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Abstract – If the conventional Maxwell-Lorentz formulation of classical electrodynamics is
adopted in a flat spacetime of arbitrary odd dimension, then the retarded vector potential Aµ

generated by a point charge turns out to be pure gauge, Aµ = ∂µχ. By Gauss’ law, the charge
shows up as zero. The classical electromagnetic coupling is thus missing from odd-dimensional
worlds. If the action is augmented by the addition of the Chern-Simons term, then the classical
interaction picture in the three-dimensional world becomes nontrivial.

Copyright c© EPLA, 2011

Introduction. – In this note we present a surprising
result that the classical electromagnetic interaction,
realized as the Maxwell-Lorentz theory, is missing from
odd-dimensional spacetimes. It is well known that the
four-dimensional electrodynamics can be extended to any
even dimensions to result in a consistent theory [1–3].
However, one can hardly conceive that a similar extension
to odd-dimensional spacetimes gives rise to a classical
picture in which any point charge generates zero field
strengths, and hence, by Gauss’ law, the electromagnetic
coupling is effectively vanishing. On the other hand,
nontrivial solutions to homogeneous Maxwell’s equa-
tions are still available. Therefore, only free classical
Maxwellian fields may exist in such worlds.
The odd-dimensional physics is of concern to us not

only for methodological reasons but also in relation to
the holographic principle (for a review see, e.g., [4,5]),
whose rationale often leads one to consider systems living
in an odd-dimensional bulk, as, say, in the AdS3/CFT2
model, the popular setting for analysing the holographic
correspondence. The no-go theorem discussed here may be
of utility in such studies.
The second section gives a proof of this theorem. Notice

that the no-go theorem is only valid for a genuine (2n+
1)-dimensional realm, not for electromagnetic systems
constrained in a 2n-dimensional spacelike manifold which

(a)E-mail: achubykalo@yahoo.com.mx
(b)E-mail: drespinozag@yahoo.com.mx
(c)E-mail: kosyakov@vniief.ru

is actually immersed in a higher-dimensional spacetime.
We take a closer look at this issue in the final section. In
addition, we adduce an argument that the analytical form
of interaction between the quantized Maxwell field and
different charged fields is common to all dimensions. It
transpires that if the action is augmented by the addition
of the Chern-Simons term, then the three-dimensional
classical picture becomes nontrivial.

The Maxwell-Lorentz theory in odd-dimensional

spacetimes. – We begin with the conventional formu-
lation of the Maxwell-Lorentz electrodynamics in
a flat D-dimensional world. Let us set the metric
ηµν =diag(1,−1, . . . ,−1), and adopt units in which the
speed of light equals unity. We write the action

S = Sp−
∫

dDx

(

jµAµ+
1

4ΩD−2
FµνF

µν

)

, (1)

where Sp is the mechanical part of the action respon-
sible for the particle behavior, ΩD−2 is the area of
the (D− 2)-dimensional unit sphere, ΩD−2 = 2π(D−1)/2/
Γ[(D− 1)/2], and the field strength is expressed in terms
of the vector potential, Fµν = ∂µAν − ∂νAµ. For D= 3,
the action (1) should be augmented by the addition of the
Chern-Simons term. However, we would like to compare
even- and odd-dimensional cases within a unified frame-
work, so that we ignore for a while any augmentations
and employ the action (1), which is well suited to the
even-dimensional electrodynamics [1–3].
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Varying Aµ in (1) gives Maxwell’s equations:

∂µF
µν =ΩD−2j

ν . (2)

The linearity of Maxwell’s equations makes it possible
to restrict our consideration to the single-particle case.
A particle with a δ-shaped distribution of the electric
charge e, moving along an arbitrary world line zµ(s), gives
rise to the current

jµ(x) = e

∫

∞

−∞

ds vµ(s) δD(x− z(s)), (3)

where vµ =dzµ/ds= żµ is the D-velocity of this particle.
If we impose the Lorenz condition on the vector poten-

tial to fix the gauge, ∂µA
µ = 0, then (2) becomes

�Aµ =ΩD−2j
µ. (4)

The physically relevant solution to (4) is

Aµ(x) =

∫

dDxGret(x−x′) jµ(x′), (5)

where Gret(x) is the retarded Green’s function of the wave
operator. Our main interest here is with odd-dimensions
D= 2n+3, n= 0, 1, . . . . In this case (with reference to,
e.g., [2,6]), we have

Gret(x) =N
−1
D θ(x0)

(

d

dx2

)n
θ(x2)√
x2
, ND =

Γ
(

n+ 12
)

√
π

.

