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Abstract 
In the Jefimenko’s generalized theory of gravitation, it is proposed the existence of 
certain potentials to help us to calculate the gravitational and cogravitational fields, 
such potentials are also presumed non-invariant under certain gauge transforma-
tions. In return, we propose that there is a way to perform the calculation of certain 
potentials that can be derived without using some kind of gauge transformation, and 
to achieve this we apply the Helmholtz’s theorem. This procedure leads to the con-
clusion that both gravitational and cogravitational fields propagate simultaneously in 
a delayed and in an instant manner. On the other hand, it is also concluded that 
these potentials thus obtained can be real physical quantities, unlike potentials ob-
tained by Jefimenko, which are only used as a mathematical tool for calculating gra-
vitational and cogravitational fields. 
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1. Introduction 

Jefimenko’s generalization of Newton’s gravitational theory [1] [2] is based to a large 
extent on the assumption that there exists a second gravitational field (which he has 
named the cogravitational, or Heaviside’s, field). Note that there are several publica-
tions in which it is suggested that a second field can be involved in gravitational inte-
ractions (see [3] and, e.g., [4] and references there). The first such publication was by 
Oliver Heaviside [3], unfortunately his article appears to have been generally ignored 
(see, e.g. [4] pp. 103-104). The overriding reason why Heaviside’s work did not attract 
the attention was that his single article on gravitation was eventually completely eclipsed 
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by Einstein’s brilliant and spectacularly successful general relativity theory. It is note-
worthy, however, that Newton’s gravitational theory generalized to time-dependent 
systems yields several results which heretofore are believed the exclusive consequence 
of the general relativity theory. Jefimenko discusses this very important circumstance in 
[1] [2]. It is interesting to note that Einstein, four years before he published his general 
relativity theory, published an article on the possibility of a gravitational analogue of 
electromagnetic induction. Also this article was practically unknown, possibly because 
it was published in a rather inappropriate journal whose title (translated from the Ger-
man) was: “Quarterly Journal for Forensic Medicine and Public Sanitation;” (see [5]). 

Newton’s theory does not include inductive phenomena, but a relativistic theory of 
gravitation should include them. Indeed, under the relativistic mass-energy equivalence, 
not only the mass is a source of gravitational field but any kind of energy also is. 
Therefore, a body creates gravitational field not only by mass but also by their kinetic 
energy, i.e. by their movement. And this, ultimately, is what it means induction: the 
production of forces by moving bodies [6]. 

In the general relativity theory, Einstein predicted the existence of gravitational in-
duction phenomena, such phenomena are appointed by Einstein as gravitomagnetism. 
It can be showed that Jefimenko equations are also derived from linearized Einstein 
equations (see, for example, pp 47 and 48 in [6]). 

Since in 2004, NASA has orbited the “Gravity Probe B”, whose purpose was to prove 
the existence of gravitomagnetism, (see [7] [8]). 

In order to describe the time-dependent gravitational systems, the Jefimenko’s gene-
ralized theory of gravitation is based on postulating of retarded expressions for the ac-
customed gravitational field g and the Heaviside’s or cogravitational field K (Heaviside 
[3] was the first who supposed the existence of this field making an analogy between 
gravitational and electromagnetic fields), where the field g acts to and arises from mo-
tionless as well as moving masses, and the field K acts to and arises from exclusively 
moving masses. Let us from this point call this theory “gravitodynamics”, and the com-
plex of the fields g and K call the “gravitodynamical field”. Jefimenko taking into ac-
count mentioned retarded expressions for g and K, obtains the system of equations for 
which these expressions are solutions. These equations are analogous to Maxwell’s equ-
ations. In principle, this method was proposed to eliminate the possibility of instanta-
neous solutions from the discussion. There against in this work we are going to post-
ulate the system of differential equations rather than solutions for the gravitational dy-
namics, and we will obtain both retarded and instantaneous solutions for the fields g 
and K. The gravitational field g behaves analogously to the electric field in the Max-
well’s electromagnetic theory, and cogravitational field K analogously to the magnetic 
field. 

First of all, we write the equations describing time-dependent gravitational systems 
[1] (see p. 120) and [2] 

4πG∇ ⋅ = −g                              (1) 

0,∇ ⋅ =K                                (2) 
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,
t

∂
∇× = −

∂
Kg                               (3) 

2 2
1 4π ,G

tc c
∂

∇× = −
∂
gK J                       (4) 

where c is the velocity of propagation of the fields, which is supposed equal to the ve-
locity of light for the retarded component, G is the constant of gravitation,   is the 
density of mass and =J v  is the density of mass current. 

