=   𝑜𝜇𝜆𝑜𝜈𝜂 − 𝑜𝜇𝜂 𝑜𝜈𝜆  

 
𝜇 ,𝜈 𝜙𝐺

∗𝐹𝜇𝜈
𝑠  .    QED. 

Lemma 4.  The transversal component of the electromagnetic field tensor is Lorentz invariant. 

Proof:    

 𝜙𝐿
∗𝐹𝑠 =

1

2
 𝜙𝐿 

∗𝐹𝜇𝜈
𝑠

 

𝜇 ,𝜈

   𝛬𝜇𝜆𝛬𝜈𝜂 − 𝛬𝜇𝜂 𝛬𝜈𝜆  𝑑𝑥𝜆 ∧ 𝑑𝑥𝜂

 

𝜆 ,𝜂

 =
1

2
   𝐹𝜆𝜂

𝑠
 

𝜆 ,𝜂

𝑑𝑥𝜆 ∧ 𝑑𝑥𝜂  ,  

where   𝐹𝜆𝜂

𝑠
=   𝛬𝜇𝜆𝛬𝜈𝜂 − 𝛬𝜇𝜂 𝛬𝜈𝜆  

 
𝜇 ,𝜈 𝜙𝐿 

∗𝐹𝜇𝜈
𝑠  .  QED. 
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These quite trivial lemmas allow us to say that the electromagnetic field tensor F,  when it is decomposed using 
Helmholtz theorem, is not Lorentz invariant, so this theorem cannot be used within the framework of the STR. The trouble 
with the Helmholtz theorem and the STR comes from the fact that the Helmholtz theorem allows us to isolate an electric 
field 𝐄𝑖   without a magnetic field counterpart in a given inertial frame. This electric field is compatible with a Galilean 

space-time 𝑁 or a Newtonian one, 𝑁𝑒, because of its Galileo and Euclidean covariance but not with a Minkowski space-
time M  without  absolute time.  It is instantaneous because there is not any limit on velocity on N,  while this is not 
possible in M. 

This should have been clear from the outset, just remembering the following cite from J.L. Synge ([4], p. 321): 

“… a purely electric field (or a purely magnetic field) is not a relativistic concept, since this pure character is not 
preserved under a Lorentz transformation” . 

Obviously this is quite in line with the general idea of STR:  the space and the time are not two different physical concepts, 
there is just one space-time. So, there are not electric and magnetic fields, there is just one electromagnetic field. 
Therefore we get the following: 

Theorem 1. Helmholtz theorem is not compatible with a relativistic space-time electrodynamics. 

Proof:    

Helmholtz theorem predicts an isolated instantaneous irrotational electric field, which satisfy non Lorentz invariant 
equations. QED. 

There is, however, a certain instance where Helmholtz theorem is quite in line with a relativistic space-time 
electrodynamics (STR): the case when it is possible to eliminate the irrotational component. This can be done with the 
help of a gauge transformation when there is not charged matter present. 

Theorem  2. Helmholtz theorem and STR are compatible, if and only if, there is no charged matter in the vacuum.  

Proof:   

Let us suppose we have no charged matter. Hence, the field equations for the irrotational component are: 

                                             𝑑𝐹𝑖 = 0, 𝑑 ∗ 𝐹𝑖 = 0,     𝑑𝜔 = 0 ,                                                            (19) 

while for the solenoidal one are: 

                                                            𝑑𝐹𝑠 = 0,   𝑑 ∗ 𝐹𝑠 = 0 .                                                                      (20) 

If we remember that the Helmholtz theorem allows us to write down 𝐹 = 𝐹𝑖 + 𝐹𝑠  while we can relate two solutions to the 

Maxwell field equations using   𝐹 = 𝐹+ + 𝑑𝐴  we obtain 

                                                     𝐹+ = 𝐹𝑖 − 𝑑𝐴 + 𝐹𝑠  .                                                                                  (21) 

So, if we choose  𝐹𝑖 = 𝑑𝐴 = 𝑑𝑥0 ∧ 𝜔  we obtain 

                                                                             𝐹+ = 𝐹𝑠                                                                                              (22) 

And the equations for the gauge are: 

                                                                     𝑑 ∗ 𝑑𝐴 = 𝑑 ∗  𝑑𝑥0 ∧ 𝜔 = 0 .                                                                 (23) 

With no difficulty we can show that (23) is a Laplace equation for the components of  𝜔, that is, for the electric field 

components (a harmonic function, as this must be according to the Hodge theorem). 

In this way we get the necessary transformation properties, obtaining with a gauge transformation the compatibility of 
Helmholtz theorem and STR when there are not charges present. 

