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Introduction
The present paper was inspired by our careful perusal of 

recently published brilliant work [1]. In our paper we are going 
to try to investigate what happens to the transfer of energy and 
momentum from one to another dipole charge during longitudinal 
oscillations of one of the charges. Let the dipole { },q q+ −  lies 
on the X-axis. Let also one of the charges is oscillating in some 
arbitrary way along the X-axis.

An electric field created by an arbitrarily moving charge is 
given by the following expression obtained directly from Lienard-
Wiechert potentials [2]:

Where R  the vector is directed from the charge q  to the point 
of observation, v  and v  are the velocity and the acceleration of 
the charge q , respectively. All values in the right-hand are taken in 
the moment of time 0

,t t τ= −  where τ  the retarded time is, and t  
is time of observation. Since along the X-axis all vectors in (1) are 
collinear, the second term in (1) is zero. In the conventional theory, 
the Poynting vector represents electromagnetic field energy flow 
per unit area per unit time across a given surface,
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Where S is the Poynting vector, p  is the momentum density 
vector, E  and H  are strengths of electric and magnetic field, 
respectively. Analyzing (2), one can easily note that S and p  (and, 
therefore, all electromagnetic energy flow) are exactly zero ( )0=S  
along the X-axis. On the other hand, from the energy conservation 
law,
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Where w is the energy density of the electromagnetic field E  
and H , we conclude that w and /w t∂ ∂  should differ from zero 
everywhere along the X-axis because there is a linear relationship 
between w and 2 E  changing in time along the X-axis. An 
ambiguity takes place if any dipole charge is moving in some 
arbitrary way along the X-axis. As a result the energy density w  
should also alter as a function of changing electric field E . Then 
the question logically arises: what is the mechanism that changes 
electric field at some fixed distance from the charge on the X-axis 
if there is apparently no electromagnetic field energy transfer in 
that direction ( )0 ?=S  This ambiguity is due to the fact that in the 
conventional theory based on the of local field, which energy has 
to be stored locally in space, any change of field components is 
indispensable without field energy flux. This is obviously violated 
in the above mentioned example that brings into question an 
assumed sufficiency of transverse solutions alone to describe all 
properties of electromagnetic field. At least, the resolution of this 
ambiguity cannot be based on transverse solutions of Maxwell’s 
equations because it well-established that any moving charge 
does not radiate electromagnetic waves along the direction of its 
motion. Only longitudinal components, if they exist, can be useful 
in that respect.

Let us make several qualitative observations on the possible 
role of longitudinal fields components. The solution (1) indicates 
the existence of longitudinal perturbations along the X-axis. It 
is believed that the energy transfer (the Poynting vector) S  is a 
product of the energy density and its spreading velocity cn , (the 
Umov vector U ).

Where c  is the velocity of light, and n is the unit vector in the 
direction of spreading of the energy, then either the spreading 
velocity cn  or the energy density w  must would be zero along 
the X-axis. The first assumption would neglect any possibility 
of interaction transfer. The second one ( 0)w = would be 
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inconceivable in the framework of Faraday-Maxwell local field 
which should be locally stored in space with non-zero energy. 
But we adduce here the theorem “For the equality of the Poynting 
vector and Umov vector it is necessary and sufficient that ⊥E H  
and E H= ” which was proved by one of the authors (Augusto 
Espinoza) of the present paper in [3]. The proof is very simple:

Let us study what condition in vacuum for E  and H  in an 
electromagnetic wave must be satisfied when the equality =S U  
is valid. We have in CGS (Gauss’ system):

 and

 

Here n  is a unit vector along the direction of spreading of the 
electromagnetic energy, the transferring energy velocity in the 
case of electromagnetic waves in vacuum is c .

Equating (5) and (6) we obtain 

 Or

According to the problem definition we choose real values 
of ,E H  and α  only, where α  is the angle between E  and H . 
Therefore, the last equality (8) can be valid if and only if E H=  
and / 2α π= . In this work [3] it is described the experiment 
performed by the authors of [3]. So for the case examined by 
us there is an incompatibility between the generally accepted 
definition of the electromagnetic energy density and the 
conventional definition of the energy flux density expressed 
by the Poynting vector. This particular case allows us to affirm 
that, in general, these standard definitions for S  and for U are 
incompatible.

So we must conclude that in our case for the transfer of energy 
along the X-axis from the the oscillating charge ( q+ , for example) 
of the dipole { },q q+ −  to the second charge ( )q−  the Poynting 
vector is not responsible, but only Umov vector.

At the end of this Section, we stress that in the conventional 
electrodynamics longitudinal field components in vacuum do 
not play any role at all and, in fact, they are eliminated from 
consideration by means of appropriate gauge. In Dirac’s own 
words [4]: “...As long as we are dealing only with transverse 
waves, we cannot bring in the Coulomb interactions between 
particles. To bring them in, we have to introduce longitudinal 
electromagnetic waves: The longitudinal waves can be eliminated 
by means of mathematical transformation. Now, when we 
do make this transformation which results in eliminating the 
longitudinal electromagnetic waves, we get a new term appearing 
in the Hamiltonian. This new term is just the Coulomb energy of 
interaction between all the charged particles,

... this term appears automatically when we make the 
transformation of the elimination of the longitudinal waves.” As we 
know from the classical physics, (9) means the existence of bipartite 

instantaneous longitudinal interaction with no potential energy 
stored locally in the interparticle space. What is then the meaning 
of the elimination of longitudinal components in the conventional 
theory? In the following we will try to show that the problem 
of longitudinal components is unreasonably underestimated in 
classical electrodynamics (perhaps by historical reasons). There 
should be a change of attitude towards its status. Mathematical 
and physical reasons in favor of paramount importance of 
longitudinal components to build up a self-consistent classical 
electrodynamics and its possible reconciliation with quantum 
mechanics will be given in next sections.

Mathematical foundations of electrodynamics with 
longitudinal interactions

Let us recall that a complete set of Maxwell’s equations in 
vacuum is

If this system of equations is really complete and boundary 
conditions are adequate, it should describe all electromagnetic 
phenomena without exceptions and ambiguities. It is often 
convenient to introduce potentials, satisfying the Lorentz 
condition

As a result, the set of coupled first-order partial differential 
equations (10)-(13) can be reduced to the equivalent pair of 
uncoupled inhomogeneous D’Alembert’s equations:

Differential equations have, generally speaking, an infinite 
number of possible solutions. A uniquely determined solution is 
selected by laying down sufficient additional conditions. Different 
forms of additional conditions are possible for the second order 
partial differential equations: initial value and boundary-value 
conditions. A general solution of the D’Alembert equation is 
considered as an explicit time-dependent function of the type
( ), tRg . Let us discuss a very subtle point related to the use 

and interpretation of implicit and explicit time dependencies in 
the conventional electrodynamics. We think that as far as this 
problem is not cleared up, the classical theory will remain beset of 
ambiguities. Helmholtz-type approach [5] (see also the paper “The 
Contribution of Hermann von Helmholtz to Electrodynamics” [6]) 
reviewed below makes that distinction very clear.

Special relativity well established that in the stationary 
approximation (charge moving with a constant velocity) all 
fields components are implicit time-dependent functions of the 
type ( )( )f tR . Field lines remain radial in all inertial frames of 
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references and, hence, depend on the instant position of the charge. 
As a consequence, time t is not an independent variable any more 
in this case and enters as a parameter through space position of 
the charge ( )tR . Hence, the use of partial time derivatives / t∂ ∂
, 2 2/ t∂ ∂  etc. (according to their formal mathematical definition) 
is inadequate if a function has not two or more independent 
variables. Nevertheless, in basic texts on classical electromagnetic 
theory partial time derivatives are indiscriminately applied even 
for implicit time dependent functions in the proper sense of total 
time derivatives. (Some clear examples will be done in the next 
Section discussing the use of continuity equation).

Looking back at D’Alembert’s equations (15) and (16), space 
variable R  should be fixed under the action of partial time 
derivative 2 2/ t∂ ∂ . Fixing ( )tR , means that there is no change 
with time t  playing the role of a parameter. Thus, partial time 
derivatives vanish from D’Alembert equation in the case of 
uniformly moving charge. Poisson’s equation for four-vector 
( , )ϕ A with implicit time dependence appears to be appropriate 
one. We especially made a detailed analysis because of confusion 
in conventional texts on classical electromagnetism about 
explicit use of Poisson’s equations for uniformly moving charge 
(but as we have seen, they do it tacitly). It is commonly thought 
that only D’Alembert’s equation (i.e. that only D’Alembert’s 
operator 2 2/ t∆ − ∂ ∂ ) is relativistically invariant under Lorentz’s 
transformations. As we will discuss later in connection with gauge 
invariance, Poisson’s equation in four-vector representation 
( , )ϕ A  (as well as Poisson’s differential operator ∆  )can also be 
considered relativistically invariant when applied to implicit time-
dependent potentials, reproducing all results of special relativity 
for inertial frames of reference. Poisson’s differential operator ∆  
is not covariant but invariant under Lorentz’s transformations. 
Time variable is not any more independent in this case and cannot 
be used for covariant representation of D’Alembert’s differential 
operator. It is endorsed by the well-known fact that covariance is 
not necessary, it is only sufficient for relativistic invariance.

