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h i g h l i g h t s

• The action–reaction principle and energy–momentum conservation hold or fail together.
• Nontrivial topology is the reason for energy–momentum nonconservation in gravity.
• The total energy of a black hole is an ambiguous coordinatization-dependent quantity.
• This affair closely parallels that in the paradoxical Banach–Tarski theorem.

a r t i c l e i n f o

Article history:
Received 1 May 2017
Accepted 27 June 2017
Available online 15 July 2017

Keywords:
Action–reaction
Translation invariance
Energy and momentum conservation
Rearrangement of initial degrees of
freedom

a b s t r a c t

The interplay between the action–reaction principle and the
energy–momentum conservation law is revealed by the examples
of the Maxwell–Lorentz and Yang–Mills–Wong theories, and gen-
eral relativity. These two statements are shown to be equivalent in
the sense that both hold or fail together. Their mutual agreement
is demonstrated most clearly in the self-interaction problem by
taking account of the rearrangement of degrees of freedom appear-
ing in the action of the Maxwell–Lorentz and Yang–Mills–Wong
theories. The failure of energy–momentum conservation in general
relativity is attributed to the fact that this theory allows solutions
having nontrivial topologies. The total energy and momentum of a
systemwith nontrivial topological content prove to be ambiguous,
coordinatization-dependent quantities. For example, the energy of
a Schwarzschild black hole may take any positive value greater
than, or equal to, the mass of the body whose collapse is respon-
sible for forming this black hole. We draw the analogy to the
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paradoxial Banach–Tarski theorem; themeasure becomes a poorly
defined concept if initial three-dimensional bounded sets are rear-
ranged in topologically nontrivial ways through the action of free
non-Abelian isometry groups.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

By summing the basic advances in physics of the 19th century, Max Planck placed strong emphasis
on the action–reaction principle as the rationale of momentum conservation [1]. On the other hand,
following Noether’s first theorem [2], we recognize that any dynamical system exhibits momentum
conservation if the action of this system is invariant under space translations, in other words, the
momentum conservation law stems from homogeneity of space.

In nonrelativistic mechanics, Newton’s third law is consistent with the requirement of translation
invariance. Indeed, the forces exerted on particles in an isolated two-particle system are on the same
line, equal, and oppositely directed when the potential energy assumes the form U(z1 − z2), where z1
and z2 are coordinates of these particles. However, this law is no longer valid in relativistic mechanics
where the influence of one particle on another propagates at a finite speed, and the response arises
with some retardation. Furthermore, energy and momentum are fused into energy–momentum
whose conservation is attributed to homogeneity of Minkowski spacetime. So the Planck’s insight
into the reason for momentum conservation is gradually fading from the collective consciousness of
theoretical physics.

Meanwhile there is one exceptional case, namely contact interactions, in which one particle acts
on another and experiences back reaction at the same point, as exemplified by collisions and decays of
pointlike particles. This form of relativistic interactions respects both Newton’s third law and energy–
momentum conservation, suggesting to consider the action–reaction principle in a broader sense and
extend it to cover local interactions in classical field theories. Themost familiar example can be found
in the Maxwell–Lorentz electrodynamics in which the role of the electric charge e is twofold: e acts
as both coupling between the point particle carrying this charge and electromagnetic field and the
strength of the delta-function source of electromagnetic field.

To gain a clear view of whether the action–reaction principle has a direct bearing on energy–
momentum conservation, one should invoke the self-interaction problem. This issue is studied in
Sections 2 and 3 by the examples ofMaxwell–Lorentz electrodynamics and Yang–Mills–Wong theory.

Turning to general relativity in Section 4, we conclude that both action–reaction principle and
energy–momentum conservation cease to be true. The absence of energy–momentum conservation
from this theory is due to the fact that the equation of gravitational field allows solutions which
represent spacetime manifolds with nontrivial topology. Energy and momentum may thus become
poorly defined concepts in general relativity. It transpires that the total energy of a Schwarzschild
black hole may take any positive value greater than, or equal to, the mass of the collapsed body
in different coordinatizations. The situation closely resembles that in the paradoxial Banach–Tarski
theorem. We sketch the broad outline of this theorem and its potential relevance to the problem of
poorly defined measure for total energy and momentum in Sections 4 and 5. The rearrangement of
degrees of freedom appearing in the action and its role in facilitating the integral quantities to become
well-defined is discussed in Section 5.

We follow the notation used in [3]. In Sections 2, 3 and 5, in which our attention is restricted
essentially to the picture in Minkowski spacetime, we adopt the mainly negative signature (+−−−)
convenient to the description of world lines. In Section 4, we proceed from the idea of pseudo-
Riemannian spacetime, and use themainly positive signature (−+++), which is particularly adapted
to the description of 3-dimensional surfaces. We put the speed of light equal to unity throughout.
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2. The Maxwell–Lorentz electrodynamics

The action

S = −

∫
d4x

(
1

16π
FµνFµν

+ jµAµ

)
− m0

∫
dτ

√
żµ żµ (1)

encodes the dynamics of a single charged particle interacting with electromagnetic field. Here,

jµ(x) = e
∫

∞

−∞

dτ żµ(τ ) δ4[x − z(τ )] (2)

is the current density produced by the particle moving along a smooth timelike world line zµ(τ ) and
carrying the charge e, and m0 is the mechanical mass of this bare particle.

A closed system of this kind enjoys the property of translational invariance which affords energy–
momentum conservation through the famous Noether argument.

The comparison of the source, Eq. (2), in the field equation

Eµ = ∂νFµν + 4π jµ = 0 (3)

with the Lorentz force in the equation of motion for this charged particle

ελ
= m0z̈λ

− eżµFλµ
= 0, (4)

where the dot stands for the derivative with respect to the proper time s of the particle, shows that
both are scaled by the same parameter e. This fact is consistent with the action–reaction principle: e
measures both variation of the particle state for a given field state and variation of the field state for
a given particle state.

Does this statement bear on energy–momentum conservation? To answer this question, we
turn to the self-interaction problem. Naively, this problem is about interfacing the bare particle and
electromagnetic field on the world line, which will hopefully reveal local energy–momentum balance
of this contact interaction. We are therefore to address a simultaneous solution of Eqs. (3) and (4). To
see this, consider the Noether identity

∂µT λµ
=

1
4π

EµFλµ
+

∫
∞

−∞

ds ελ(z) δ4 [x − z(s)] , (5)

where Tµν is the total metric stress–energy tensor of this system,

Tµν
=

2
√

−g
δS

δgµν
= Θµν

+ tµν, (6)

Θµν
=

1
4π

(
FµαF ν

α +
1
4

ηµνFαβFαβ

)
, (7)

tµν
= m0

∫
∞

−∞

ds żµ(s) żν(s) δ4 [x − z(s)] , (8)

and Eµ and ελ are, respectively, the left-hand sides of Eqs. (3) and (4). It follows from (5) that Eµ = 0
and ελ

= 0 imply ∂µT λµ
= 0, that is, the equation of motion for a bare particle (4), in which an

appropriate solution to the field equation (3) has been used, is equivalent to the local conservation
law for the total stress–energy tensor.

Imposing the retarded boundary condition, we obtain a solution to Eq. (3) in the Liénard–Wiechert
form,

Fµν
ret =

e
ρ2 (RµV ν

− RνVµ) , (9)

Vµ
= [1 − (R · z̈)]

żµ

ρ
+ z̈µ, (10)
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Rµ
= xµ

− zµ(sret) is a lightlike vector drawn from a point zµ(sret) on the world line, where the signal
was emitted, to the point xµ, where the signal was received, and ρ = R · ż is the spatial distance
between xµ and zµ(sret) in the instantaneously comoving Lorentz frame in which the charge is at
rest at the retarded instant sret. The field (9)–(10) is singular on the world line. Substituting it into
(4) results in a divergent expression. This divergence is a manifestation of infinite self-interaction:
the charged bare particle experiences its own electromagnetic field which is infinite at the point of
origin.