Now suppose that Helmholtz theorem and STR are quite compatible, so, the field tensor is Lorentz invariant. But this 

can be the case only if  𝐹𝑖    is not present. But if this is the case we have two possibilities: 

1.  We used a gauge transformation whose gauge is determined by equations (5). 

2.  𝐹𝑖   is always identically zero. 

If we used a gauge transformation determined by equation (5), the field equations for   𝐹𝑠  are not the Maxwell 

equations but equations (7).  Hence, Gauss law for the electric field is not correct except in the absence of charged matter. 

If  𝐹𝑖   is identically zero the equations describing the electromagnetic field are equations (7), which are the Maxwell 
equations only when there is no charged matter.  QED. 

In the proof of these theorems there is a dominant role for Maxwell equations, unlike in the previous lemmas. 

Obviously we can use another gauge transformation to eliminate the solenoidal component, but in that case we 
obtain a non-Lorentz invariant theory in a relative Galilean frame or in an absolute Newtonian one, that is: the 
electromagnetic analogue of gravitational theory with relative space and absolute time or with absolute space and 
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absolute time. This means that the structure of the space-time is not determined by the mathematical structure of the 
electromagnetic field equations for the vacuum, and must be decided by an experiment . 

The theorems give us an insight into the nature of the Helmholtz theorem: when we use it we introduce a description 
of the electromagnetic field where the density of charges and the density of currents produce, if we accept that   charges 
and currents are the sources of the fields, quite different fields.  On the other hand, if the fields are the producers of 
charges and currents, hence the Helmholtz theorem tell us that the production of  a charge comes from an irrotational 
electric field alone, while the production of a current comes from electric and magnetic solenoidal fields jointly with an 
irrotational time-dependent field. 

If we eliminate one of the components of F in the Helmholtz decomposition we cannot fully describe the 
electromagnetic field except when a charged matter is absent. A static electric field is irrotational and a static magnetic 
field produces a solenoidal current, so, from the start, a description of the electromagnetic field with irrotational and 
solenoidal field is motivated. 

When there is a time variation of the electric field, we know that some magnetic field appears, but at the same time, a 
solenoidal component of the electric field is added to the irrotational one. It is not clear why the irrotational component 
must be rejected, or why the electric field cannot be decomposed according to the Helmholtz theorem. The STR gives us 

the following answer to this question: we reject the description of the electromagnetic field in terms of irrotational and 
solenoidal components because it is not a Lorentz invariant description. Hence, we can say that the presence of charges 
is the origin of this incompatibility. But we know that charges change the space-time connectivity, because at their 
positions they represent singularities of the field equations solutions. So we can establish our results in a more suggestive 
language: “Helmholtz theorem is compatible with STR on any simple connected space-time”. Obviously this result is 
grounded in the Maxwell equations, unlike the symmetry properties of the irrotational and solenoidal components of the 
electromagnetic field tensor. 

In a previous publication [5] we introduced the irrotational component because this component can be considered the 
cause of the transference of the momentum and the energy when the solenoidal field is zero along some axis (the x-axis 
in that case).    As we have seen, that example is not really within the realm of STR, because the irrotational electric field 
does  not satisfy a Lorentz invariant equation, but it is within the realm of classical electrodynamics written on each of the 
3-dimensional folia of Ne. And this is possible because, for that specific configuration of charges and currents, the 

solenoidal component contributes nothing.  

Conclusions 

We have been discussing the following propositions: 

(p)  The Maxwell equations     𝑑𝐹 = 0,   𝑑 ∗ 𝐹 =  ∗ 𝐽 ; 

(q)  The Helmholtz theorem      𝐹 = 𝐹𝑖 + 𝐹𝑠 ; 

(r)  The special theory of relativity (M the Minkowski space-time). 

We have considered that the special theory of relativity has as an outcome a specific space-time structure given by  
the Minkowski space-time. So there is a quite interesting question to ask: is the structure of a space-time  determined by 
the electromagnetic field equations? The answer is well-known:  no, only a theory like the General Theory of Relativity can 

achieve that goal. 

But, when we combine the Maxwell equations with the Helmholtz theorem a surprising prediction is obtained: the 
symmetry group of the space-time must be the Euclidean group, because this group is at the intersection of the Galileo 
and Lorentz groups. So instantaneous action-at-a-distance solutions are possible and the whole critique of simultaneity is 
left aside. Therefore somewhere a mistake is present, because the special theory of relativity is a well-confirmed theory. 
Clearly, if we are correct, (p) and (r) are well-confirmed theories, while (q) is just a mathematical result, therefore, we can 
use all of them. The conclusion obtained using (p), (r) and (q) is not relevant from the mathematical point of view, because 
as a mathematical result is not really important if the space-time is Euclidean or Minkowskian. That is: Helmholtz theorem 
and Maxwell equations determine a form for the space-time. However from the physical side this result is quite shocking.   