Thus, we can conclude that D’Alembert equations have general 
solutions in form of explicit time-dependent functions whereas 
Poisson’s equations have only implicit time dependent solutions. 
The following question becomes obvious: how any transition from 
D’Alembert and Poisson’s equations is describe d in the conventional 
formalism? As a matter of fact, this question has not even been 
asked because Poisson’s equation has not been recognized as 
covering implicit time-dependent phenomena (it was applied 
exclusively in electro- and magneto-statics with no time 
dependence at all). This question, unexplored by the conventional 
approach, contains a very serious difficulty.

As we shall demonstrate below, a continuous transition 
between solutions of D’Alembert’s and Poisson’s equations, 
respectively, is not mathematically ensured in classic al 
electromagnetism. Based on the premises of a continuous nature 
of electromagnetic phenomena, one can assume that any general 
implicit time solution of Poisson’s equation should be continuously 
transformed into explicit time solutions of D’Alembert’s equations 
(and vice versa). This requirement can also be formulated as a 
mathematical condition on the continuity of general solutions 
of Maxwell’s equations at every moment of time. By force of the 
uniqueness theorem for the second order partial differential 

equations, only one solution exists satisfying given initial and 
boundary conditions. Consequently, the continuous transition 
from solutions of D’Alembert’s equation into solutions of Poisson’s 
equation (and vice versa) should be ensured by the continuous 
transition between respective initial and boundary conditions. 
This is the point where the conventional approach fails again. 
Only implicit time-dependent function ( )( )f tR  can be unique 
solution of Poisson’s equations and boundary conditions for 
external problem are to be formulated in the infinity. On the other 
hand, the solution of D’Alembert’s equation is an explicit time-
dependent function ( )( ), t tRg  since only it fits requirements of 
Faraday-Maxwell’s electrodynamics as a physically sound solution 
for the notion of local (contact) field. The boundary conditions in 
this case are given in a finite region. It makes no sense to establish 
them at the infinity if it cannot be reached by any perturbations 
with finite spread velocity. As far as one deal with large external 
region, effects of boundaries are still insignificant over a small 
interval of time, and, therefore, it is convenient to consider the 
limiting problem with initial conditions for an infinite region 
(initial Cauchy’s problem). This is how in mathematical physics 
areas of infinite dimensions are introduced into consideration.

Let us look carefully at the standard formulation of respective 
boundary-value problems in a region extending to infinity. 
There are three external boundary-value problems for Poisson’s 
equation. They are known as the Dirichlet problem, Neumann 
problem and their combination. The mathematical formulation, 
for instance, for Dirichlet’s boundary conditions requires finding 
a function ( )u r  satisfying [7]

I. Laplace’s equation 0u∆ = everywhere outside the given 
system of charges (currents).

II. Solution ( )u r  is continuous everywhere in the given 

region and takes the given value G on the internal surface 
:S u G

S
= .

III. Solution ( )u r converges uniformly to ( ) 0u r → at infinity: 
( ) 0u r →  as. r → ∞

The final condition (iii) is essential for a unique solution! In 
the case of D’Alembert’s equation the standard mathematical 
formulation is different. Obviously, we are interested only in the 
problem for an infinite region (initial Cauchy’s problem). So it is 
required to find the function ( )( ), u r t t  satisfying [5]: 

a. (j) Homogeneous D’Alembert’s equation everywhere 
outside the given system of charges (currents) for every 
moment of time 0t ≥ .

b. (jj) initial conditions in all infinite regions as follows:

The condition (iii) about the uniform convergence at infinity is 
not mentioned. Recall here that Cauchy’s problem is considered 
when one of the boundaries is insignificant over all time of a 
process. In conventional electrodynamics it means that any 
perturbation with finite spread velocity will never reach the limits 
of the region under consideration during the time of observation. 
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From the conventional point of view, condition (iii) formally 
included into Cauchy’s problem can never affect the solution and, 
hence, might not be taken into account seriously for selecting 
of adequate solutions. In fact in the context of local field, the 
inclusion of the condition (iii) becomes meaningless since only 
explicit time-dependent solutions (retarded waves with finite 
spread velocity) are allowed by conventional electrodynamics 
to solutions of D’Alembert’s equation. On the other hand, we 
underline here that the absence of the condition (iii) for every 
moment of time in the standard mathematical formulation of 
Cauchy’s initial problem does not ensure the continuous transition 
into external boundary-value problem for Poisson’s equation 
and, as a result, mutual continuity between the corresponding 
solutions cannot be expected by force of the uniqueness theorem. 
This unambiguous mathematical fact should be considered as one 
of the most warning signals of possible flaws in the mathematical 
formalism of contemporary Maxwell’s electrodynamics. The 
only way that seems to be obligatory to satisfy the property of 
continuity of electromagnetic field (in other words, to keep the 
continuity in transition between solutions of D’Alembert and 
Poisson’s equations), is the inclusion of the condition (iii) for 
every moment of time in the standard mathematical formulation 
of Cauchy’s initial problem. It obviously ensures the continuous 
transition into external boundary-value problem for Poisson’s 
equation (and vice versa) and implies a structure of a general 
solution as a superposition of separate non-reducible to each 
other functions of the type.

When we apply it to potentials, this statement takes the form:

Where for one charge system ( ) ( )
q

t t= −R r r ; r is a fixed 
distance from the point of observation to the origin of the 
reference system and ( )

q
tr  is the position of the charge at the 

instant t .

The presence of the condition (iii) in the formulation of 
Cauchy’s problem turns out to be meaningful for any moment of 
time, and the corresponding boundary conditions keep continuity 
in respect of mutual transformation. That makes the condition 
(iii) irremovable from the formulation of initial Cauchy’s problem 
resulting in fundamental (irremovable) nature of implicit time-
dependent (or longitudinal) components */ t∂ ∂H   responsible 
for the interparticle interaction. Potentials with explicit time-
dependence *ϕ  and *A  vanish in the steady-state case, leaving 
only implicit time-dependent functions 

0
ϕ  and 

0
A  in the total 

potential (left-hand side of (18) and (19)). Now, contrary to the 
conventional approach, it is clear how the total solution ϕ  (or
A ) in left hand side of (18), (19) with explicit time dependence 
undergoes transformations into solution with implicit time 
dependence (and vice versa). Faraday-Maxwell’s approach does 
not allow to take into account the first term in right-hand side of 
(18), (19) as full-value part of any general solution. Turning to 
the above-mentioned ambiguity at the beginning of the previous 
section, we see now that the novel solution in form of (18), (19) 
can describe the change of electric field component along the 
X-axis at any distance and at any time. It casts doubts on the 

general belief that Lienard-Wiechert potentials (as only explicit 
time-dependent solutions of D’Alembert’s equations for Cauchy’s 
problem) should be considered as unique general solutions 
to Maxwell’s equations regardless the context of boundary 
conditions. In fact, Lienard and Wiechert formulated the initial 
Cauchy problem for electromagnetic components several years 
before the appearance of Einstein’s principle of relativity. Thus, 
a priori imposed boundary conditions were not assumed to have 
adequate relativistic properties. This is another open question 
in the conventional approach whether relativistic requirements 
should be reflected in the mathematical formulation of the initial 
boundary problem. In this respect, we only stress that additional 
condition (iii) is such an invariant because it is irremovable and 
unchangeable in every frame of reference.