There are some differences between Maxwell’s equations of electrodynamics and the 
Jefimenko’s equations of gravitation, i.e. the analogy is not perfect. For example, we 
have two kinds of electric charges, positives and negatives, which repel each other if the 
charges are equal and attract each other if they are different, whereas while we have on-
ly one type of mass, and if we have a system of two masses in repose, they always attract 
each other. While the electric field is directed from positive charges generating this field 
and is directed to the negative charges, the gravitational field is always directed to the 
masses by which is created. Another difference is that the magnetic field is always right- 
handed relative to the electric current by which is created, while the cogravitational 
field is always left-handed relative to the mass current by which is created. 

In the analogy between electrodynamics and the so-called gravitodynamics, follow-
ing the Jefimenko’s book [1] we can resume the correspondence between electromag-
netic and gravitodynamic symbols and constants in the following Table 1. 

2. The Gravitodynamical Potentials 

Here, we introduce as is made in electrodynamics, the gravitodynamical potentials. If 
 
Table 1. Corresponding electromagnetic and gravitodynamic symbols and constants. 

Electromagnetic Gravitational 

q  (charge) m  (mass) 

  (volume charge density)   (volume mass density) 

σ  (surface charge density) σ  (surface mass density) 

eλ  (line charge density) mλ  (line mass density) 

ϕ  (electric’s scalar potential) τ  (mass’s scalar potenctial) 

A  (magnetic vector potential) Γ  (cogravitational vector potential) 

eJ  (convection current density) J  (mass-current density) 

eI  (electric current) I  (mass current) 

m  (magnetic dipole moment) d  (cogravitational moment) 

E (electric field) g (gravitational field) 

B (magnetic field) K (cogravitational field) 

0ε  (permittivity of space) 1 4πG−  

oµ  (permeability of space) 24πG c−  
2

01 4π 4πocε µ− = −  G (gravitational constant) 
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the cogravitational field K satisfies Equation (2), we can always write it as the curl of 
some other vector quantity Γ , 

,= ∇×Κ Γ                             (5) 

where Γ  is the gravitodynamical vector potential. Substituting Equation (5) in (3), we 
obtain 

0.
t

∂ ∇× + = ∂ 
g Γ                          (6) 

The quantity within the parentheses can be written as the gradient of a gravitody- 
namical scalar potential τ : 

,
t

τ∂
+ = −∇
∂

g Γ                           (7) 

therefore, 

.
t

τ ∂
= −∇ −

∂
g Γ                           (8) 

Substituting the expressions (5) and (8) for the fields g  and K , in the inhomoge-
neous Equations (1) and (4), we obtain 

( )2 4π ,G
t

τ ∂
∇ + ∇ ⋅ =

∂
Γ                      (9) 

and 
2

2
2 2 2 2

1 1 4π .G
tc t c c
τ∂ ∂ ∇ − −∇ ∇ ⋅ + = ∂∂  

JΓ
Γ Γ             (10) 

Equations (9) and (10) can be decoupled choosing the appropriate form of the po-
tentials Γ  and τ . Moreover, if we simultaneously make the transformations 

Λ,′→ = +∇Γ Γ Γ                       (11) 

and 

Λ .
t

τ τ τ ∂′→ = −
∂

                       (12) 

in (5) and (8), we get the same original fields g  and K . Here, ( )Λ Λ , , ,x y z t=  is 
an arbitrary scalar function. We can choose this function in order to impose an addi-
tional condition over Γ  and τ , in a similar way like the Lorentz or Coulomb gauge in 
the electromagnetic field, namely, 

2
10 or ,

tc
τ∂

∇ ⋅ = ∇ ⋅ = −
∂

Γ Γ                  (13) 

which allows us to separate Equations (9) and (10) for the potentials τ  and Γ . These 
potentials depend on the gauge condition we chose. 

3. Jefimenko’s Equations for the Solenoidal and Irrotational 
Components 

Following the ideas of the work of Chubykalo et al. [9]-[11] and using the analogy be-
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tween the Maxwell’s equations and the Jefimenko’s ones [1] [2], we will apply the 
Helmholtz’s theorem to define potentials that are independent of gauge transforma-
tions. 

The Helmholtz’s theorem claims that under certain conditions all vector fields can be 
represented as the sum of an irrotational and a solenoidal components. We will use this 
theorem to separate the fields g  and K . 