A possible cure for this difficulty is to regularize the Liénard–Wiechert field Fµν
ret in a small vicinity

of the world line. Take, for example, the field as a function of two variables Fµν
ret (x; z(sret)) and continue

it analytically fromnull intervals between the observation points xµ and the retarded points zµ(sret) to
timelike intervals that result from assigning xµ

= zµ(sret + ϵ) and keeping the second variable zµ(sret)
fixed [4]. A crucial step in removing the regularization is to changem0 to a function of regularization,
m0(ϵ), add it to the divergent term e2/2ϵ, and assume that

m = lim
ϵ→0

[
m0(ϵ) +

e2

2ϵ

]
(11)

is finite and positive. Then the divergence disappears, and we arrive at the Lorentz–Dirac equation [5]

Λµ
= mz̈µ

−
2
3
e2

(
...
z

µ
+ żµz̈2

)
− f µ

ext = 0, (12)

where f µ
ext = eżνF

µν
ext is an external four-force, with Fµν

ext being a free electromagnetic field.
Is it possible to regard (12) as the desired equation of local energy–momentum balance? Based on

the wide-spread belief that the Abraham term

Γ µ
=

2
3
e2

(
...
z

µ
+ żµz̈2

)
(13)

is the radiation reaction four-force, one would give a negative answer to this question. This is because
the radiating particle feels a recoil equal to the negative of the Larmor emission rate

Ṗµ
= −

2
3
e2 żµz̈2. (14)

However, −Ṗµ cannot be considered as a four-force because it is not orthogonal to żµ. On the other
hand, Γ µ is orthogonal to żµ, but it differs from the anticipated recoil by the so-called Schott term
2
3 e2

...
z

µ
. Although the energy stored in the Schott term can be attributed to a reversible form of

emission and absorption of field energy [5], its actual role appears mysterious.
Furthermore, the general solution to Eq. (12) with f µ

ext = 0 is

żµ(s) = eµ

0 cosh(α0 + w0τ0 es/τ0 ) + eµ

1 sinh(α0 + w0τ0 es/τ0 ), (15)

where eµ

0 and eµ

1 are constant vectors such that e0 · e1 = 0, e20 = −e21 = 1, τ0 = 2e2/3m, α0 and w0
are arbitrary constants. The solution (15) is an embarrassing feature of the Lorentz–Dirac equation: a
free charged particle moving along this world line continually accelerates,

z̈2(s) = −w2
0 exp (2s/τ0) , (16)

and continually radiates. This self-acceleration seems contrary to the energy–momentum conservation
law even though this law is assured by translational invariance of the action.

These paradoxial results1 signal that self-interaction is a subtle issue whose treatment requires
further refinements of the conceptual basis. A plausible assumption is that the extremization of
the action, subject to the retarded condition, may result in unstable modes, which culminates in
rearranging the initial degrees of freedom [3]. The action (1) is expressed in terms of mechanical
variables zµ(τ ) describing world lines of a bare charged particle and the electromagnetic vector

1 For other paradoxes related to self-interaction in the Maxwell–Lorentz theory see, e. g., [6].
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potential Aµ(x). The rearrangement of these degrees of freedom yields new dynamically independent
entities, a dressed charged particle and radiation.

We begin with the local conservation law for the total stress–energy tensor

∂λT λµ
= 0. (17)

Recall that taking the local conservation law (17), as the starting point in the self-energy analysis, is
as good as that of simultaneous solution of dynamical equations (3) and (4). Substituting the general
solution of the field equation (3), Fµν

= Fµν
ret + Fµν

ext , into (7) gives

Θµν
= −

e2

4πρ4

[
V 2RµRν

− (RµV ν
+ RνVµ) +

1
2

ηµν

]
+ Θ

µν

mix, (18)

where the first term results from the self-field (9)–(10), and the second term contains mixed
contributions of the self-field and free field. The first term splits into two parts Θ

µν

bound + Θ
µν

rad, where

Θ
µν

bound = −
e2

4πρ4

[
RµRν

ρ2 (1 − 2R · z̈) − (RµV ν
+ RνVµ) +

1
2

ηµν

]
, (19)

Θ
µν

rad = −
e2

4πρ4

[
z̈2 +

1
ρ2 (z̈ · R)2

]
RµRν . (20)

The following local conservation laws hold off the world line [7]:

∂µΘ
µν

bound = 0, ∂µΘ
µν

rad = 0, ∂µΘ
µν

mix = 0. (21)

A natural interpretation of (21) is that Θ
µν

bound, Θ
µν

rad, and Θ
µν

mix are dynamically independent outside
the world line [7]. There is no other decomposition of Θµν into parts which may be recognized as
dynamically independent.

Since Θ
µν

rad and Θ
µν

mix behave like ρ−2 near the world line, they are integrable over a three-
dimensional spacelike surface Σ , and, in view of (21), the surface of integration may be deformed
from Σ to more geometrically motivated surfaces. It is convenient to substitute Σ by a tube Tϵ of
infinitesimal radius ϵ enclosing the world line to obtain

Pµ
=

∫
Σ

dσλ Θ
λµ

rad = lim
ϵ→0

∫
Tϵ

dσλ Θ
λµ

rad = −
2
3
e2

∫ s

−∞

dτ z̈2(τ )żµ(τ ) (22)

and

℘µ
=

∫
Σ

dσλ Θ
λµ

mix = lim
ϵ→0

∫
Tϵ

dσλ Θ
λµ

mix = −e
∫ s

−∞

dτ Fµν
ext (z) żν(τ ). (23)

Pµ represents the four-momentum radiated by the charge e during the whole past history prior
to the instant s. Indeed: (i) Θ

µν

rad is a dynamically independent part of Θµν ; (ii) Θ
µν

rad moves away from
the charged particle with the speed of light, more precisely, Θµν

rad propagates along the future light
cone C+ drawn from the emission point, Θµν

radRν = 0; (iii) the flux of Θ
µν

rad goes as ρ−2 implying that
the same amount of energy–momentum flows through spheres of different radii. Differentiating (22)
with respect to s gives the Larmor four-momentum emitted by the accelerated charge per unit proper
time, Eq. (14).

As for ℘µ, it is the four-momentum extracted from the free field Fµν
ext (x) during the whole past

history up to the instant s.
By contrast, Θµν

bound contains singularities ρ−3 and ρ−4 which are not integrable. Hence, an appro-
priate regularization is necessary. For example, employing a Lorentz-invariant cutoff prescription [3],
one finds

Pµ

bound = Regϵ

∫
Σ

dσλ Θ
λµ

bound =
e2

2ϵ
żµ

−
2
3
e2z̈µ, (24)

where ϵ is the cutoff parameter which must go to zero in the end of calculations. Since the flux of
Θ

µν

bound through C+ is nonzero, Θµν

boundRν ̸= 0, Θµν

bound propagates slower than light. Unlike Θ
µν

rad, which
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detaches from the source, Θµν

bound remains bound to the source [7]. In other words, the source carries
the four-momentum Pµ

bound along with its motion.
From (24) follows that the measure dσλΘ

λµ

bound is ill-defined. However, observing that

pµ

0 =

∫
Σ

dσλ tλµ
= m0żµ, (25)

one may render m0 a singular function of ϵ, m0(ϵ), add Eqs. (24) and (25) up, and carry out the
renormalization of mass, Eq. (11), to complete the definition of the measure Regϵ dσλ