Let us consider again a pair of uncoupled inhomogeneous 
D’Alembert’s equations (15), (16) with initial conditions (j), (jj) 
and (iii). F or some purposes, it is convenient to decompose (15), 
(16) into two pairs of second order differential equations for each 
component of general solution of (15), (16):

 and

with initial and boundary conditions given, for instance, in the 
case of electric potential. The equation (20), apart from (iii), is 
supplemented by

Whereas (22) has to be added with

In the theory of differential equations any complete solution 
of (15), (16) consists of a general solution of homogeneous 
D’Alembert’s equation plus some particular solution of the 
inhomogeneous one. Thus, we can assume that the same 
procedure can be applied to its equivalent formulation in form 
(20)-(23). On one hand, a complete solution should be formed 
by two independent general solutions satisfying homogeneous 
Poisson’s and homogeneous wave equations, respectively, and, on 
the other hand, it has to include one particular solution (as a linear 
combination of non-reducible components (18), (19), satisfying 
inhomogeneous D’Alembert’s equations (15,16). Relationship 
between both components (longitudinal and transverse) of 
electromagnetic field is guided by (25) and (26) and is contained 
in the particular solution of inhomogeneous D’Alembert’s 
equations. A more comprehensive study of the matter will be 
done elsewhere.
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Thus, the initial set of Maxwell’s equations has been 
decomposed into two pairs of equations with independent 
general solutions for each pair that are coupled only through 
the partial solution of the whole set of equations (20)-(23) or 
(15), (16). The first pair (20), (21) manifests the instantaneous 
and longitudinal aspect of electromagnetic interactions (action-
at-a-distance) while the second one (22), (23) characterizes 
explicit time-dependent phenomena related to the propagation 
of transverse waves (light, radiation etc.). It is obvious thus that 
Helmholtz’s basic ideas are fundamentally compatible with 
Maxwell’s equations. The potential separation (18), (19) implies 
the same procedure with respect to the field strengths,

Where 
0

E  and 
0

B  are instantaneous longitudinal fields.

To finish this Section we would like to mention that Villecco’s 
independent analysis endorsed our claims on discontinuity 
problem in the classical electromagnetic theory. He found that 
[8]: “ ...the transition between two different states of uniform 
velocity via an intermediate state of acceleration results in a type of 
discontinuity in functional form: Though no known law is violated 
in this processes, there is a sense of intrinsic continuity which is 
nevertheless violated...”

Mathematical inconsistencies in the formulation of 
Maxwell-Lorentz equations for one charge system

To understand what is happening inside a dipole with transfer 
of energy and momentum from one dipole charge to another, we 
must first understand what is happening to one charge in terms of 
the conventional electrodynamics, when it moves.

Let us come back again to the original set of Maxwell’s equations 
(10)-(13) for the reference system at rest supplemented by the 
continuity equation

In the phenomenological theory of electromagnetism the 
hypothesis about the continuous nature of the medium was 
one of the foundations of Maxwell’s theoretical scheme. This 
point of view succeeded in uniting so many electromagnetic 
phenomena without the necessity to consider a specific structure 
of matter. Nevertheless, a macroscopic character of the charge 
conception defines all well-known limitations on Maxwell’s 
theory. For instance, the system of equations (10)-(13) in a steady 
state approximation corresponds to a quite particular case of 
continuous and closed conduction currents (motionless as a 
whole).

In 1895, the theory was extended by Lorentz for a system of 
charged particles moving in vacuum. Since then it has been widely 
assumed that the same basic laws are valid microscopically as it 
is macroscopically in the case of original Maxwell’s equations. 
This means that in Lorentz form all macroscopic values of charge 
and current densities have to be substituted by their microscopic 
values. Let us write explicitly the Lorentz field equations for one 
charged point particle moving in vacuum [2]:

Where ( )
q

tr  is the coordinate of a charge at the moment of 
time t .

In order to achieve a complete description of a system consisting 
of fields and charges in the framework of electromagnetic theory, 
Lorentz supplemented (30)-(33) by the equation of motion:

where p is the momentum of the particle.

The equation of motion (34) introduces an expression for the 
mechanical force known as Lorentz force which in the electron 
theory formulated by Lorentz has a clear axiomatic and empirical 
status. Later on we shall discuss some disadvantages related with 
the adopted status of the Lorentz force conception.

Macroscopic Maxwell’s equations (10)-(13) may be obtained 
now from Lorentz’s equations (30)-(33) by some statistical 
averaging process, using the structure of material media. The 
mathematical language for equations (30)-(33) is nowadays 
widely accepted in the conventional classical electrodynamics. 
However, there is an ambiguity in the application of these 
equations to the case of one uniformly moving charge. A 
simple charge translation in space produces alterations of field 
components. Nevertheless, they cannot be treated in terms of 
Maxwell’s displacement currents. Strictly speaking, in this case 
all Maxwell’s displacement currents proportional to / t∂ ∂E  and 

/ t∂ ∂H  vanish from (32), (33). This statement can be reasoned in 
two different ways:

1. / 0t∂ ∂ =E  and / 0t∂ ∂ =H , since all field components 
of one uniformly moving charge are implicit time-dependent 
functions (time does not enter as an independent parameter 
but only through space variable) so that from the mathematical 
standpoint only total time derivative makes sense in this case 
whereas partial time derivative turns out to be not adequate (time 
and distance are not independent variables); 2. A non-zero value 
of */ t∂ ∂E and */ t∂ ∂H  would imply a local variation of fields in 
time regardless any change in the position of the charge (space 
coordinate is fixed when partial time derivative is taken) and, 
hence, would imply the propagation of those local variations in 
form of transverse electromagnetic waves.

This would strongly contradict the well-established in special 
relativity fact that one uniformly moving charge does not produce 
any electromagnetic radiation at all.

Thus, a mathematically rigorous interpretation of (32), (33) 
in the case of a charge moving with a constant velocity leads to 
the following conclusion: in a charge-free space the value of 
* / 0t∂ ∂ =E  and, therefore, the value of ∇ × H  is also equal to 
zero in free space.

( ) ( )( ) ( ) ( )*

0
 , , ,                                         27t t t= +E r E R E r

( ) ( )( ) ( ) ( )*

0
 , , ,                                        28t t t= +B r B R B r

( )( ) ( ) 4 ,                                          30qq tπ δ∇ ⋅ = −E r r

0,                                                          (31)∇ ⋅ =H

( )( ) ( )4 1
,                            32qq t

c c t
π

δ
∂

∇ × = − +
∂
E

H v r r

( )1
,                                                  33

c t
∂

∇ × = −
∂
H

E

( ) ( ),                                          34
d q

q
dt c

= + ×
p

E v H

( )0 .                                                           29
t

∂
+ ∇ ⋅ =

∂
j

ñ
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On the other hand, field components of one uniformly moving 
charge can be treated exactly in the framework of Lorentz’s 
transformations. Therefore, for any purpose exact relativistic 
expressions for electric and magnetic fields and potentials should 
be applied [2].

Where / .c= vβ

Thus, we arrive here at the important conclusion: generally 
speaking, according to special relativity theory the value of ∇ × H  
is not equal to zero in any point out of moving charge and takes a 
well-defined value.

For instance, this gives immediately a non-zero value of ∇ × H  
along the direction of motion (X-axis):

The conflict with the previous statement of the equation 
(31) is inevitable. In order to obtain adequacy between the set 
of field equations (30)-(33) and their relativistic solutions in the 
case of uniformly moving charge, it is necessary to consider an 
additional term like that considered in (38). As will be shown in 
continuation, this assumption for static and quasi-static fields 
is a supplement of Maxwell’s displacement currents introduced 
for explicitly time varying fields (explanation of the light as the 
propagation of transverse electromagnetic waves).

As it is well-known, the necessity of Maxwell’s displacement 
current was realized on the basis of the following formal 
reasoning. In order to make equation (8) consistent with the 
electric charge conservation law in form of continuity equation 
(29), Maxwell supplemented (12) with an additional term. 
However, for stationary processes, as we already have seen, this 
term disappears and equation (12) becomes consistent only with 
closed (or continuous going off to infinity) currents.

It is also a direct consequence of continuity equation (29) 
in any stationary state when all magnitudes have to be treated 
as implicit time-dependent functions. Thereby, we meet here 
another difficulty of Lorentz’s equations: uniform movement of 
a single charged particle (as an example of open steady current), 
generally speaking, does not satisfy the limitations imposed by 
(40). It implies some additional term to be taken into account in 
(40) to fulfil Maxwell’s hypothesis on the circuital character of 
total currents (conduction plus displacement currents).

Let us have a close look on the continuity equation and its 
conventional interpretation. In developing the mathematical 

formalism of his theory Maxwell adopted Faraday’s idea of field 
tubes for electric and magnetic fields as well as for electric charge 
flow (conduction currents). As a consequence, in accordance with 
hydrodynamics language, the continuity equation was accepted 
as valid to express the hypothesis that a net sum of electric charge 
could not be annihilated. In this case, the continuity equation 
reproduces the charge conservation law in the given fixed volume 
V .