We believe that the reason lies in the fact that Helmholtz theorem is a mathematical theorem with no physical 
grounds, so, there is no a priori reason to avoid its use, except that if we use it we contradict a well-confirmed theory. 
Hence, if we propose to avoid the use of the Helmholtz theorem, this is not because it is incorrect on mathematical 
grounds, but on physical grounds when combined with Maxwell equations. 

So, the only  mistake lies in the fact that when we use a 3-dimensional notation we are not considering the structure 
of space-time, a structure which cannot be determined from Maxwell equations but defined independently. The special 
theory of relativity is such  independent determination, but even this theory cannot avoid the  IAAAD solutions of the 
Maxwell equations, but only gives a mathematical framework:  the Minkowski space-time M  where IAAAD solutions, 
which are the manifestation of the 3-dimensional folia of the Ne space, are impossible. 

Then the recommendation is no to avoid the use of the Helmholtz theorem, but to establish from the beginning the 
space-time structure and its symmetry groups, or, more clearly, to leave aside the widely used formulation of 
electrodynamics that suppose an indeterminate space-time structure. This recommendation is in line with the teachings of 

Einstein in his 1905 paper on the electrodynamics of moving bodies, where a program for the building of physical theory is 
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outlined: first we must to know the form of the space and the time, second, we must find the laws that in that framework 
are invariant. 

REFERENCES 

[1]   FRIEDMAN M., Foundation of Space-Time Theories (Princeton University Press, Princeton, 1983). 

[2]   HAVAS P., “4-dimensional formulations  of  Newtonian mechanic”, Rev. Mod. Phys., 36  (1964)  938. 

[3]  HEHL F. W. and OBUKHOV Y. N., Foundation of Classical Electrodynamics (Birkhauser, Boston, 2003). 

[4]   SYNGE J. L.,   Relativity: the Special Theory (Amsterdam, 1956). 

[5] CHUBYKALO A., ESPINOZA A., ALVARADO-FLORES R. and GUTIERREZ-RODRIGUEZ A., “Helmholtz theorem and the v-gauge in the 
problem of superluminal and instantaneous signals in classical electrodynamics”, Found. Phys. Lett., 19 (2006) 37. 

[6] HERAS J., “Comment on „Helmholtz theorem and the v-gauge in the problem of superluminal and instantaneous signals 
in classical electrodynamics‟ by A.E. Chubykalo et al [Found. Phys. Lett. 19 (1), p. 37 (2006)]”, Found. Phys. Lett., 19 

(2006)  579.  

[7]  CHUBYKALO A., ESPINOZA A., ALVARADO-FLORES R. and GUTIERREZ-RODRIGUEZ A.,  “Reply to „Comment on „Helmholtz theorem 
and the v-gauge in the problem of superluminal and instantaneous signals in classical electrodynamics‟ by A.E. Chubykalo 
et al‟ by J. Heras [Found. Phys. Lett. 19(6), p. 579 (2006)]”, Found. Phys., 37 (2007) 1648. 

[8]   ROHRLICH F., “Causality,   the  Coulomb field, and Newton‟s Law of gravitation”, Am. J. Phys., 70 (2002) 411. 

[9]   JEFIMENKO O. D., “Comment on „Causality,   the  Coulomb field, and Newton‟s Law of gravitation‟ by F. Rohrlich [Am. J. 
Phys. 70(4), p. 411 (2002)]”, Am. J. Phys., 70 (2002) 964. 

[10] HERAS J., “Comment on „Causality,   the  Coulomb field, and Newton‟s Law of gravitation‟ by F. Rohrlich [Am. J. Phys. 
70(4), p. 411 (2002)]”, Am. J. Phys., 71 (2003) 729. 

[11]   ROHRLICH F., “The validity of Helmholtz theorem”,  Am. J. Phys., 72 (2004) 412. 

[12]   DAVIS A. M., “A generalized Helmholtz theorem for time-varying vector fields”, Am. J. Phys., 74 (2006) 72. 

[13]  HERAS J., “Comment on „A generalized Helmholtz theorem for time-varying vector fields‟ by A. M. Davis [Am. J. Phys. 
74(1), p. 72  (2006)]”, Am. J. Phys., 74 (2006) 72. 

[14]   WOODSIDE D. A., “Tree-vector and scalar field identities and uniqueness theorems in Euclidean and Minkowski 
spaces”, Am. J. Phys., 77 (2009) 438. 

 

 

 

 

 