(
Θ

λµ

bound + tλµ
)

in the limit ϵ → 0, and eventually arrive at

pµ
= lim

ϵ→0
Regϵ

∫
Σ

dσλ

(
Θ

λµ

bound + tλµ
)

= mżµ
−

2
3
e2z̈µ. (26)

This four-momentum, originally deduced in [7], is to be attributed to the dressed particle.
We now integrate (17) over a domain of spacetime bounded by two spacelike surfaces Σ ′ and Σ ′′,

separated by a small timelike interval, with both normals directed towards the future, and a tube TR
of large radius R. Applying the Gauss–Ostrogradskiı̌ theorem, we obtain2:(∫

Σ ′′

−

∫
Σ ′

+

∫
TR

)
dσµ

(
Θλµ

+ tλµ
)

=

{
lim
ϵ→0

[
m0(ϵ) +

e2

2ϵ

]
żλ

−
2
3
e2z̈λ

}
∆s −

∫ s+∆s

s
dτ

[
2
3
e2z̈2(τ )żλ(τ ) + eFλµ

ext (z) żµ(τ )
]

= 0,

or, in a concise form [3],

∆pλ
+ ∆Pλ

+ ∆℘λ
= 0. (27)

Evidently (27) is identical to the Lorentz–Dirac equation (12).
On the other hand, (27) is the desired energy–momentum balance: the four-momentum ∆℘λ

=

−eFλµ
ext żµ∆swhich is extracted from the external field Fλµ

ext during the period of time ∆s is distributed
between the four-momentum of the dressed particle ∆pλ and the four-momentum carried away by
radiation ∆Pλ.

Of particular interest is the case Fλµ
ext = 0,

∆pλ
= −∆Pλ. (28)

It immediately follows that the rate of change of the energy–momentum of a dressed particle, ṗλ, is
equal to the negative of the Larmor emission rate, −Ṗλ. Here, two remarks are in order. First, −∆Pλ

is a mere four-momentum3 (rather than four-force), and hence the fact that Ṗλ is not orthogonal to
żλ presents no special problem. Second, the energy of a dressed particle is indefinite,4

p0 = mγ
(
1 − τ0γ

3a · v
)
, (29)

where γ is the Lorentz factor γ = (1 − v2)−1/2. Therefore, increasing |v| need not be accomplished
by increasing p0. For instance, one may readily check that the energy of a dressed particle executing

2 We assume that Fλµ
ext (x) disappears at spatial infinity. Therefore, the only term contributing to the integral over TR is Θ

µν

rad .
Taking into account the second equation of (21), the integral of Θµν

rad over TR can be converted into the integral over Tϵ , so that
the upshot is given by Eq. (22).

3 A possible interpretation of Eq. (28) is that the dressed particle experiences a jet thrust in response to emitting the
electromagnetic field momentum, a kind of apparent force applied to the same point in which the emission occurs.

4 The fact that p0 is not positive definite is scarcely surprising. Recall that pµ is the sum of two vectors pµ
= m0 żµ

+ Pµ

bound .
The bound four-momentum Pµ

bound is a timelike future-directed vector, while the four-momentum of a bare particle m0 żµ is a
timelike past-directed vector becausem0(ϵ) < 0 for small ϵ, as (11) suggests. Assuming thatm0 żµ

+ Pµ

bound is a timelike vector,
one recognizes that the time component of this vector can have any sign.
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a self-accelerated motion (15) steadily decreases, which exactly compensates the increase in energy
of the electromagnetic field emitted.5

3. The Yang–Mills–Wong theory

The Yang–Mills–Wong theory describes the classical interaction of particles carrying non-Abelian
charges with the corresponding Yang–Mills field [9]. A system of K such particles (thereafter called
quarks) interacting with the SU(N ) Yang–Mills field is governed by the action [10]

S = −

K∑
I=1

∫
dτI

⎧⎨⎩mI
0

√
żI · żI +

N 2
−1∑

a=1

N∑
i,j=1

qaI η∗

Ii

[
δij

d
dτI

+ żµ

I

(
Aa

µTa
)i
j

]
η
j
I

⎫⎬⎭
−

1
16π

∫
d4x Gµν

a Ga
µν, (31)

where Ta are generators of SU(N ), Ga
µν = ∂µAa

ν − ∂νAa
µ + if absA

b
µA

c
ν is the field strength, fabc are the

structure constants of SU(N ) thereafter called the colour gauge group.
Quarks, labelled with I , possess colour charges QI in the adjoint representation of SU(N ), QI =

Q a
I Ta. These quantities can be expressed in terms of the basic variables ηIj in the fundamental

representation,

QI =

N 2
−1∑

a=1

N∑
i,j=1

qaI η∗

Ii(Ta)
i
jη

j
I . (32)

The Euler–Lagrange equations for η and η∗ read

η̇i
= −(ż · Aa)(Ta)ijη

j,

η̇∗

j = η∗

i (ż · Aa)(Ta)ij. (33)

They can be combined into the Wong equation for the colour charge evolution [9],

Q̇a = −ifabc Q b (
ż · Ac) . (34)

It is convenient to rescale the colour variables: Q → −ig Q aTa, Aµ → (i/g)Aa
µTa, where g is the

Yang–Mills coupling constant. Then Eq. (34) becomes

Q̇ = ig
[
Q , żµAµ

]
. (35)

5 The solution (15) is usually thought of as a pathological trait of the Lorentz–Dirac equation (12) for two main reasons: (i)
this solution seems incompatible with energy conservation, and (ii) there is no experimental evidence for self-accelerated
motions in the Nature. Both accusations are unjust. The fact that energy–momentum is conserved in this motion has just
now been established. As to the manifestation of this phenomenon, the universe as a whole exhibiting accelerated expansion
provides an excellent potential example of a free entity (brane?) which executes exponentially accelerated motion with the
characteristic time equal to the inverse of current Hubble scale and emits gravitational radiation [8]. Why is the self-accelerated
motion of charged particles never observed? It follows from (26) that

p2 = m2 (
1 + τ 2

0 a2
)
. (30)

If τ 2
0 a2 < −1, the dressed charged particle turns to a tachyonic state p2 < 0. Let the particle be moving in the self-accelerated

regime (15). Then, after a lapse of time ∆t = −τ0 log τ0|w0|, the critical acceleration |a2| = τ−2
0 is exceeded, and the four-

momentum of this dressed particle becomes spacelike. The period of time ∆t over which a self-accelerated electron possesses
timelike four-momenta is estimated at τ0 ∼ 10−23 s for electrons, and still shorter for more massive charged elementary
particles. All primordial self-accelerated particles with such τ0 ’s have long been in the tachyonic state. However, we have not
slightest notion of how tachyons can be experimentally recorded [8]. Noteworthy also is that non-Galilean andGalilean regimes
ofmotion are never interconvertible: the history of a particular dressed charged particle is decided by the asymptotic condition
in the limit s → ∞. It is then conceivable that the Galilean form of evolution, corresponding to w0 = 0 in Eq. (15), may well
be assigned to all dressed charged particles.
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It follows that the colour charge Q shares with a top the property of precessing around some axis in
the colour space.

Varying zµ and Aµ in the action (31) gives the dynamical equations for respectively the Yang–Mills
field and quarks:

DλGλµ = 4πg
K∑

I=1

∫
∞

−∞

dτI QI (τI ) ż Iµ(τI ) δ
4 [x − zI (τI )] , (36)

mI
0 z̈

λ
I = ż Iµ tr

[
QI Gλµ(zI )

]
. (37)

In contrast to the electric charge e, which is a constant, the colour charge Q is a dynamical variable
governed by the Wong equation (35). Note, however, that the colour charge magnitude is a constant
of motion,

d
ds

|Q |
2

= 2Q̇ aQa = 0, (38)

which can be readily seen from (34) written in the Cartan basis in which fabc = −fbac . Furthermore,
there is good reason to look for solutions of the Yang–Mills equation (36) satisfying the condition

Q a(s) = const. (39)

Abandoning this condition would pose the problem of an infinitely rapid precession of Q in view of
the fact that the retarded field Aµ is singular on the world line.