Or in the form of a differential equation

It should be remarked that equation (42) describes exclusively 
the conservation but not the change of the amount of charge (or 
matter) in the given volumeV . In many scientific writings on 
electromagnetic theory there is no clear distinction between these 
two aspects. If one wants to describe the change of something in 
the given volumeV , the equation (41) should be replaced by a 
balance equation (see, for instance, [9])

Here j  is a total current of electric charges through a surface 
S  that bounds the given volumeV . In the mathematical language 
common to all physical theories it means that the rate of increase 
in the total quantity of electrostatic charge within any fixed 
volume mathematical language common to all physical theories it 
means that the rate of increase in the total quantity of electrostatic 
charge within any fixed volume V  is equal to the excess of the 
influx over the efflux of current through a closed surface S . On 
contracting the surface to an infinitesimal sphere around a point 
one can arrive at the differential equation [9].

The balance equation (43) covers the continuity equation (42) 
as a particular case in which the amount of something (charge or 
matter) is kept constant in V during the course of time. Earlier 
we mentioned that a single charge in motion, generally speaking, 
could not be treated in terms of the continuity equation (42). 
When the particle leaves the given volume, it violates locally the 
charge conservation, invalidating the continuity equation (42). 
Instead of it the balance equation (43) has to be used. One simple 
method to prove that is to consider again the example of point-
charge moving with a constant velocity. In particular, the charge 
density is assumed to have implicit time dependence as follows.

Where r  is a fixed distance from the point of observation to 
the origin of the reference system at rest; ( )

q
tr  and /

q q
d dt=v r  

are the distance and the velocity of the charge at the instant.

It is easy to show that the total density derivative with respect 
to time consist of the convection term only , since time enters in 
equation (44) as a parameter : ( )/ 0t∂ ∂ =

( )( ) ( )4
.                                   35qq t

c
π

δ∇ × = −H v r r

( ) ( )1
 ,                                           37
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= ×H v E

( )( ) ( )1
   .                                  38
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∇ × = ∇× ×H v E

( )( )

( )
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2

3

1
  ,                                    36

R
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R
E

β− −
=

−

R

R

β

β

( ) 0                             41
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dQ
dV

dt t
∂ = +∇⋅ =∫∫∫  ∂ 

j

( )0 ,   0 .                                  42dQ
t dt

∂  + ∇ ⋅ = = ∂  
j
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,                               43
V S
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dV dS
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( )0 ,   0 .                                         43dQ
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j
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( )( ) ( )( ) ( ), ,                                      44q qt q tδ= −r r r r

( )0.                                                    40∇ ⋅ =j

( )( ) ( ) ( ).                        45q
d d t qdt t dt

∂  = + − ∇ =− ⋅∇ ∂  
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2 1
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Thus, the balance equation for a single charged particle is 
fulfilled directly:

The next step is to analyze equation (45) in terms of Maxwell’s 
hypothesis in respect to the circuital character of the total electric 
current (including displacement current). In other words, the 
total current of one uniformly moving charge has to be formed 
by two contributions: the motion of the charge itself (conduction 
current) and displacement current in outer space:

Where 
cond

j  and 
displ

j  are conduction and displacement 
currents, respectively.

Thus, we can rewrite (43) in the form of equation (47).

It may be easily verified that two field operations ∇  and  
are completely interchangeable in (48). Thus, for general motion 
of the charge when one can disregard its size, Maxwell’s condition 
on a total current takes the following form (see for the sake of 
comparison the formula (45)) taking into account the standard 
expansion of the total time derivative (the index for ∇  indicates 
which of the functions it operates on):

Here a is acceleration and further terms correspond to 
derivatives of non-uniform acceleration. So far we have made 
use of the formal mathematical approach without any physical 
interpretation. More specifically, in calculating the full time 
derivative of E , the convective term (second right-hand term 
in (49)) should be considered as implicit time-dependent (time 
variable is fixed when space partial derivative is taken) in 
agreement with the mathematical definition of partial derivatives. 
In mathematical language it means that all field alterations 
produced by a simple charge translation (convective part of the 
total derivative) take place at the same time in every space point 
(i.e. instantaneously). This interpretation has no precedents in 
conventional classical electrodynamics for the case of arbitrary 
motion whereas for uniformly moving charge this description 
is the only possible formalism (in special relativity field lines of 
uniformly moving charge remain radial, i.e. exhibit no retardation 
in respect to the space position of the charge). Turning back to 
(49), it is clear that the first right-hand term with partial time 
derivative describes explicit time-dependent phenomena. Thus, in 
the same way as it was independently concluded in the Section 2, 
all field components can be split up into two independent classes 
with explicit *E  and implicit 

0
E  time dependencies, respectively:

A general expression of full displacement current is then taken 
by the formula:

Let us stress here one subtle point which will be indispensable 
in the following discussion of relativistic invariance properties 
of the Helmholtz-type approach. The derivation of (50) has 
considered the partial time derivative to be independent from 
the space derivative in full agreement with the mathematical 
formalism of partial derivatives. Thus, the time parameter of 
implicit time-dependent components (let us call it t ) comes into 
consideration as an afterthought through the space variable ( )R t  
and, therefore, can be, in principle, considered as independent 
from the time variable of explicit time-dependent components (in 
special relativity this is the so-called proper time τ ). As we will 
discuss later, special relativity does not distinguish these two time 
dependences and tacitly implies t τ=  that leads to the Lorentz 
invariance of electromagnetic field components. In order to come 
back to the previous discussion of the displacement current 
concept, let us remind that our initial aim was to find a reasonable 
form for Maxwell’s circuital condition (50). It would allow relating 
field alterations in free space produced by one moving charge 
with the Maxwell conception of displacement current. From the 
standpoint of conventional classical electrodynamics, the first 
term represents the well-known Maxwell displacement current 
coming up only in non-steady processes whereas the second term 
can be interpreted only as quasistationary due to its dependence 
on a charge translation in space (with time as implicit parameter). 
Further, we will call that term as “convection displacement 
current”. By the same token, the third right-hand term is due to 
uniform acceleration and could be called “uniform acceleration 
displacement current” etc.

The above results motivate an important extension of 
displacement current concept. First, it postulates the circuital 
character of the total electric current as it was originally assumed 
by Maxwell. Second, it permits to fulfil the circuital condition 
for non-steady as well as for steady processes (static and 
quasistatic fields), contrary to the conventional approach. Let 
us give an equivalent mathematical expression of the convection 
displacement current (in the case of single charged particle):

Accordingly, for our purpose we need to remind that in the 
right-hand side of equation (32) the total current ( )tot cond displ= +j j j  
must be considered as:

For the sake of simplicity we omit acceleration and other 
expansion terms in this general formula but they are tacitly 
implied. This approach allows the treatment of equation (33) in 
the same way as (32):

Turning back to the beginning of this Section we note now that 
for uniform motion ∇ × H  is defined by (53) in every space point 
out of the charge in the expected way (see (38)). As a final remark, 
the set of equations (30), (31) and (53), (54) can be regarded as 
a generalized form of Maxwell-Lorentz system of field equations. 
In the next section they will be compared with modified Maxwell-
Hertz equations extended on one charge system.

( ) ( )cond displ 0,                                             47∇ ⋅ + =j j

( ) ( ) ( )
displ

1
,                49

4 r vtπ
 ∂ ∇ ⋅ = ∇⋅ − ⋅∇ − ⋅∇ −…  ∂  

Ej v E a E

( ) ( ) ( )
*

0 0
                           50r v

d
dt t

∂
= − ⋅∇ − ⋅∇ −…

∂
E E

v E a E

( ) ( ) ( )
*

displ 0

1 1 1
                   5104 4 4r vtπ π π

∂
= − ⋅∇ − ⋅∇ −…

∂
E

j v E a E

( ) ( ) ( )( ) ( )1 1 1
 .                                 52

c c c
⋅∇ = ∇⋅ − ∇× ×v E v E v E

( )( ) ( ) ( )( ) ( )4 1 1 1
                         53  qq t

c c t c c
π

δ
∂

∇ × = − + − ∇⋅ + ∇× × +…
∂
E

H v r r v E v E

( ) ( ) ( )( ) ( )1 1 1 1 1
                     54

c t c c t c c
∂ ∂

∇ × = − + ⋅∇ = − + ∇⋅ − ∇× × +…
∂ ∂
H H

E v H v H v H

( ) ( ) ( ) ( ) ( )0.                   46q q q q− ⋅∇ +∇ =− ⋅∇ + ⋅∇ =v v v v   

( )
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4

d d
dt dt π

 ∇ ⋅ = = ∇⋅ 
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Reconsidered Maxwell-Hertz theory and relativistic 
invariant formulation of generalized Maxwell’s 
equations

Independently of Heaviside, the problem of the modification 
of Maxwell’s equations for bodies in motion was posed by Hertz 
in his attempts to build up a comprehensive and consistent 
electrodynamics [8,9]. A starting point of that approach was the 
fundamental character of Faraday’s law of induction represented 
for the first time by Maxwell in the form of integral equations.