(6)
We insert (3) and (6) in (5). Denoting Rµ = xµ− zµ(s),
where xµ is the observation point, and zµ(s) the emission
point on the world line, we obtain

Aµ(x) =
e

ND

∫

∞

−∞

ds vµ(s) θ(R0)

(

d

dR2

)n
θ(R2)√
R2
. (7)

Let us take the integration variable λ=R2, and observe
that dλ/ds=−2R · v, to yield

Aµ(x) =
e

2ND

∫

∞

0

dλ
vµ

R · v

(

d

dλ

)n
θ(λ)√
λ
. (8)

For n� 1, the integral (8) diverges at λ= 0. This is due
to the fact that the integrand of (5) is the product of
two singular distributions. Since the retarded Green’s
functions are singular in themselves, they are normally
integrated with smooth sources jµ(x). To assign a mathe-
matical sense to the ill-defined expression (8), we regular-
ize it by the convention that the derivatives should act on
the left and the surface term is ignored. According to this
regularization prescription,

Aµ(x) =
e(−1)n
2ND

∫

∞

0

dλ√
λ

(

d

dλ

)n
vµ

R · v =

e(−1)n
2ND

∫

∞

0

dλ√
λ

∂

∂xµ

(

d

dλ

)n

log(R · v).

(9)

With the estimations Rµ =O(λ1/2), vµ =O(1) as λ→∞,
valid for world lines that approach asymptotically to
straight timelike lines, the integral (9) converges uniformly
for n� 1, that is, for D� 5. Therefore, the order of
integration and differentiation with respect to xµ may be
interchanged with the opposite one. As to n= 0, one may
think of (9) as

Aµ(x) =
e

2
lim
ǫ→0

∂

∂xµ

∫

∞

0

dλ√
λ
e−ǫλ log(R · v). (10)

Be it as it may, whenever the ∂/∂xµ and integration are
commutative, we get Aµ = ∂µχ.
In fact, the interchangeability of these operations is

a subtle issue. The order of implementation of these
operations must not be changed if the measure contains
a singular component, such as the δ-function or its
derivatives, because the integrals are no longer uniformly
convergent. To illustrate this, we refer to D= 4. In lieu
of (8), we have

Aµ(x) = e

∫

∞

−λm

dλ δ(λ)
vµ

R · v =

e

∫

∞

−λm

dλ δ(λ)
∂

∂xµ
log(R · v), (11)

where λm is the maximal absolute value of the spacelike
interval between a given point of observation xµ and the
world line. The ∂µ must be applied prior to integration,
and hence (11) results in evµ/(R · v)|ret, the Liénard-
Wiechert vector potential, rather than e∂µ[log(R · v)]ret
which differs from the Liénard-Wiechert vector potential
in the term eRµ[(R · v̇)− 1]/(R · v)|ret.
If we integrate (2) over a domain V containing the

charged particle in the hyperplane perpendicular to the
world line and take into account the relation Fµν = 0, we
obtain

eΩD−2 =

∮

V

dD−1x ∂µF
µνvν =

∮

∂V

dD−2x nµF
µνvν = 0.

(12)
Of course, nontrivial solutions to eq. (4) with jµ = 0 are

still available. Therefore, applying the principle of least
action to (1) and using the retarded boundary condition
gives the picture involving only free fields. This completes
the proof of the theorem which reads: The retarded
interaction of the classical Maxwell field with point charges
shows up as vanishing in odd-dimensional spacetimes.
Note that this result is insensitive to the form of the

regularization prescription in the sense that all reasonable
extensions of the definition of the ill-defined expression (8)
as a distribution lead inevitably to Aµ = ∂µχ. By contrast,
in the even-dimensional case, no regularization will render
the corresponding integral uniformly convergent; in fact,
any regularization is superfluous here, which is exemplified
most clearly by (11).