It is clear from Eqs. (36) and (37) that the action–reaction principle holds in the Yang–Mills–Wong
theory. If one conceives that only a single quark is in the universe, then Q measures both the variation
of the quark state for a given field state and variation of the field state for a given quark state.

Again, we look at self-interaction for revealing the relation between the action–reaction prin-
ciple and energy–momentum conservation in an explicit form. The strategy here copies that in
the Maxwell–Lorentz electrodynamics, but has several traits associated with the fact that the field
equation (36) is nonlinear.

There are two kinds of retarded solutions to the Yang–Mills equations, Abelian and non-Abelian [11].
We first turn to the simplest case that the SU(2) Yang–Mills field is generated by a single quarkmoving
along an arbitrary timelike smooth world line [12]. The retarded Abelian solution

Aµ
= qT3

żµ

ρ
(40)

resembles the Liénard–Wiechert solution of the Maxwell–Lorentz electrodynamics, whereas the
retarded non-Abelian solution is given by

Aµ
= ∓

2i
g

T3
żµ

ρ
+ iκ (T1 ± iT2) Rµ. (41)

Here Ta, (a = 1, 2, 3), are the generators of SU(2), and q and κ are arbitrary real nonzero parameters.
A remarkable feature of retarded non-Abelian solutions bearing on our discussion is that the Yang–

Mills equations determine not only the field, but also the colour charge that generates this field, as
exemplified by (41). This solution admits only a single value for the magnitude of the colour charge
carried by the quark [12,13],

|Q |
2

= −
4
g2 . (42)

Recall that the electric charge e of any particle in the Maxwell–Lorentz electrodynamics may be
arbitrary. The selection of a special magnitude for the colour charge of the source takes place also
for a closed system of K quarks evolving in the non-Abelian regime [11],

tr (Q 2
I ) = −

4
g2

(
1 −

1
N

)
, N ≥ 3. (43)
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Clearly this feature of the non-Abelian dynamics offers no danger to the fulfilment of the action–
reaction principle.

In the Abelian regime, the field equation (36) linearizes,6 and hence, their retarded solution shows
up as that in (9)–(10). All results of the previous section are reproduced with the only replacement
e2 → q2. The degrees of freedom appearing in the action (31) are rearranged on the extremals
subject to the retarded condition to give a dressed quark and Yang–Mills radiation, closely resembling
such entities in electrodynamics. The behaviour of a dressed quark is governed by the Lorentz–Dirac
equation (12), which can be converted to the local energy–momentum balance (27).

In the non-Abelian regime, the field equation (36) remains nonlinear, and superposing their
solutions ceases to be true. Aside from the one-quark solution (41), there is need to examine
K -quark solutions, K ≥ 2. A consistent Yang–Mills–Wong theory can be formulated for the colour
gauge group SU(N ) with N ≥ K + 1 [11]. As an illustration we refer to a retarded SU(3) field due to
two quarks [14,15],

Aµ
= ∓

2i
g

(
H1

żµ

1

ρ1
+ g κ E±

13 R
µ

1

)
∓

2i
g

(
H2

żµ

2

ρ2
+ g κ E±

23 R
µ

2

)
. (44)

Here, Ha and Eab are generators of SU(3) in the Cartan–Weyl basis, which are expressed in terms of
the Gell-Mann matrices as follows:

H1 =
1
2

(
λ3 +

λ8
√
3

)
, H2 = −

1
2

(
λ3 −

λ8
√
3

)
, E13 =

1
2

(λ4 + iλ5) , E13 =
1
2

(λ6 + iλ7) .

(45)

Rµ

1 = xµ
− zµ

1 (τ1) and Rµ

2 = xµ
− zµ

2 (τ2) are, respectively, the four-vectors drawn from points zµ

1 (τ1)
and zµ

2 (τ2) on theworld lines of quarks 1 and 2, where the signals were emitted, to the point xµ, where
the signals were received.

Observing that Aµ is the sum of two single-quark terms, onemaywonder of how the nonlinearity of
the Yang–Mills equations is compatible with this fact. The answer is simple: two single-quark vector
potentials with the fixed magnitudes of the colour charges, as shown in Eq. (43), are combined in
Eq. (44), but it is impossible to build solution as an arbitrary superposition of these terms. If either of
them is multiplied by a coefficient different from 1 and added to another, no further solution arises.

Due to this feature – which is characteristic of the general K -quark case – we have

Θµν
=

∑
I

⎛⎝Θ
µν

I +

∑
J ̸=I

Θ
µν

IJ

⎞⎠ , (46)

whereΘ
µν

I is comprised of the field generated by the Ith quark, andΘ
µν

IJ containsmixed contributions
of the fields due to the Ith and Jth quarks. Furthermore,Θµν

I splits into bound and radiated parts. Every
term of Eq. (46) satisfies the local conservation law of the type shown in Eq. (21), and hence represents
a dynamically independent part of Θµν . The stress–energy tensor Θµν is thus similar in structure to
that in the Maxwell–Lorentz theory.

We now restrict our attention to a single quark of this K -quark system. For notational convenience,
we omit the quark labelling.

Using the line of reasoning developed in the previous section, and observing that the linearly rising
term of Aµ does not contribute to Θµν because

tr (Hl E±

mn) = 0, tr
(
E±

kl E
±

mn

)
= 0, (47)

we arrive at the conclusion that the four-momentum of the retarded Yang–Mills field generated by
the quark under study is given by Pµ

= Pµ

bound + Pµ, where Pµ

bound and Pµ are respectively the bound
and radiated parts of this four-momentum.

6 The reason for this linearization is that the colour field variables are restricted to the Cartan subalgebra of the Lie algebra
of the associated gauge group. Since the Lie algebra su (N ) is of rank N − 1, there exist N − 1 diagonal matrices Ha forming a
Cartan subalgebra of commuting matrices.
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An accelerated quark emits

Pµ
= −

2
3
tr (Q 2)

∫ s

−∞

dτ z̈2 żµ. (48)

Owing to the negative norm of the colour charges, Eqs. (42) and (43), the emitted energy is negative,
which suggests that the quark gains, rather than loses, energy by emitting the Yang–Mills radiation
in the non-Abelian regime. An explicit calculation shows that this is indeed the case:

Ṗ · ż =
8

3g2

(
1 −

1
N

)
z̈2 < 0. (49)

This phenomenonmight be interpreted as absorbing convergent waves of positive energy rather than
emitting divergent waves of negative energy [13].

Adding the bound part of the field four-momentum

Pµ

bound = tr (Q 2)
(

1
2ϵ

żµ
−

2
3
z̈µ

)
(50)

to the mechanical four-momentum pµ

0 = m0żµ, and carrying out the renormalization of mass in a
way similar to (11), gives the four-momentum of a dressed quark

pµ
= m (żµ

+ ℓ z̈µ) . (51)

Here,m is the renormalized mass, and

ℓ =
8

3mg2

(
1 −

1
N

)
(52)

is a characteristic length inherent in the non-Abelian dynamics of this dressed quark.
The mixed terms in Eq. (46) have integrable singularities ρ−2 on every world line. Their treatment

is therefore similar to that of Θµν

mix in the Maxwell–Lorentz electrodynamics. The integration of these
terms gives

℘µ
= −

∫ s

−∞

dτ f µ
ext[z(τ )] , (53)

where the integrand is the colour four-force exerted on the given quark by all other quarks at the
instant τ . The explicit form of f µ

ext is of no concern in the present context.
We reiterate mutatis mutandis the argument of the previous section to find

ṗµ
+ Ṗµ

= f µ
ext. (54)

According to this balance equation, the four-momentum d℘µ
= −f µ

extds extracted from an external
field is used for changing the four-momentum of the dressed quark dpµ and emitting the Yang–Mills
radiation four-momentum dPµ. A special feature of Eq. (54) is that dP0 is associated with emitting
negative-energy waves or, what is the same – absorbing positive-energy waves.

