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Equations (H1) and (H2) should have been written

U(r) = 1

4π

∫ ∫ ∫
All space

D(r′)
|r − r′|d3r′ (H1)

and

W(r) = 1

4π

∫ ∫ ∫
All space

C(r′)
|r − r′|d3r′. (H2)

Equations (7) should have been written

ji = − 1

4π
∇

∫ ∫ ∫
All space

∇′ · j
|r − r′|d3r′

js = 1

4π
∇ ×

∫ ∫ ∫
All space

∇′ × ·j
|r − r′|d3r′. (7)

Equation (16), (18) and (19) should have been written

ϕj (x, y, z, t)i = 1

4π

∫ ∫ ∫
All space

∇′ · ji

|r − r′|d3r′

= − 1

4π

∫ ∫ ∫
All space

∂
∂t

ρ(r′, t)
|r − r′| d3r′,

(16)

∂�

∂t
= −4πϕj =

∫ ∫ ∫
All space

∂
∂t

ρ(r′, t)
|r − r′| d3r′, (18)

� =
∫ ∫ ∫

All space

ρ(r′, t)
|r − r′|d3r′. (19)
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Abstract
In this paper, we show that the use of the Helmholtz theorem enables the derivation of
uniquely determined electromagnetic potentials without the necessity of using gauge
transformation. We show that the electromagnetic field comprises two components, one of
which is characterized by instantaneous action at a distance, whereas the other propagates in
retarded form with the velocity of light. In our attempt to show the superiority of the new
proposed method to the standard one, we argue that the action-at-a-distance components
cannot be considered as a drawback of our method, because the recommended procedure for
eliminating the action at a distance in the Coulomb gauge leads to theoretical subtleties that
allow us to say that the needed gauge transformation is not guaranteed. One of the theoretical
consequences of this new definition is that, in addition to the electric E and magnetic B fields,
the electromagnetic potentials are real physical quantities. We show that this property of the
electromagnetic potentials in quantum mechanics is also a property of the electromagnetic
potentials in classical electrodynamics.

PACS numbers: 03.50. z, 03.50.−De

1. Introduction

In order to determine the electromagnetic field, we must
find six values, which are the components of the electric E
and magnetic B fields. In a number of cases, however, one
can reduce this problem to finding four and sometimes a
smaller number of values. With this aim, one introduces the
field potentials vector A and scalar ϕ in the following way.
Considering the Maxwell equations in a vacuum, for instance,
in the Gauss system

∇ · E = 4π%

∇ × E = −
1

c

∂B
∂t

∇ · B = 0

∇ × B =
1

c

∂E
∂t

+
4π

c
j


, (1)

one can see that

E = −∇ϕ−
1

c

∂A
∂t

B = ∇ × A

 . (2)

Indeed taking into account equation (2), one can reduce the
system of eight equations (1) of six variables E and B to the
system of four equations of four variables A and ϕ :

∇
2A −

1

c2

∂2A
∂t2

− ∇

(
1

c

∂ϕ

∂t
+ ∇ · A

)
= −

4π

c
j

∇
2ϕ +

1

c

∂

∂t
∇ · A = −4πρ

 , (3)

The vector potential A and scalar potential ϕ (see
equation (2)) thus introduced are not uniquely defined because
they can be the subject of a gauge transformation. It would be
very difficult to solve system (3), but it is known that the fields
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E and B are invariant under the gauge transformation

A′
= A + ∇ψ

ϕ′
= ϕ−

1

c

∂ψ

∂t

 , (4)

where ψ is some arbitrary scalar function ψ(x,y,z,t). One
can choose ψ so as to impose on potentials A and ϕ an
additional condition, for example

∇ · A = −
1

c

∂ϕ

∂t
or ∇ · A = 0, (5)

which are usually known as the Lorentz gauge or the
Coulomb gauge, respectively, and which permit us to separate
equations (3) for these potentials.

It should be noted, however, that there are some problems
in calculating the electromagnetic field of a moving particle in
both the Lorentz and the Coulomb gauge (see e.g. [1, 2] and
references therein). In the present work (the next section), we
put forward a new approach, which saves us the trouble of
forced use of either the Lorentz and Coulomb conditions or
any other gauge conditions. This approach is founded on the
use of the Helmholtz theorem to separate the electric field E
on irrotational and solenoidal parts, in such a way that it can
be expressed in the following functional form:

E = −∇U + ∇ × W, (HE)

where U and W are new potentials coming from the
Helmholtz theorem even though conventional wisdom could
say that the Helmholtz theorem does not introduce any kind of
potentials. What is the difference between these potentials and
the conventional ones? The answer is that the main difference
lies in the fact that we can deduce, as we shall see in the next
section, a pair of differential equations for these potentials,
without the use of any gauge condition.