Where C is a contour, S  is a surface bounded by C .

In qualitative physical language Faraday’s observations had 
been expressed in form of the following statement: the effect 
of magnetic induction in the circuit C  takes place always with 
the change of the magnetic flux through the surface S regardless 
whether it relates to the change of intensity of adjacent magnet or 
occurs due to the relative motion. Moreover, Faraday established 
that the same effect was detected in a circuit at rest as well as 
in that in motion. The latter fact provided the principal basis of 
Hertz’s relativity principle based on Galileo invariance. In order 
to avoid details of Hertz’s original investigations [10,11], let 
us only note its similarity with the traditional non-relativistic 
treatment of the integral form of Faraday’s law [12]. Namely, if the 
circuit  is moving with a velocity v in some direction, the total 
time derivative in (53), (56) must take into account this motion 
(convection derivative) as well as the flux changes with time at a 
point (partial time derivative) [12].

Where S is any surface bounded by 
circuit C ,moving together with a medium. 

This approach is valid only for non-relativistic consideration 
and leads to Galilean field transformation (46). In Hertz’s theory 
any motion of the ether relative to the material particles had not 
been taken into account, so that the moving bodies were regarded 
simply as homogeneous portions of the medium distinguished 
only by special values of electric and magnetic constants. Among 
the consequences of such assumption, Hertz saw the necessity 
to move the surface of integration in equations (55), (56) at 
the same time with the moving medium. Thus the generation 
of a magnetic (or electric) force within a moving dielectric was 
calculated with implicit use of Galilean invariance in equation 
(57) unless one makes any additional assumptions on the special 
character of transformations in a moving frame of reference. 
Recently, T. Phipps Jr. again drew attention to the failure of 
Maxwell’s equations in partial time derivative to describe first-
order effects related to convective terms of total time derivatives 
[13,14]. He proposed to revive Hertz’s Galilean-invariant version 

of Maxwell’s theory written in total time derivatives. He only 
differs from Hertz’s own interpretation of the velocity parameter. 
However, in this review we shall show how total time derivatives 
can be compatible with the requirements of special relativity in 
inertial frames of reference.

Let us now examine the case of a point source of electric 
and magnetic fields. In order to abstain from the use of moving 
contour C  and surface S  that implies a priori application of 
some relativity principle (Galileo’s or Einstein’s), we limit our 
consideration to a fixed region ( S  and S  are at rest) whereas the 
source is moving through a free space. According to Faraday’s law, 
there must be an electromotive force in the contour C  due to the 
flux changes with time and convection derivatives simultaneously. 
Using the mathematical language for total time derivatives, we 
arrive at the expression analogous to the differential form (50).

Making use of the definitions:

 

and

Where r  is a fixed distance from the point of observation to 
the origin of the reference systems at rest; ( )

S
tr , /

S S
d dt=v r

, /
S S

d dt=a v  are the distance, the instant velocity, the instant 
acceleration of the electric (or magnetic) field source.

For the sake of simplicity, we can conserve for the present 
the same denomination of field flux in two independent parts of 
total time derivative (59), taking into account additional (fixed 
space and fixed time) conditions, respectively, in the following 
expression:

Using a well-known representation for the convection part in 
equation (59),

We obtain an alternative form of Maxwell’s integral equations 
(55), (56) for a moving electric charge in the reference system at 
rest.
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Here we omit, for the sake of simplicity, acceleration and other 
expansion terms in general formula but they, of course, are tacitly 
implied.

Before going on to a more general consideration of a large 
number of sources, it is worth to draw attention that we arrived 
to the most compact differential form of Maxwell- Hertz equations 
in the reference system at rest [15].

Where the total time derivative of any vector field value E  (or
H ) is,

The above-mentioned form (65)-(68) was for the first time 
admitted by Hertz for electrodynamics of bodies in motion [10,11]. 
It was the covering theory for Maxwell’s original approach which 
became the limit case of motionless medium (a reference system 
at rest) when values of instant velocity v , instant acceleration  
a etc. tend to zero in (69) leaving only partial time derivatives 
in agreement with (10)-(13). The difference of the present 
approach [15] with Hertz’s covering theory (and with Phipps’ 
neo-Hertzian approach [13,14]) consists in the definition of the 
total time derivative (66) for a medium at rest (not in motion 
with the possible implication of Galilean invariance). Below we 
shall demonstrate that the set (65)-(68) possesses invariance 
properties in any inertial frame of reference. 

There is no difficulty in extending this approach to a many 
particle system, assuming the validity of the electrodynamics 
superposition principle. This extension is important in order to 
find out whether the generalized microscopic field equations 
cover the original (macroscopic) Maxwell’s theory as a limiting 
case. To do so one ought to take into account all principal 
restrictions of Maxwell’s equations (10)-(13) which deal only 
with a continuous and closed (or going off to infinity) conduction 
currents. They also have to be motionless as a whole (static tubes 
of charge flow), admitting only the variation of current intensity.

Under these assumptions, it is quite easy to show that the total 
(macroscopic) convection and others displacement currents are 
cancelled by itself by summing up all microscopic contributions,

( ) ( )

( ) ( )
( )                                           70

i i i v i
i

i i i v i
i

⋅∇ + ⋅∇ +…∑

⋅∇ + ⋅∇ +…∑

v E a E

v H a H

In other words, every additional terms in (53), (54) (as well 
as in (63), (64) disappears and we obtain the original set of 
Maxwell macroscopic equations (10)-(13) for continuous and 
closed (or going off to infinity) conduction currents as a valid 
approximation. To conclude this part we would like to note that 
the set of equations (63), (64) can be called as modified Maxwell-

Hertz’s equations extended to one charge system. It is easy to 
see that in this form they are completely equivalent to modified 
Maxwell-Lorentz equations (53), (54) obtained with the help of 
the balance equation. Thus, differential and integral approaches 
to extend the original Maxwell theory lead to the same result.

Let us write once again the generalized form of Maxwell-
Lorentz equations explicitly for a single moving particle that is a 
source of electric and magnetic fields simultaneously,

At the same time with the balance equation,

Splitting up field components into explicit and implicit time-
dependent contributions ( )* *E H  and ( )00

 E H , respectively , the 
basic field equations (73), (74) can be rewritten as follows:

Where the total field values have two independent parts,

Here we note that implicit time-dependent field components 

0
E  and 

0
H  depend only on the point of observation and on the 

source position at an instant whereas time varyingfields *E  and 
*H  depend explicitly on time at a fixed point. The separation 

procedure may be similarly extended to the electric and magnetic 
potentials introduced as

( ) ,       ,                                                 80ϕ= −∇ = ∇ ×E H A

Where

( )* *

0 0
,    .                                          81ϕ ϕ ϕ= + = +A A A

Let us establish invariance of field equations in total time 
derivatives. As far as in special relativity the invariance is looking 
for inertial frames of reference moving with a constant velocity 
v , then in total time derivative expansion we should omit all 

acceleration and higher order terms. Thus, using definitions (80), 
(81) we obtain from equation (77) that

Separation of implicit time-dependent from explicit time-
dependent components in (82) is straightforward
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Using this separation we obtain two second order differential 
equations for total potentials (81)

Where

The second term in (86) can be easily transformed using 
mathematical operations of field theory,

Since ( )∇ ×∇ …  is always equal to zero, we can rewrite F  in 
a new form,

The principal feature of (89) consists in the fact that all implicit 
and explicit time-dependent components of total electric and 
magnetic potentials enter independently and, therefore, can be 
characterized by respective gauge conditions,

Lorentz’s gauge (91) is applicable now only for explicit 
time-dependent potentials and is invariant under Lorentz’s 
transformations. It suggests that the proper time τ  (let us call 
here the time τ  variable of explicit time-dependent components 
in the entire spirit of the special relativity theory) for two inertial 
frames moving with respect to each other are related by an 
imaginary rotation in space-time. The amount of rotation depends 
on the relative velocity. Implicit time-dependent potentials turn 
out to be related through the novel gauge (90) which covers the 
well-known relationship between the components of electric and 
magnetic field potentials of uniformly moving charge [2],

Strictly speaking, this relationship is true for Galilean as well 
as for Lorentz’s transformations. The difference is attributed 
to a mathematical formulation of potentials in a new frame of 
reference. For instance, the Lorentz transformation corresponds 
to a rotation in the space-time plane whereas the Galilean one 
leaves 

0
A  and 

0
ϕ  unchanged, for it is assumed that no operation 

can rotate the time axis into the space axis or vice versa. For 
Galilean invariance, the time direction is supposed to be the same 
for all inertial frames of reference.