Substitution of (51), (48) and (53) into (54) gives the equation of motion for a dressed quark

m
[
z̈µ

+ ℓ

(
...
z

µ
+ żµz̈2

)]
= f µ

ext, (55)

differing from the Lorentz–Dirac equation (12) only in the overall sign of the parenthesized term and
changing τ0 by ℓ. If f µ

ext = 0, the general solution of Eq. (55) is

żµ(s) = Vµ cosh(α0 + w0ℓ e−s/ℓ) + Uµ sinh(α0 + w0ℓ e−s/ℓ), (56)

where Vµ and Uµ are constant four-vectors such that V · U = 0, V 2
= −U2

= 1, and α0 and w0 are
arbitrary parameters. A free quark may therefore execute a non-uniform motion with exponentially
decreasing acceleration. The world line of this self-decelerated motion asymptotically approaches a
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straight line. This situation can be interpreted in the spirit of the action–reaction principle. Eq. (54)
becomes

dpµ
= −dPµ. (57)

The free dressed quark feels the ‘reverse’ four-momentum transfer (responsible for the self-
deceleration) because the phenomenon of radiating the Yang–Mills four-momentum is actually
changed by that of absorbing this four-momentum. Nevertheless, Eq. (57) offers direct evidence that
the action–reaction principle is equivalent to energy–momentum conservation on the world line.

4. Gravitation

The action–reaction principle does not hold in the gravitational interaction described by general
relativity. Indeed, the coupling between a particle of massm and the gravitational field is equal tom,
so that the particle is governed by the geodesic equation

d2zλ

dτ 2 + Γ λ
µν

dzµ

dτ
dzν

dτ
= 0, (58)

which is mass-independent. On the other hand, the field equation

Rµν
−

1
2
Rgµν

− 8πGNtµν
= 0 (59)

with the delta-function source

tµν(x) = m
∫

∞

−∞

dτ żµ(τ ) żν(τ ) δ4[x − z(τ )] (60)

shows that the greater them, the stronger is the generated gravitational field. The influence of particles
on the state of the gravitational field is different for different m, even though the gravitational field
exerts on every particle in a uniformway, no matter whatm is. This is contrary to the action–reaction
principle.

Does this violation of the action–reaction principle imply that the energy–momentum conserva-
tion law is missing from general relativity? While on the subject of arbitrary curved manifolds, the
idea of translational invariance is irrelevant, whence it follows that not only energy and momentum
are not conserved, but also the very construction of energy and momentum suggested by Noether’s
first theorem is no longer defined.

To avoid this conclusion, one normally turns to field-theoretic treatments of gravity. This is feasible
if the gravitational field can be granted to be ‘sufficiently weak’,

gµν = ηµν + φµν, (61)

where |φµν | ≪ 1. The quantity φµν is thought of as a second-rank tensor field7 defined in a
flat background R1,3 whose symmetry properties enable us to endow the resulting dynamics with
conserved energy–momentum through the standard Noether’s prescription.

It is believed that general relativity leaves room for both weak and strong gravity. Strange though
it may seem, a simple and convincing criterion for discriminating between weak and strong gravity
still remains to be established. We therefore have to address this issue. But our concern here is not
with elaborating this criterion in every respect. Rather, we only state the central idea and explicate it
by the example of the Schwarzschild metric.

Intuition suggests that the strong gravity should be associated with a great warping of spacetime.
However, a characteristic curvature whereby the changes in spacetime configurations might be rated
as ‘drastic’ is absent from general relativity, sending us in search of another measure of such changes.
It seems reasonable to assume that switching between weak and strong gravitational regimes is due
to spacetime topology alterations. The ‘strong gravitational field’ is then recognized as a qualitative

7 Recent developments in bimetric theories of gravitation is reviewed in [16].
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rather than quantitative concept. The field equation (59), being differential equations, is local in
character. They tell nothing about the topology of their solutions. A global solution can be recovered
when its infinitesimal pseudoeuclidean fragments are assembled into an integral dynamical picture,
and the topology of this solution may well differ from the topology of Minkowski spacetime if the
assembly is subject to a restrictive boundary condition. To illustrate, we refer to the Schwarzschild
metric [17],

ds2 = −

(
1 −

rS
r

)
dt2 +

(
1 −

rS
r

)−1
dr2 + r2dΩ, (62)

where, dΩ is the round metric in a sphere S2, and rS = 2GNM is the Schwarzschild radius.
A 3-dimensional spacelike surface Σ3 endowed with this metric has a twofold geometric interpre-
tation. First, it looks like a ‘bridge’ between two otherwise Euclidean spaces, and, second, it may be
regarded as the ‘throat of a wormhole’ connecting two distant regions in one Euclidean space in the
limit when this separation of the wormhole mouths is very large compared to the circumference of
the throat [18].

To describe a curved manifold M, a set of overlapping coordinate patches covering M is called
for. If one yet attempts to use a single coordinate patch, a singularity in the resulting description can
arise. The gravitation is amenable to a field-theoretic treatment until the mapping of the metric gµν

into the field φµν , as shown in (61), is bijective and smooth, which is the same as saying that every
curved spacetime configuration, associated with some gravitational effect, can be smoothly covered
with a single coordinate patch. In contrast, for a manifold whose topology is nontrivial, the quest for a
single-patch covering culminates in a singular boundary, bearing some resemblance to a shock wave,
as exemplified by the Schwarzschild metric (62) in which the coefficient of dr2 becomes singular at
r = rS, so that this solution exhibits a standing spherical shock wave of the gravitational field.

One may argue that this is an apparent singularity, related to the choice of coordinates, because
the curvature invariants are finite and well behaved at r = rS, and, furthermore, the equation for the
geodesics (58) shows a singular behaviour only at r = 0. There are coordinates u and v, proposed
in [19] and [20],

u =

√
r
rS

− 1 exp
(

r
rS

)
cosh

(
t
rS

)
, v =

√
r
rS

− 1 exp
(

r
rS

)
sinh

(
t
rS

)
, (63)

such that the Schwarzschild metric, being written in terms of u and v, is regular in the whole (u, v)
plane, except for the point v2

− u2
= 1 corresponding to r = 0.

In response to this objection, we would note that the introduction of these u and v is a clever
trick to drive the shock wave in the singular point r = 0. However, our prime interest is with the
very existence of a shock wave, as evidence of the nontrivial topology, rather than its position in a
particular coordinate system. The apparent regularity of the metric everywhere except r = 0 is due
to an unfortunate choice of coordinates which hides the Schwarzschild shock wave.

The ‘floating’ position of the shock wave makes it clear that the strong gravitational regime is
unrelated to the magnitude of field variables. It is a topologically nontrivial affair which renders the
regime strong.

This brings up the question as to whether the violation of regular behaviour of the Schwarzschild
metric at r = rS is an artefact of the original Schwarzschild description. Some fifty years ago
people were inclined to believe that such is indeed the case. By now, however, rS is recognized as
an objectively existing entity to characterize the event horizon of an isolated spherically symmetric
stationary black hole. The event horizon of a Schwarzschild black hole shows a demarcation between
spacetime regions characterized by opposite signatures of the metric.8 This geometrical layout, if it
exists, provides an explicit scheme for interfacing the classical and the quantum [21].