Discussion and outlook. – An apparent objec-
tion against the above result may sound as follows.
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A straight uniformly charged infinite string generates
a static two-dimensional field. This setting provides a
simple counterexample of the statement that a nontrivial
electromagnetic field generated by a point source cannot
exist in (1+2)-dimensional worlds. However, this objec-
tion does not discriminate between a system living in a
genuine (2n+1)-dimensional realm and that constrained
effectively in a 2n-dimensional spacelike manifold (as
with the static field due to the rectilinear charged string,
which, owing to its cylindrical symmetry, is generally
regarded as a “two-dimensional” field), but, in fact,
immersed in a higher-dimensional spacetime.
To appreciate the distinction between “genuine” and

“effective”, let us compare the behavior of a charged
particle in a genuine (1+1)-dimensional realm and that in
the case that the particle is moving along a straight line
in ambient space. In the former case, the field strength
contains only the electric component F01 but the magnetic
field is absent which implies that the Poynting vector is
identically zero, so that the accelerated charged particle
does not emit radiation [1,2]. On the other hand, a charged
particle moving along a straight line in ordinary three-
dimensional space emits radiation with the emission rate
proportional to the square of its acceleration.
This consideration suggests that the physics of a

genuine (2n+1)-dimensional realm may differ drasti-
cally from that of systems which are constrained in a
2n-dimensional manifold. Although such systems living
in higher-dimensional ambient spaces can imitate some
(2n+1)-dimensional pictures, their behavior need not
be governed by the laws of genuine (2n+1)-dimensional
realms.
It is interesting that the discussed no-go theorem is

inherently classical. Indeed, if we substitute the retar-
dation condition for the Stückelberg-Feynman boundary
condition and carry out the Wick rotation in the complex
energy plane, then the propagator of a free massless field
in quantum theory, defined in a flat D-dimensional space-
time, becomes

DE(x)∝
1

(x2E)
D

2
−1
, (13)

where x2E is the negatively defined Euclidean length
squared of the radius vector xµ,

x2E =−(x24+x2), x4 =−ix0. (14)

Equation (13) shows that the analytical form of the
photon propagator, appearing in perturbative calcula-
tions, is common to both D= 2n+1 and D= 2n. The

basic features of quantum physics in the former case can
be obtained from those in the latter case by the analytic
continuation in (13).
It may be worth pointing out that Gauss’ law holds

true in any dimension because it results from the action
principle applied to the action (1) with arbitrary D,
while the actual coupling of the electromagnetic field
and charged matter in the case D= 2n+1 may occur
both trivial and nontrivial according to which boundary
condition is additionally imposed.
We finally consider the effect of incorporation of the

Chern-Simons term into the D= 3 electrodynamic action.
Let us proceed from the action [7]

S = Sp−
∫

d3x

[

jµAµ+
1

8π
(FµνF

µν −μ ǫαβγAαFβγ)
]

.

(15)

The field equation which follows from (15) is

∂αF
αβ +μ ∗F β = 2πjα, (16)

where ∗Fα = 12 ǫ
αβγFβγ . We rewrite this equation as

Λαβ(∂) ∗Fβ = (μ η
αβ + ǫαβγ∂γ)

∗Fβ = 2πj
α, (17)

iterate it with Λ(∂), and use the Bianchi identity ∂∗βF
β=0,

to obtain
(�+μ) ∗Fα = 2πΛαβ(∂)j

β . (18)

It is clear from (18), even without explicitly writing
its solution, that the field strength generated by a point
charged particle is nonzero because eq. (18) allows express-
ing the field Fαβ directly in terms of the source j

α. We thus
see that the classical dynamics governed by the action (15)
is nontrivial.
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