Therefore, here we state the Helmholtz’s theorem as [12]: 
If the divergence ( )D r  and a curl ( )C r  of a vector function ( )F r  are specified, 

and if they both go to zero faster than 21 r  as r →∞ , and if ( )F r  itself tends to 
zero as r →∞ , then ( )F r  is uniquely given by 

,U= −∇ +∇×F W                         (14) 

where 

( ) ( ) 3

All space

1 d
4π

D
U

′
′=

′−∫∫∫
r

r r
r r

                    (15) 

and 

( ) ( ) 3

All space

1 d .
4π

′=
′−∫∫∫

C r
W r r

r r
                    (16) 

We are going to suppose that all conditions of this theorem are satisfied by the fields 
g  and K  defined by Equations (1) to (4)1, and then, we apply Helmholtz’s theorem 
to these quantities, including J . Thus, we obtain 

,i s= +g g g                           (17) 

,i s= +K K K                          (18) 

,i s= +J J J                           (19) 

where the indices “i” and “s” mean irrotational and solenoidal components of the vec-
tors, respectively. 

For example: 

3

All space

1 d ,
4πi

′∇ ⋅ ′= − ∇
′−∫∫∫

JJ r
r r

                   (20) 

3

All space

1 d ,
4πs

′∇ × ′= ∇×
′−∫∫∫J r

r r
J                   (21) 

We are going to substitute ,g K  and J  given by the Equations (17)-(19) into the 
Jefimenko’s Equations (1)-(4) and then, we obtain for the irrotational part: 

4π ,i G∇ ⋅ = −g                          (22) 

4π ,i
iG

t
∂

=
∂
g J                           (23) 

0,i∇ ⋅ =K                             (24) 

0,i

t
∂

=
∂
K                              (25) 

 

 

1For systems localized in a finite region of space, it is evident that the fields g y K depend on r as 1/r2. 
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and the next equations for the solenoidal part: 

,s
s t

∂
∇× = −

∂
Kg                               (26) 

2 2
1 4π .s

s s
G

tc c
∂

∇× − = −
∂
gK J                     (27) 

4. The Gravitodynamical Potentials from Helmholtz’s Theorem 

By definition, for the irrotational component of the gravitational field ig  we can de-
fine the scalar potential Τ  as 

i∇Τ = −g                             (28) 

and if we substitute this relation into Equation (22), we obtain the Poisson’s equa-
tion 

2 4π .G∇ Τ =                            (29) 

Apparently, we need to take into account that Τ  is not completely defined only by 
the Poisson’s Equation (29), because we have another differential equation for Τ , 
which can be obtained by substituting (28) into Equation (23) 

Τ 4π .iG
t
∂
∇ = −

∂
J                         (30) 

We show now that Equation (30) is equivalent to the law of conservation of mass. 
Indeed, let us take the divergence of the Equation (23), then we obtain as the result 

( ) 4π .i iG
t
∂

∇ ⋅ = ∇ ⋅
∂

g J                      (31) 

But from Equation (22) and because ( )i i s∇ ⋅ = ∇ ⋅ + = ∇ ⋅J J J J , Equation (31) be-
comes the conservation mass law or the continuity equation 

0.
t

∂
∇ ⋅ + =

∂
J                           (32) 

Now, we will demonstrate that the solution of Equation (30), indeed, is the same so-
lution of the Poisson’s Equation (29). To do this, we note that the irrotational compo-
nent of J  can be written as 

,i Jφ= −∇J                           (33) 

where the potential Jφ  is defined as 

( ) 3

All space

1, , , d
4π

i
J x y z tφ

′∇ ⋅ ′=
′−∫∫∫

J r
r r

                 (34) 

or 

( )
( )

3

All space

,1, , , d ,
4πJ

t
tx y z tφ

∂ ′
∂ ′= −

′−∫∫∫
r

r
r r


              (35) 

and where, if we relate Equations (32), (23), (28) y (33) and the fact that i∇ ⋅ = ∇ ⋅J J , 
we have 
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( ) ( )Τ Τ4π 4π .J JG G
t t

φ φ
∂ −∇ ∂

= −∇ ⇒ =
∂ ∂

              (36) 

And from (36) and (34), we obtain 

( )
3

All space

,Τ d
t

tG
t

∂ ′∂ ∂ ′= −
′∂ −∫∫∫

r
r

r r


                  (37) 

or 

( ) 3

All space

,
Τ d ,

t
G

′
′= −

′−∫∫∫
r

r
r r


                   (38) 

which is the solution of the Poisson’s Equation (29). So we have found that the Pois-
son’s equation given by Equation (29), completely defines the potential Τ , together 
with its boundary conditions. 

Since by definition s=K K , then Equations (24) and (25) have the trivial solution 
0i =K . 