Let us take a closer look at why energy and momentum are to be regarded as poorly defined
concepts. General relativity allows the Hamiltonian formulation for at least such systems whose

8 Note that the only quantitywhich has a discontinuity jump at the front of a strong gravitational shockwave is the signature
because themetric immediately anterior andposterior to the front can be brought to either of twodiagonal forms: diag(+−−−)
or diag(− + ++).
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geometric rendition is compatible with the idea of asymptotically flat spacetime [22–24]. More
specifically, one supposes that the metric gµν approaches the Lorentz metric ηµν at spatial infinity
sufficiently rapidly, namely

gµν = ηµν + O
(
1
r

)
, ∂λgµν = O

(
1
r2

)
, r → ∞. (64)

The second condition is claimed to be needed so that the Lagrangian

L =

∫
d3xL(t, x) (65)

with the commonly used first order Lagrangian density of the gravitational field sector

L =
√

−g gµν
(
Γ σ

µν Γ λ
σλ − Γ λ

µσ Γ σ
νλ

)
(66)

should converge. The volume integral in (65) diverges for the Schwarzschild solution expressed in
terms of the original Schwarzschild coordinates, appearing in (62), because L = O(1) as r → ∞. In
contrast, the use of isotropic coordinates, which recasts the Schwarzschild metric (62) into

ds2 = −
1 −

rS
4r

1 +
rS
4r

dt2 +

(
1 +

rS
4r

) (
dx2 + dy2 + dz2

)
, (67)

results in L = O(1/r4), and hence affords the convergence of the Lagrangian (65). It follows from this
simple example that both the asymptotical flatness

Rα
βγ δ → 0, r → ∞, (68)

and a good choice of coordinates shares in the responsibility for the convergence of additive quantities
such as the Lagrangian and Hamiltonian.

With the neat Hamiltonian formulation developed in [22–24], one would expect that the total
energy–momentum Pµ has an unambiguous significance. We now examine the correctness of this
expectation restricting ourselves to P0 for simplicity.

The total energy is given by the numerical value of the Hamiltonian

E =

∫
d3xH (t, x) . (69)

H is a cumbersome construction which is immaterial for our discussion. However, the key part of this
construction proves to be cast [25] in a convenient form,

E =
1

16π

∮
dSj

(
∂

∂xi
gij −

∂

∂xj
gii

)
. (70)

Here, the integral is evaluated over a 2-dimensional surface at spatial infinity.
It is possible to prove [26,27] that an isolated gravitating system having non-negative local mass

density has non-negative total energy E. For example, for the Schwarzschild configuration generated
by a point particle of massm the surface integral (70) is easily evaluated to give

E = m. (71)

Could the condition (64) be relaxed so that the asymptotical flatness condition (68)would hold, and
every pertinent additive quantity in this Hamiltonian formulation remains convergent? To be more
precise, we proceed from the metric gµν exhibiting the asymptotic behaviour (64), and transform the
initial spatial coordinates xi into new ones x̄i,

xi = x̄i [1 + f (r̄)] , (72)

where f is an arbitrary regular function subject to the following conditions:

f (r̄) ≥ 0, lim
r̄→∞

f (r̄) = 0, lim
r̄→∞

r̄ f ′(r̄) = 0. (73)
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For the mapping (72) to be bijective, the condition
∂r
∂ r̄

= 1 + f (r̄) + r̄ f ′(r̄) > 0 (74)

is necessary and sufficient. Indeed, with (74), the mapping is explicitly invertible,

J = det
(

∂x
∂ x̄

)
= [1 + f (r̄)]

∂r
∂ r̄

̸= 0. (75)

One such example [28] is

f (r̄) = 2α2

√
l
r̄

[
1 − exp

(
−

ϵ2 r̄
l

)]
, (76)

where α and ϵ are arbitrary nonzero numbers, and l is an arbitrary parameter of dimension of length.
This is a bijective monotonically increasing regular mapping r → r̄ which becomes 1 as ϵ → 0. The
leading asymptotical terms of spatial components of the metric and those of the Christoffel symbols
can be shown [28] to be

gij = δij + O
(

1
r̄1/2

)
, Γ i

jk = O
(

1
r̄3/2

)
, r̄ → ∞, (77)

while the Lagrangian density behaves as

L = O
(

1
r̄7/2

)
, r̄ → ∞. (78)

This provides the convergence of the volume integral in (65). Other additive quantities prove to be
convergent as well.9

The mapping (72) with f defined in (76) is instructive to apply to the Schwarzschild metric which
is initially written in terms of isotropic coordinates (67). One can show [28] that the total energy of
the Schwarzschild configuration generated by a point particle of mass m takes any positive values,
greater than, or equal tom, when α2 runs through R+,

E = m
(
1 + α4) . (79)

We thus see that the total energy of gravitational systems with nontrivial topological contents
depends on the foliation of spacetime. The Schwarzschild solution expressed in terms of coordinates
for which the asymptotic condition is given in a relaxed form, Eq. (77), is a good case in point. This
solution rearranges the initial degrees of freedom appearing in the Lagrangian density (66) to yield
a coordinatization-dependent expression for the total energy functional (70). The same is true of the
associated momentum.

The situation closely parallels that in the paradoxial Banach–Tarski theorem which states [29]:
given a unit ball in three dimensions, there exists a decomposition of this ball into a finite disjoint
subsets which can then be reassembled through continuous movements of the pieces, without
running into one another andwithout changing their shape, to yield another ball of larger radius. These
situations share a common trait in that both the Banach–Tarski decomposition and the Schwarzschild
black hole formation are due to topological rearrangements which are responsible for making
the three-dimensional measures of the resulting geometrical layouts poorly defined. The measure
appearing in the Banach–Tarski theorem is the ordinary volume of the balls (more precisely, Lebesgue
measure), while the measure in the gravitational energy problem is that of the functional (69). When
turning to the surface integral for calculation of the total energy, Eq. (70), there arises the situation
which may be likened to that of the Hausdorff paradox on enlarging spheres [30].

The usual inference that the Banach–Tarski partitioning procedure has nothing to dowith physical
reality because there is no material ball which is not made of atoms overlooks one important
instance—black holes. Each isolated, stationary black hole is completely specified by three parameters:

9 Note also that the asymptotical flatness, Eq. (68), is still the case.
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its mass m, angular momentum J , and electric charge e. Whatever the content of a system which
collapses under its own gravitational field, the exterior of the resulting black hole is described by
a Kerr–Newman solution. All initial geometric features of the collapsing system, except for those
peculiar to a perfect ball, which may possibly rotate and carry electric charge, disappear in the black
hole state [31,32]. Furthermore, the event horizon which is meant for personifying the black hole is
devoid of the grain structure that was inherent in the collapsing system.

5. Discussion and outlook

In Sections 2 and 3 we saw that a careful analysis of the self-interaction problem may give an
insight into the relation between the action–reaction principle and energy–momentum conservation
provided that the rearrangement of degrees of freedom is taken into account. Umezawa [33] was
the first to put the term ‘rearrangement’ in circulation by the example of spontaneous symmetry
breaking. Themechanism for rearranging classical gauge fields was further studied in [13,11,3].While
a precise formulation of this mechanism is still an open problem, the intuitive idea underlying the
rearrangement is quite simple. In choosing variables for the description of a field system, preference
is normally given to those which are best suited for realizing all supposed fundamental symmetries of
the action. But somedegrees of freedomso introducedmaybe unstable. This gives rise to reassembling
the initial degrees of freedom into new, stable aggregates whose dynamics is invariant under broken
or deformed groups of symmetries. Aggregates obeying the usual requirement of stability

δS = 0, δ2S > 0 (80)

form readily in field theories affected by spontaneous symmetry breaking, as exemplified by the
Goldstone and Higgs models. However, this criterion for discriminating between stable and unstable
modes is difficult if not impossible to apply to local field theories with delta-function sources owing
to divergences arising in the self-interaction problem. We thus have to look for alternative criteria.