The expression (90) and all physically possible transformations 
based on it, do not involve explicitly any time dimension. The time 
t  here can be added as an afterthought (a parameter describing 
the space coordinate ( )tR ). In above discussion of full time 
derivative we noted that time variable τ  (for explicit) and time 
parameter t (for implicit time behaviours) are, generally speaking, 
independent. If we assume, as they do it tacitly in special relativity 
with no distinction of time behaviours, that both time variables 
are identical t τ=  then we arrive to the implication of Lorentz’s 
invariance for 

0
A  and 

0
ϕ . Without additional hypothesis, the 

present Helmholtzian approach cannot rule in favour of Galilean 
or Lorentz’s transformations for implicit time dependences. The 
novel gauge (90) as well as (92) is compatible with both of them. 
The only way of resolving this dilemma now seems to be to suggest 
experimental verification of electric field transformation in a 
moving frame. In fact, Leus recently proposed such experiment 
[16]. A uniform beam of electrons moving with the velocity close 
to  has to produce electric field strength which differs for Galilean 
and Lorentz transformations.

Two gauge conditions (90) and (91) can be written jointly in 
a more compact formula that we can call the generalized Lorentz 
condition.

Where 
0

A  and 
0

ϕ  are defined by (81) and the total time 
derivative is taken as in (69) up to the convection term. We have 
not done it yet and will do it elsewhere but, perhaps, it is possible 
to prove that generalized Lorentz gauge (93) is valid also for 
non-inertial frames (acceleration and higher order terms in the 
total time derivative expansion). It would have a very attractive 
consequence that the field equations (65)-(68) written in total 
time derivatives could be considered invariant regardless a 
frame of reference (inertial or non-inertial). Recall that in special 
relativity, electric and magnetic potentials of uniformly moving 
charge 

0
A  and 

0
ϕ  are interrelated through the relationship (92) 

under application of Lorentz transformation. Here we found that 
relativistic potentials (or components of potential four-vector) are 
connected in a more general way (90). Another important aspect 
of the present approach can be attributed to the verification of 
some ambiguity in the use of Lorentz gauge since it is applicable 
only to explicit time-dependent potentials. In fact, there are 
some difficulties in the conventional electrodynamics concerning 
the inconsistency of this gauge with implicit time-dependent 
functions. The standards Lorentz gauge condition is assumed 
to be valid for total electric and magnetic potentials (transverse 
plus longitudinal) and is considered suffice to hold Maxwell’s 
equations invariant under Lorentz transformation. In the quasi-
stationary approximation, the Lorentz condition in every frame 
of references takes the form of the so-called radiation gauge [17].
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It contradicts the expected relation (92) (or in our approach 
(90)) between electric and magnetic implicit time-dependent 
potentials. To make (95) consistent with (92) in the given frame, 
they used to put an additional condition on the electric potential 
satisfying the so-called Coulomb gauge [17].

In mathematical language the invariance of implicit time-
dependent fields in the conventional approach involves more 
strong limitations than those imposed previously by the 
Lorentz gauge. Generally speaking, the conventional classical 
electrodynamics has to admit more than one invariance principle 
since every time the Lorentz transformation is done, one needs also 
simultaneously to transform all physical quantities in accordance 
with the Coulomb gauge (96). This problem was widely discussed 
and in the language adopted in the general Lorentz group 
theory, is known as gauge dependent representation (or joint 
representation) of the Lorentz group [17]. In fact, it means an 
additional non-relativistic adjustment of electric potential, every 
time we change the frame of reference. This difficulty vanishes 
when the relativistic gauge (90) for implicit time-dependent 
potentials is introduced. A rigorous consideration of (84), (85) 
gives another important conclusion: simultaneous application of 
two independent gauge transformations (90), (91) discomposes 
the initial set (71)-(74) into two pairs of differential equations, 
namely.

At the same time with the homogeneous wave equations,

Likewise (92), Poisson’s second order differential equations 
(97), (98) for electric and magnetic potentials covers the 
conventional approach in the steady-state approximation and 
can be considered as valid extension to implicit time-dependent 
potentials. A general solution, as one would expect, satisfies a pair 
of uncoupled inhomogeneous D’Alembert’s equations. It can be 
verified by summing up (97), (98) and (99), (100) (here we omit 
premeditatedly all boundary conditions for the sake of simplicity).

Where the total values A  and ϕ  are defined by (81). The same 
result has been derived in the Section 2 independently, starting 
from the analysis of boundary conditions for inhomogeneous 
D’Alembert’s equations [18]. It has been shown mathematically 
that any general solution of Maxwell’s equations has to be 
obligatory written as a superposition of implicit and explicit time-
dependent functions. The above analysis endorsed that conclusion 

by demonstrating relativistic invariance of (101), (102) and, 
therefore, (71)-(74), if and only if the relativistic gauge condition 
(96) is satisfied by respective components of the total field. Thus, 
the covering theory based on the total time derivatives possesses 
all necessary relativistic symmetry properties. To conclude this 
section, some remarks worth to be done concerning the empirical 
and axiomatic status of the Lorentz force concept in the electron 
theory formulated by Lorentz. In the first version of Maxwell’s 
theory published under the name “On Physical Lines of Force” 
(1861-1862) there was already admitted an unified character of a 
full electromotive force in the conductor in motion by describing 
it as [19,20].

Where (1) the first term is the electrostatic force, (2) the 
second one is the force of magnetic induction and (3) the third 
one is the force of electromagnetic induction due to the conductor 
motion. Later investigations began to distinguish between 
the electric force in a moving body and the electric force in the 
ether through which the body was moving and as a result, did 
not consider 

1
c

×v H  as a full-value part of the electric field, 
as afterwards was argued by Hertz. This distinction was one of 
the basic premises in Lorentz’s electron theory and was closely 
related to the special status of the Lorentz force conception. It 
also can be noted in the way how it forms part the formalism of 
the conventional field theory . The equation of motion with total 
time derivative (34) should be contrasted from the form of partial 
differential equations (30)-(33). It does not correspond to the 
mathematical structure of a consistent system.

In special relativity the Lorentz force, is the result of the 
transformation of the components of Minkowski’s force. Thus, 
the expression for the Lorentz force can be obtained in a purely 
mathematical way from the general relativistic relationships 
[2]. In the present Helmholtz-type approach the Lorentz force is 
one of the terms in the total time derivative expansion. This has 
advantage to be consistent by itself with the set of generalized 
field equations. There is no need to supplement Maxwell’s theory 
with equation of motion. Given such interpretation of Lorentz’s 
force, we remind that in our approach it can be related only to 
implicit time-dependent components whereas in the conventional 
electrodynamics it was the product of the total magnetic field 
leading to some ambiguities. In this respect it is interesting 
to mention very recent works by Wesley [21] and Phipps [22] 
challenging the sufficiency of the Lorentz force law to describe 
experimental observations. They advocated the use of total time 
derivatives (in the above-mentioned neo-Hertzian sense) and 
their data roughly agreed with theoretical predictions, while the 
conventional theory does not predict any effect at all.

Analysis of classical difficulties and the Hamiltonian 
form of generalized Maxwell’s equations

Maxwell’s equations in the form of D`Alembert’s equations 
lends them to the covariant description and are in agreement with 
the requirements of special relativity mathematical formalism. 
For four-vectors of separated potentials, the standard four vector 
form of basic equations can be used. We immediately have the 
following expressions:
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where

The first Poisson’s operator ∆  acts only on the four-vector 
of implicit time-dependent components 

0µ
A  whereas ∆  and 

2 2/ t∂ ∂  act together on explicit time-dependent components 
*

µ
A . The equation (104) is relativistically invariant under the 

generalized relativistic Lorentz gauge condition (93). T o give 
some substance to the above formality we exhibit explicitly 
Poisson’s equation for implicit time-dependent four-vector 

0µ
A .

where

As we demonstrated in the previous Section, equation (106) is 
relativistically invariant under the Lorentz gauge (86) if the time 
parameter τ  here is considered identical to the time variable τ  
for explicit time components *

µ
A . Under this condition, Poisson’s 

differential operator ∆  acting on implicit time-dependent 
potentials becomes invariant in every inertial frame of reference 
under Lorentz’s transformations. This is due to the fact that time 
variable t  is not any more independent from τ  as it is assumed 
for partial derivatives in full time derivative formalism. Non-
covariant representation of D’Alembert differential operator 

2 2/ t∆ − ∂ ∂  or, in other words, non-covariance of equation 
(106) is not a stumbling block here for relativistic invariance and 
endorses the well-known fact that covariance is not necessary, it 
is only sufficient for relativistic invariance.