Let us now apply the Helmholtz’s theorem to the vector potential Γ . The Helmholtz 
theorem it is also known as the fundamental theorem of vector calculus (see Section III), 
and allows us to decompose every vectorial field in two components, an irrotational 
and a solenoidal one. Intuitively, it says that every vector function can be written as the 
sum of a divergence-free function (like sΓ ) and a curl-free function (like iΓ ), so that 
there exist scalar and vector potentials. So that i s= +Γ Γ Γ , because this is the form in 
which we can easily solve the system formed by Equations (26) and (27). Supposing 
that 

s s= ∇×Κ Γ                         (39) 

and taking into account (26) we obtain 

s
s t

∂
= −

∂
g Γ                         (40) 

One can substitute Equations (39) and (40) into (27), and we obtain 
2

2
2 2 2

1 4π ,s
s s

G
c t c

∂
∇ − =

∂
JΓ

Γ                   (41) 

where we used the vector identity ( ) ( ) 2 ,∇× ∇× = ∇ ∇ ⋅ −∇V V V  for any arbitrary 
vector V. 

We have found that system of Equations (1)-(4) reduces to Equations (29) and (41), 
applying the Helmholtz’s theorem. Therefore, we obtain separated equations for vector 
and scalar potentials, namely, 

2Τ 4πG∇ =                         (42) 

and 
2

2
2 2 2

1 4π .s
s s

G
c t c

∂
∇ − =

∂
JΓ

Γ                   (43) 
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5. Invariance of the Potentials Γs and Τ under Gauge 
Transformations 

Now, we will show that the potentials sΓ  and Τ  (which are gravitodynamical coun-
tertypes of the electromagnetic potentials sA  and Φ  from [9]) are invariant under 
gauge transformations (11) and (12), in common with the fields g and K. This will be 
the most prominent property of these potentials. 

If we apply the Helmholtz theorem to the gravitational and cogravitational fields in 
terms of the ordinary potentials given by (5) and (8) without taking into account any 
gauge condition, we have 

,i
i t

τ ∂
= −∇ −

∂
g Γ                           (44) 

,s
s t

∂
= −

∂
g Γ                              (45) 

0,i =K                                  (46) 

,s s= ∇×K Γ                             (47) 

then, by definition, iΓ  is given by 

Γ ,i φ= −∇Γ                              (48) 

where φΓ  is an scalar function. If we substitute (48) into (44) then 

( ) Γ Γ
Γ ,i t t t

φ φτ φ τ τ∂ ∂∂  = −∇ − −∇ = −∇ +∇ = −∇ − ∂ ∂ ∂ 
g           (49) 

and from Equations (49) and (22) we have the relation between Τ  and τ . 

.
t
φτ Γ∂

Τ = −
∂

                            (50) 

Now, we apply the Helmholtz theorem and the gauge transformations (11) and (12) 
and from 

Λ,i s i s′ ′ ′= + = + +∇Γ Γ Γ Γ Γ                      (51) 

comparing the solenoidal parts we obtain 

.s s′ =Γ Γ                               (52) 

If we seek the transformation law for Γφ , then we can obtain the other transforma-
tion law for Τ . 

From Equation (51), we have the irrotational part of ′Γ  

Λ,i i′ = + ∇Γ Γ                            (53) 

and including Equation (48) in (53) we get 

( )φ φ φΓ Γ Γ′−∇ = −∇ +∇Λ = −∇ − Λ                   (54) 

or 

.φ φΓ Γ′ = − Λ                            (55) 

At last, we can use Equation (50) for Τ and, if we consider Equations (11), (12) and 
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(55), we obtain 

( ) .
t t t t
φ φτ τ φ τΓ Γ

Γ

′∂ ∂∂Λ ∂ ′ ′Τ = − = − − − Λ = − = Τ ∂ ∂ ∂ ∂ 
          (56) 

Hence, we have checked that sΓ  and Τ  are invariants under gauge transformation 
and we can see that any gauge transformation is irrelevant if we use the Helmholtz’s 
theorem. 

It is convenient to remark that the fields g and K are generated only by sΓ  and Τ  
given by (28), (39) and (40), so we can consider sΓ  and Τ  as the potentials generat-
ing the gravitodynamical field g and K. 

6. Conclusions 

And so, we have shown that it is possible to define vector as well as scalar gravitody- 
namical potentials, which are invariant under gauge transformation. These potentials 
are defined uniquely from their differential Equations (42) and (43). For this reason, we 
have arguments for supposing the physical reality of these potentials, similarly to the 
fields g and K and unlike the gravitational potentials introduced by Jefimenko in [1], 
which are only used as a mathematical tool for calculating gravitational and cogravita-
tional fields. 

Our scalar potential T is a generator of the so-called instantaneous action at a dis-
tance in gravitation, and the vector potential sΓ  can propagate with the velocity of 
light and it is responsible for the retarded action of the gravitodynamical field. So, one 
can conclude that retarded interaction in gravitodynamics takes place not instead but 
together with instantaneous action at a distance. 
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