Let us return to the Maxwell–Lorentz electrodynamics. We take, as the starting point, the on-shell
dynamics of a bare particle and electromagnetic field engendered by the equations of motion ελ

= 0
and Eµ = 0, Eqs. (4) and (3), together with the retarded boundary condition. However, this dynamics
blows up on theworld line, which, in view of Eq. (5), is tantamount to stating that themeasure Tµνdσν

is ill defined. It would be tempting to construe such divergences as evidences of instability.
We then divide Tµνdσν into a well-defined part and the remainder. But this separation is ambigu-

ous: an arbitrary regular term can be added to one part and subtracted from the other to give an
equivalent separation. To fix the separation, we impose the condition that every term obeys the local
conservation law (21). The functionals (22) and (23), expressing, respectively, the four-momentum
radiated by the charge and four-momentum extracted from a free field, refer to the well-defined part
of Tµνdσν . We complete the definition of

(
Θ

µν

bound + tµν
)
dσν by carrying out the renormalization of

mass, Eq. (11). The functional (26) is regarded as the four-momentum of a dressed charged particle.
As might be expected, the rearrangement outcome, the Lorentz–Dirac equation Λµ

= 0, Eq. (12),
governing the behaviour of the dressed particle, is depleted of some symmetries embedded in the
action. Indeed, this dynamical equation is not invariant under time reversal s → −s.

We thus come to a new on-shell dynamics in which the equation of motion for a bare particle
εµ

= 0 is replacedwith the equation of motion for a dressed particleΛµ
= 0, and all relevant integral

quantities are well defined. Therefore, the rearrangement of the Maxwell–Lorentz electrodynamics
can be briefly outlined as follows: since the on-shell dynamics which arises from extremizing the
action and imposing the retarded boundary condition is divergent, the initial degrees of freedom
appearing in the action are induced to reassemble into new aggregates governed by a tractable
dynamics. What are the ways open to this reassembly?

The arena for rearranging the Maxwell–Lorentz electrodynamics is a line R covered by the
evolution variable τ which parametrizes theworld line, and a planeE2 spanned by two vectors Rµ and
Vµ used in defining the retarded Liénard–Wiechert 2-form F , Eq. (9). Reparametrization invariance of
the action and local SL(2,R) invariance of the 2-form F control the rearrangement scenario. Hence,
the ways open to the reassembly are specified by the properties of the local translation group T
responsible for reparametrizations and the local SL(2,R) group acting in the retarded field plane.
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Recall the main implication of reparametrization invariance, Noether’s second theorem [2]. It is
convenient to restrict our consideration to an infinitesimal reparametrization

δτ = ϵ(τ ), (81)

where ϵ is an arbitrary smooth function of τ close to zero, which becomes vanishing at the end points
of integration. Variation of τ implies the corresponding variation of the world line coordinates

δzµ
= żµϵ. (82)

In response to the reparametrization (81)–(82), the action varies as

δS =

∫
dτ εµżµϵ. (83)

Let S be invariant under reparametrizations, δS = 0. Because ϵ is assumed to be an arbitrary function
τ , one concludes that

żµεµ = 0. (84)

This equation is a manifestation of Noether’s second theorem: invariance of the action under the
transformation group (81) involving an arbitrary infinitesimal function ϵ implies a linear relation
between Eulerians.

The identity (84) suggests that εµ contains the projection operator on a hyperplanewith normal żµ,
ż
⊥µν = ηµν −

żµżν
ż2

, (85)

annihilating identically any vector parallel to żµ. Reparametrization invariance bears on the projection
structure of the basic dynamical law for a bare particle which can be written10 as

ż
⊥ (ṗ − f ) = 0, (86)

where p is the four-momentum of a bare particle, and f an external four-force.
In view of the identities ż2 = 1, ż · z̈ = 0, ż·

...
z= −z̈2, the Lorentz–Dirac equation (12) can be

brought to the form of Eq. (86) in which p is the four-momentum of a dressed particle, defined in (26),
and f is again an external four-force.

The structure of (86) makes it clear that a dressed particle experiences only an external force. This
equation contains no term throughwhich the dressed particle interactswith itself. The rearrangement
eliminates self-interaction. The rearranged dynamical picture contains only autonomous, foreign to
each other entities.

It may be worth pointing out that both equation of motion for a bare particle εµ
= 0 and equation

of motion for a dressed particle Λµ
= 0 are generally not invariant under reparametrizations.

Instead, this local symmetry leaves its imprint on the form of εµ and Λµ through the presence of the

projector
ż
⊥.

Invariance under the SL(2,R) group stems from the fact that the 2-form F describing the retarded
field of a single charge is proportional to R∧V , that is, F is decomposable [13,3]. Given a decomposable
2-form F , the invariant P =

1
2Fµν

∗Fµν is identically zero. As for the invariant S =
1
2FµνFµν , using

(9)–(10),we findS = −e2/ρ4. Therefore, a single chargemoving along an arbitrary timelikeworld line
generates the retarded field Fµν of electric type. In other words, whatever the motion of the charge,
there is a Lorentz frame of reference, special for each point xµ, such that only electric field persists,
more precisely, |E| = e/ρ2 and B = 0.

Rewrite (9) as

F =
e
ρ2 ϖ, ϖ = R ∧ V . (87)

10 The projector
ż
⊥ may arise in (86) from a completely different origin, namely smooth embedding of Newtonian dynamics

into sections of Minkowski space perpendicular to the world line [3].
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A pictorial rendition of the bivector ϖ is the parallelogram of the vectors Rµ and Vµ. The area A of the
parallelogram is

A =

√
−V 2

(
V
⊥R

)2

= V · R = 1. (88)

The bivector ϖ is invariant under the special linear group of real unimodular 2 × 2 matrices
SL(2,R) which rotate and deform the initial parallelogram, converting it to parallelograms of unit
area belonging to the plane spanned by the vectors Rµ and Vµ. Therefore, ϖ is independent of
concrete directions and magnitudes of the constituent vectors Rµ and Vµ. ϖ depends only on the
parallelogram’s orientation. The parallelogram can always be built from a timelike unit vector eµ

0 and
a spacelike imaginary-unit vector eµ

1 perpendicular to eµ

0 ,ϖ = e0∧e1. In fact, there are three different
cases:
(i) V 2 > 0,

eµ

0 =
Vµ

√
V 2

, eµ

1 =

√

V 2

(
−Rµ

+
Vµ

V 2

)
, (89)

(ii) V 2 < 0,

eµ

0 =

√
−V 2

(
Rµ

−
Vµ

V 2

)
, eµ

1 =
Vµ

√
−V 2

, (90)

(iii) V 2
= 0,

eµ

0 =
1

√
2

(
ρVµ

+
Rµ

ρ

)
, eµ

1 =
1

√
2

(
ρVµ

−
Rµ

ρ

)
. (91)

In the Lorentz frame with the time axis parallel to the vector eµ

0 , all components of Fµν are vanishing,
except for F 01. The formulas (89)–(91) specify explicitly a frame inwhich the retarded electromagnetic
field generated by a single arbitrarily moving charge appears as a pure Coulomb field at each
observation point. With a curved world line, this frame is noninertial.