Moreover, it is tacitly implied in the conventional approach and 
corresponds to the relativistic invariance of field components of 
an uniformly moving charge (implicit time-dependent functions) 
that remain radial lines of electric field regardless the choice of 
inertial frame. This fact is odd to contemplate in the Faraday-
Maxwell electrodynamics based on the concept of local (contact) 
field which mathematically fits explicit time- dependent behavior. 

Actually, electric field lines of an unmoving charge are 
radial. Under Lorentz’s transformation into the inertial frame of 
reference moving with the velocity  explicit time- dependence 
does not appear and field lines remain radial. Without any 
approximation, the influence of a possible retarded effect cancels 
itself at any distance from the moving charge. On the other 
hand, the conventional theory is unable to give any reasonable 
interpretation describing a transition from a uniform movement 
of a charge into an arbitrary one and then again into uniform 
over a limited interval of time. In this case, the first and the latter 
solutions can be given exactly by the Lorentz transformation as 
implicit time-dependent functions. What mechanism changes 
them at a distance unreachable for retarded Lienard-Wiechert 
fields? The lack of continuity between the corresponding solutions 
is obvious. It has the same nature as discussed in the Section 2.

The Helmholtz-type approach based on separation of implicit 
and explicit time behaviors also highlights serious ambiguities 
associated with the self-energy concept in the framework of 
the conventional electrodynamics. Let us confine our previous 
qualitative reasoning to the example of electrostatics. A rigorous 
analysis will be done later applying Hamiltonian formalism. 

In electrostatics the total energy of N interacting charges is

Here, the infinite self-energy terms ( )i j=  are omitted in the 
double sum. The expression obtained by Maxwell for the energy 
in an electric field, expressed as a volume integral over the field, 
is [20]

This corresponds to Maxwell’s idea that the system energy 
must be stored somewhere in space. The expression (109) includes 
self-energy terms and in the case of point charges they make 
infinite contributions to the integral. In a relativistically covariant 
formulation the conservation of energy and the conservation of 
momentum are not independent principles. In particular, the 
local form of energy-momentum conservation can be written in a 
covariant form, using the energy- momentum tensor,

For an electromagnetic field, it is well-known that (110) 
can be strictly satisfied only for a free field (when a charge is 
not taken into account), whereas, for the total field of a charge 
this is not true, since (110) is not satisfied mathematically 
(four-dimensional analogy of Gauss’s theorem). As everyone 
knows in classical electrodynamics, this fact gives rise to the 
“electromagnetic mass” concept, which violates the exact 
relativistic mass-energy relationship

 
( )2E mc= . Let us examine 

this problem in a less formal manner. The equivalent three-
dimensional form of (110) is the formula (3). The amount of 
electrostatic self-energy of an unmoving charge in a given volume 
V  is proportional to 2E  (see (109)). According to (110), in a 
new inertial frame, energy density  as well as electric field E  
must be, generally speaking, an explicit time-dependent function 
( / 0w t∂ ∂ ≠ and / 0t∂ ∂ ≠E  ). On the other hand, the electric field 
strength of an unmoving charge keeps its implicit time behaviour 
under Lorentz’s transformation 0( )/ t∂ ∂ =E . It contradicts the 
commonly accepted view that electrostatic self-energy is stored 
locally in space. In the framework of Helmholtzian approach these 
ambiguities can be cleared up. Actually, looking back at the general 
solution (27) with explicitly exposed longitudinal and transverse 
components, the term 

0
E  is responsible for bipartite interaction 

between charges. No local energy conservation law in the form 
(110) or (3) is adequate for implicit time-dependent field

0
E . We 

suggest that the original mathematical form (108) should be used. 
Nevertheless, the local form (110) or (3) is perfectly adequate 
for explicitly time-dependent free field *E . Clear separation 
on implicit and explicit time dependencies in Helmholtz-type 
electrodynamics leads to the correspondent separation in the 

( ) ( )
2

*
02 2

41  ,    0,1, 2, 3 ,                        104
cc t

µ µ µ

π
µ

 ∂ ∆− + = − = ∂ 
A A j

( )
0

4
  ,                                                     106

cµ µ

π
∆ = −A j

( ) ( )0 00
,  .                                                       107 µ

ϕ=A A

( )
1 1

1
 .                                           108

2

N i j

i ji j

q q
W

= ≠

= ∑ ∑
−r r

( )2
 1

 .                                          109
2

V

W E dV= ∫

( )0 .                                             110 T

x

µν

µ

∂
=

∂

( ) ( ) ( )* * *
0 0  0

 , ,      ,  .                      105c
µ µ µ

ϕ ϕ+ = + + =A A A A j j

http://dx.doi.org/10.15406/paij.2017.01.00014


Citation:  Chubykalo A, Espinoza A (2017) Classical Electrodynamics: The Problems in the Theoretical Description of the Intra-Dipole Radiation. Phys 
Astron Int J 1(3): 00014. DOI: 10.15406/paij.2017.01.00014

Classical Electrodynamics: The Problems in the Theoretical Description of the Intra-
Dipole Radiation

13/16
Copyright:

©2017 Chubykalo et al.

total electric field energy expression,

This is a logical conclusion of our qualitative reasoning that 
will be mathematically verified below in Hamiltonian formulation. 
Let us discuss generalized field equations in total time derivatives 
(65)-(68) for arbitrary fields from the standpoint of the principle 
of least action. Applying explicitly separation of field components 
we have not done any modifications in the general four-vector 
representation of Maxwell equations (104), (105). We only noted 
that in this case the set of field equations can be split up for 
equations of implicit and explicit time-dependent potentials such 
as (20)-(23) or (97)-(100). A relativistic action for implicit time 
potential  can be written in the conventional form [2].

This expression is sufficient to derive the first couple of 
equations (20), (21) (or (97), (98)) from the least action principle. 
It can be directly verified by rewriting the second term in (112) as

And using Dirac’s expression for four-current,

Where 
aµ

U  is the four-velocity of the charged particle a , and 

a
r  is the radius vector of the particle a .

Let us consider the second pair of equations (22), (23) or (99), 
(100) defining explicitly time-dependent potentials * *( , )ϕ A  or 

*

µ
A  in representation (104). It is easy to see that the conventional 

Hamiltonian form can be adopted to describe transverse 
components of electromagnetic field [2],

Where

Finally, it remains to be proved that the variational derivative,

Can be used to obtain the covariant analogue of (22), (23) or 
(99), (100) in the following form:

The difference with the conventional interpretation consists in 
the way electromagnetic potentials 

0
A

µ
 and *A

µ
 take part in this 

Hamiltonian formulation. In the light of the Helmholtzian approach, 
the electromagnetic energy-momentum tensor demands some 
corrections in the interpretation of its mathematical formulation 
[2],

As a consequence of the definition (116), it can describe 
the energy-momentum conservation law for, exclusively, free 
electromagnetic field as follows.

Consequently, contrary to the traditional interpretation, the 
quantity F µν  can be defined as a transverse electromagnetic 
field tensor because it contains only transverse field components 
but not total as in the conventional approach. There is no more 
violation of (120) even if the charge is taken into account, contrary 
to the situation in the conventional theory (see above discussion 
of equation (110)).

Strictly speaking, the total field energy W  should be split up 
into two parts:

a. Energy 
mf

W  of longitudinal implicit time-dependent 
fields responsible for electro- and loc magneto-static 
interaction between charges (non-local term) and

b. Energy 
f

W  of transverse explicitly time-dependent 
electromagnetic field (local term),

Following these results we suggest that the concept of potential 
(non-local) energy and potential forces must be re-established in 
classical electrodynamics. So, the system of charges and currents 
in absence of free electromagnetic field 

f
W  must be considered 

as a conservative system without any idealization. Introduction 
of interaction energy 

mf
W  in the form (112) equivalent to (108) 

definitely eliminates the problem of infinities of self-energy terms.

The physical meaning of the Pointing vector has been changed 
notably. So far the conventional theory dealt with it as a quantity 
describing dynamic properties of the total electromagnetic field. 
Now it is adequate only for conservation law in the form of 
equation (120) and, therefore, makes sense only for transverse 
components of electromagnetic field. Longtime well-known 
ambiguities related to the definition of the field energy location 
in space; do not take place in Helmholtz-type electrodynamics. In 
particular, there should be no flux of electromagnetic energy for 
stationary currents. Contrary, the conventional approach predicts 
senseless flux of energy coming from infinity towards the current 
[23].