The decomposable 2-form F is invariant under the SL(2,R) transformations which can be carried
out independently at any spacetime point. Therefore, we are dealing with local invariance. This
invariance is not pertinent to electrodynamics as a whole, and hence gives rise to no Noether
identities. Rather, this is a property of the retarded solution Fµν

ret , shown in Eqs. (9)–(10).11
Therefore, the retarded solution Fµν

ret is determined not only by the field as such but also by the
frame of reference in which this quantity is measured. On the other hand, Θµν is not invariant under
such SL(2,R) transformations; Θµν carries information about both the field and the Lorentz frame
which is used to describe Fµν

ret . Nevertheless, the functionals (22), (23) and (26) are well defined and
frame-independent.

The rearrangement in the Yang–Mills–Wong theory shows a general resemblance of that in the
Maxwell–Lorentz electrodynamics. The field strength generated by a single quark is also given by a
decomposable 2-form F in both Abelian and non-Abelian regimes. The retarded Yang–Mills field F is
always invariant under the local group SL(2,R).

A special feature of the Yang–Mills–Wong theory (as opposed to the Maxwell–Lorentz electro-
dynamics) is that non-Abelian regimes of evolution exhibit spontaneously deformed gauge symme-
tries [11,3]. Without going into detail, we explicate this phenomenon by the simplest example.
Consider the solution (41) which describes the retarded non-Abelian field generated by a single quark
in the SU(2) Yang–Mills–Wong theory. By introducing an alternative matrix basis

T1 = T1, T2 = iT2, T3 = T3, (92)

we convert this solution to the form Aµ = Aa
µ Ta where all coefficients Aa

µ are imaginary. Elements
of this basis obey the commutation relations of the sl(2,R) Lie algebra. We thus see that the gauge

11 The advanced field Fµν

adv can also be represented in a form similar to (9)–(10), that is, the 2-form Fadv is decomposable
whereas combinations Fret + α Fadv are not.
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group of the solution (41) is actually SL(2,R).12 Where does this group of symmetry come from? Its
origin bears no relation to spontaneous symmetry breakdown: SU(2) and SL(2,R) are the compact
and noncompact real forms of the complex group SL(2,C). Invariance of the action under SU(2)
automatically entails its invariance under the complexification of this group, SL(2,C). The emergence
of a solution invariant under a real form of SL(2,C) different from the initial SU(2) is a rearrangement
phenomenon specific to the Yang–Mills–Wong theory, called spontaneous symmetry deformation.
The solutions (41) and (40) are different not only in their symmetry aspect, but also in physical
manifestations, say, the former manifests itself as the Yang–Mills field of ‘magnetic’ type while the
latter is the Yang–Mills field of ‘electric’ type. Dressed quark, associated with these solutions, are
governed by respectively equations ofmotion (55) and (12), both being in agreementwith the action–
reaction principle.

The rearrangement of general relativity is vastly different from that of the Maxwell–Lorentz
electrodynamics and Yang–Mills–Wong theory. Indeed, the total stress–energy tensor Tµν is identical
to the left-hand side of Eq. (59), that is, the on-shell Tµν is zero. It is therefore impossible to
define a three-dimensional measure weighted with Tµν . And yet, the on-shell dynamics exhibits a
kind of blow-up: gravitational singularities. This troublesome feature of the theory is found even
if delta-function sources are substituted by continuously distributed matter obeying a reasonable
energy condition, the local positive energy condition [34–36]. However, the responsibility for the
rearrangement does not rest with the divergent dynamics. Gravitational degrees of freedom are
induced to reassemble into new topologically nontrivial aggregates due to instabilities which owe
their origin to the failure of the action–reaction principle. The ways open to the rearrangement of
general relativity are specified by the properties of four-dimensional reparametrizations

xµ
= Fµ(x′), gµν(x) =

∂x′α

∂xµ

∂x′β

∂xν
g ′

αβ (x
′), (93)

where Fµ are arbitrary smooth functions. These transformations form an infinite group, the group of
diffeomorphism invariance implying invariance of themetric under the local Lorentz group andparallel
transport group.

It would be interesting to enquire into why the functionals (69) and (70) become coordinatization-
dependent for systems having nontrivial topological contents in the light of the analyses which are
lumped together as the ‘Banach–Tarski theorem’ [37]. Note that the very analogy between theBanach–
Tarski decomposition and the rearrangement of gravitational degrees of freedommay seem in doubt
because the former has to do with sets of points in Euclidean space E3, whereas the latter refers to
the pseudo-Riemannian metric structure. But the resemblance of these procedures is ensured by
the fact that the study of the affair with E3 is actually transferred to exploring the properties of
bijective mappings of sets in E3, and the like is true for the rearrangement of gravitational degrees
of freedom. A central idea of the Banach–Tarski analyses is that if a bounded set can be decomposed
in a paradoxial way with respect to a group G, then G contains free subgroups, in particular a ball in
E3 is SO(3)-paradoxial because the action of SO(3) is that of a free non-Abelian isometry group [37].
The development of this idea in relation to the action of the isometry group composed of the local
SO(1, 3) group and parallel transport group, having free non-Abelian subgroups, may give a plausible
explanation for the fact that the measure of integral quantities such as (69) and (70) is to be poorly
defined.

On the other hand, the Banach’s theorem stating that no paradoxial decompositions exist in R and
E2 [37] should be likened to the affair with the well-defined measures in the rearranged Maxwell–
Lorentz electrodynamics and Yang–Mills–Wong theory. The class of groups whose actions preserve
finitely additive, isometry-invariant measures of the bounded sets on R and E2 are known to be
amenable groups, specifically solvable groups, which include Abelian groups. It is conceivable that
the groups of reparametrizations and local SL(2,R) transformations controlling the rearrangement of
these theories have what amounts to the desired properties of amenable groups.

12 This SL(2,R) gauge group should not be confused with the SL(2,R) symmetry transformations which leave a decompos-
able 2-form F unchanged. Given the initial SU(N ) gauge symmetry withN ≥ 2, the spontaneously deformed gauge symmetry
is found to be embedded in the SL(N ,R) group [11,3].
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A natural questionmay now arise:What is the reason for the existence of scenarios inwhich gravi-
tational degrees of freedom reassemble in a topologically nontrivial fashion, say, into a Schwarzschild
black hole, so that the asymptotic condition (64) is met, and the total energy functional (70) becomes
a well defined, non-negative quantity [26,27]? The suggestion can be made that the diffeomorphisms
controlling such scenarios are restricted to the groups deprived of free subgroups.

Does the action–reaction principle remain its validity for quantum field theories such as quan-
tum electrodynamics? Three obstacles apparently placed in incorporation of this principle into the
quantum context are as follows:

• By virtue of vacuum polarization, the charge of a bare particle is no longer constant, but rather a
time-varying dynamical quantity whose numerical value is determined by virtual pair screening. It is
unlikely that this fluctuating quantity may be taken to be a measure of both variation of the electron
state for a given electromagnetic field state and variation of the state of electromagnetic field for a
given electron state.

•Heisenberg’s uncertainty principles is contrary to bringing a contact interaction into coincidence
with exact values of the four-momenta appearing in the local four-momentum balance. In the
quantum realm, the four-momentum balance is either nonlocal or fuzzy.

• The rearrangement of initial degrees of freedom in the quantum picture occurs much differently
than in the classical picture. The criterion of stability, Eq. (80), is alien to the quantum regime of
evolution because any world line passing through the chosen end points – and not just the world
line which renders the action extremal – contributes to the Feynman path integral. Therefore, the
instability is of little, if at all, significance for the quantum rearrangement.

However, it would be very strange if the Nature does reject the quantum utility of the principle
which is so useful at the classical level.
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