At the end of this Section we would like to present a valuable 
mechanical analogy of Maxwell’s equations in the form of (20)-
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(23) or (97)-(100). It helps to understand why general solutions 
must be split up into (orthogonal) potentials (22), (23) (or (81)) 
with explicit and implicit time-dependence, respectively. The set of 
differential equations for elastic waves in an isotropic media [24] 
can be considered as mechanical analogy of Maxwell’s equations 
to endorse Helmholtzian foundations of classical electrodynamics

Here  
l

c  and  

t
c  are spreading velocities of longitudinal and 

transverse waves, respectively.

The general solution of (113), (114) is the sum of two 
independent and orthogonal terms corresponding to longitudinal 

l
u  and transversal 

t
u  waves,

If the longitudinal spreading velocity approaches formally to 
infinity  ( )

l
c → ∞  then (122) transforms into Laplace’s equation 

whereas the general solution turns out to have implicit time 
dependence. Solution (124) takes the form of separated potential 
solution (22), (23) (or (81)). Longitudinal component does not 
vanish in this limit from mathematical consideration, though 
the time behavior undergoes a fundamental transformation. 
Thus, longitudinal waves  have to be considered as full-value 
solution of the total system of differential equations (122), (123). 
It allows understanding why Hertz had no right to eliminate 
longitudinal components from mathematical solutions of 
Helmholtz’s theory in Maxwellian limit (see Hertz’s own words 
[25]: “...Helmholtz distinguishes between two forms of electrical 
force the electromagnetic and the electrostatic to which, until 
the contrary is proved by experience, two different velocities are 
attributed. An interpretation of the experiments from this point 
of view could certainly not be incorrect, but it might perhaps be 
unnecessarily complicated. In a special limiting case Helmholtz’s 
theory becomes considerably simplified, and its equations in this 
case become the same as those of Maxwell’s theory; only one 
form of the force remains, and this is propagated with the velocity 
of light. I had to try whether the experiments would not agree 
with these much simpler assumptions of Maxwell’s theory. The 
attempt was successful. The result of the calculation is given in the 
paper on ‘ The Forces of Electric Oscillations, treated according to 
Maxwell’s Theory’.” [25].

To end this Section we conclude that the idea of non-local 
interactions is enclosed into the framework of Helmholtzian 
electromagnetic theory as unambiguous mathematical feature. 
On the other hand, some of the quantum mechanical effects like 
Aharonov-Bohm effect, violation of the Bell’s inequalities etc. 
point out indirectly on the possibility of non-local interactions in 
electromagnetism. During the last century modern physics had 
faced fundamental difficulties in unifying relativistic classical 
physics elaborated mainly in the framework of the locality 
concept of relativistic theory and quantum physics characterized 
essentially by the emergence of non-locality. Regretfully, nowadays 

there is no rigorous mutual correspondence between these two 
fundamental areas of physical science. Helmholtz-type approach 
offers an altogether more promising solution.

Instead of conclusion
Almost all the above arguments we have taken verbatim from 

the previous work [6] of one of the authors of the present article. 
Did we resolve the problem of the intra-dipole radiation? No, we 
did not, may be... But as one can see, the problem of propagation 
of electromagnetic interactions cannot be considered as fully 
resolved by conventional classical electrodynamics. And we can 
see from previous sections that taking into account the double 
dependence (implicit and explicit) electrodynamics functions on 
time cannot help us to resolve the specific particular problem of 
the intra-dipole radiation…

However, the problem of the intra-dipole radiation could 
be resolved if we declare that only electric dipole must radiate 
electromagnetic waves rather than an electric charge. Indeed, 
how to theoretical physics got the idea that the accelerated charge 
must radiate? The vast majority of textbooks and monographs on 
classical electrodynamics are beginning to consider the process 
of emission of electromagnetic waves, starting with the study of 
the behavior of the electric dipole. Then, obtaining the formula 
for the total radiation of the dipole, they ignore the fixed dipole 
charge, usually located at the origin, and apply the mentioned 
formula to the moving second charge of the dipole. As an example, 
consider the textbook of Landau [2]: Unlike other books in [2] 
more accurately states that the charges can radiate only if they 
move with acceleration rather than must! Landau finds for the 
total radiation of the dipole

Then he writes [2]: “If we have just one charge moving in 
the external field, then e= rd  and e=d w , where w  is the 
acceleration of the charge. Thus (Landau writes) the total 
radiation of the moving charge is

It is here that is hidden the deep logical error! The point is that 
= rw  in the beginning is the acceleration of the change of the 

vector r  of the intra-dipole distance rather than an acceleration 
of the moving charge. Of course, if one of the dipole charges is at 
rest in this case  is the acceleration of the moving charge. But 
Landau [2] uses the following definition of the dipole moment of 
the system of charges

Where the origin is anywhere within the system of charges (it 
means that also in a point where is no any charge), and the radius 
vectors of the various charges are 

a
r . Then Landau defines the 

dipole moment of two charges (positive and negative)

Where 
+−

R  is the radius vector from the center of negative to 
the center of positive charge. Let us now return to the logical error 
mentioned above. Obtaining Equation (125) Landau [2] evaluates 
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the amount of energy radiated by the system of charges in unit 
time into the element of solid angle dο .

The point is that the intensity of radiation Equation (129) 
is obtained for the complex of charges (for the dipole 

+−
R  in 

our case) rather than for a unit charge! However, the question 
arises: why, then, it is generally assumed that just an accelerated 
charge radiates electromagnetic energy (electromagnetic 
waves), rather than the dipole considered as an aggregate? In 
connection with the above, we believe that an electric dipole is 
the most fundamental concept of electromagnetism with respect to 
electromagnetic radiation than a single electric charge. It should 
be assumed also that not all of the time-varying dipoles emit, but 
only those in which the modulus of the dipole moment varies with 
time with acceleration that is clear from Equation (125). It could 
mean, for example, that the widespread belief that the classical 
hydrogen atom in which the electron moves in a circular orbit 
with a constant radius must radiate is wrong!

However the problem of the double dependence (implicit and 
explicit) electrodynamics functions on time remains open and 
requires further research. The logical analysis of Maxwell-Lorentz 
equations for one charge system shows ambiguous conventional 
treatment of implicit and explicit time dependencies. It was found 
that all conventional approach is beset with the same ambiguities 
leading to many mathematical inconsistencies and paradoxes.

We suggested that it is possible to solve those difficulties by 
clear distinguishing between functions with implicit and explicit 
time dependencies. This consideration provided self-consistency 
for mathematical description of electromagnetic theory. 
Maxwell’s equations resulted to be written in full time derivatives 
that consistently covers conventional approach. We showed that 
the covering theory possesses all necessary relativistic invariance 
properties for inertial frames of references. Usual Lorentz’s gauge 
condition is covered by generalized gauge condition. It promises 
to keep generalized Maxwell’s equations invariant also in non-
inertial frames but this issue will be studied elsewhere.

Consistent mathematical interpretation of generalized field 
equations gives a solid ground for Helmholtzian foundations of 
classical electrodynamics [25,26] based on the superposition of 
implicit time-dependent longitudinal and explicit time-dependent 
transverse components. This approach demonstrates advantages 
over the conventional field description in eliminating the large 
number of internal inconsistencies from classical electrodynamics 
and promises more adequate solution to fundamental problems 
of modern physics. Recent experimental data [21,22] highlighted 
certain limitations of the conventional approach. Graneau’s 
monograph on modern Newtonian electrodynamics [27] reviewed 
numerous research data in exploding wires, railguns, different 
electromagnetic accelerators, jet propulsion in liquid metals, 
arc plasma explosions, capillary fusion etc. as unambiguous 
indication on the existence of non-local longitudinal forces. Thus, 
a new area of electromagnetic research emerges that is interested 
in the study of longitudinal components by experimental as well 
as by theoretical means.

We would like to hope that our article will attract researchers’ 
interest to the unresolved problems of classical electrodynamics, 
which, remaining unresolved, directly migrated to quantum 
mechanics and electrodynamics!

As a final conclusion of this paper, we would like to quote 
Duhem’s significant words [28]: “ ... An excessive admiration for 
Maxwell’s work has led many physicists to the view that it does 
not matter whether a theory is logic al or absurd, all it is required 
to do is suggest experiments: A day will come, I am certain, 
when it will be recognized: that above all the objects of a theory 
is to bring classification and order into the chaos of facts shown 
by experience. Then it will be acknowledged that Helmholtz’s 
electrodynamics is a fine work and that I did well to adhere to it. 
Logic can be patient, for it is eternal”.
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