2. Applying the Helmholtz theorem to the vector
fields in the Maxwell equations

In the generally accepted form, the Helmholtz vector
decomposition theorem reads as follows (see e.g. section 1.16,
p 92 in [3]): If the divergence D(r) and curl C(r) of a vector
function F(r) are specified, and if they both go to zero faster
than 1/r2 as r → ∞, and if F(r) itself tends to zero as
r → ∞, then F(r) is uniquely given by

F = −∇U + ∇ × W, (H)

where

U(r)=
1

4π

∫ ∫ ∫
All space

D(r′)

|r′ − r′|
d3r′, (H1)

and

W(r)=
1

4π

∫ ∫ ∫
All space

C(r′)

| r′ − r′ |
d3r′. (H2)

Let us apply the Helmholtz theorem (H) to the vector fields
in the Maxwell equations (1), supposing that all conditions
of this theorem are fulfilled for these fields (the validity of
applying the Helmholtz theorem in the case of time-dependent
vector fields is reasoned, for example, in [4–6]) and for

almost all the vector functions that appear on the development
because we shall use Helmholtz decomposition several times,
so that

E = Ei + Es

B = Bi + Bs

j = ji + js

 , (6)

where the indices ‘i’ and ‘s’ signify irrotational (curl-less)
and solenoidal (divergence-less) components of the vectors,
respectively, and for example

ji = −
1

4π
∇

∫ ∫ ∫
All space

∇ · j
| r′ − r′ |

d3r′

and

js
1

4π
∇ ×

∫ ∫ ∫
All space

∇ × j
| r′ − r′ |

d3r′. (7)

Substituting (6) into (1), we obtain the following equations for
the irrotational part:

∇ · Ei = 4π%

∂Ei

∂t
= −4π ji

 , (8)

∇ · Bi = 0

∂Bi

∂t
= 0

 , (9)

and the following for the solenoidal part:

∇ × Es = −
1

c

∂Bs

∂t

∇ × Bs =
1

c

∂Es

∂t
+

4π

c
js

 . (10)

From the definition of Ei one can write its relation to some
scalar potential 8 as

Ei = −∇8. (11)

This, due to the first equation from (8), gives

∇
28= −4π%. (12)

The second equation from (8) is merely the law of
conservation of charge. Indeed, if we take the divergence of
two parts of this equation, we obtain

∂

∂t
∇ · Ei = −4π∇ · ji, (13)

but ∇ · Ei = 4π% and ∇ · ji = ∇ · (ji + js)= ∇ · j, so that
equation (13) comes down to the well-known continuity
equation

∂ρ

∂t
+ ∇ · j = 0. (14)

At face value, it seems that equation (12) does not define the
potential 8 completely, because there is another (temporal)
differential equation for 8. Indeed, from

∂Ei

∂t
= −4π ji, Ei = −∇8 and ji = −∇ϕ j , (15)

2
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where ϕ j , obviously, is the scalar function

ϕ j (x, y, z, t)i =
1

4π

∫ ∫ ∫
All space

∇ · ji

| r′ − r′ |
d3r′

= −
1

4π

∫ ∫ ∫
All space

∂
∂t ρ(r

′, t)

| r′ − r′ |
d3r′ (16)

(here we take into account equations (14) and (15) and
∇ · ji = ∇ · j), we obtain

− ∇
∂8

∂t
= −4π(−∇ϕ j )⇒

∂8

∂t
= −4πϕ j . (17)

However, this equation, together with equation (16), comes
down to

∂8

∂t
= −4πϕ j =

∫ ∫ ∫
All space

∂
∂t ρ(r

′, t)

| r′ − r′ |
d3r′, (18)

so that

8=

∫ ∫ ∫
All space

ρ(r′, t)

| r′ − r′ |
d3r′. (19)

But that coincides with the solution of the Poisson
equation (12). Thus, we have ascertained that equation (12)
with the corresponding boundary conditions defines the
potential 8 completely, or more precisely, that, up to some
irrelevant functions which, due to the boundary conditions,
are reduced to zero.

System (9) has the trivial solution Bi = 0, because B ≡ Bs

by definition. Now if we want to introduce a potential such as
the standard vector potential A, we can apply the Helmholtz
theorem to this potential in the form A = Ai + As, because in
this way we can solve system (10) almost automatically by
just putting

Bs = ∇ × As and Es = −
1

c

∂As

∂t
. (20)

Substituting (20) into the second equation of (10), we obtain

∇
2As −

1

c2

∂2As

∂t2
= −

4π

c
js. (21)

This equation with the corresponding boundary and initial
conditions has the unique solution too. But probably this
procedure is misleading due to its close resemblance to the
conventional way of introducing the potentials. It is our
claim that only with the use of the Helmholtz theorem and
Maxwell’s equations can we determine, totally, without any
additional gauge condition, the electric and magnetic fields.
So, after the use of the Helmholtz theorem, only Maxwell’s
equations are strong enough to determine the irrotational and
solenoidal field components. One way to do so has been
outlined with equations (20) and (21), but these equations
and A are not necessary, because directly from (10) we can
deduce a pair of inhomogeneous D’Alembert equations for Es

and Bs. This pair of equations and corresponding boundary
conditions determine the solenoidal fields; so, we have shown
that with the Helmholtz theorem and Maxwell’s equations,
without additional gauge conditions, it is possible to obtain
the electromagnetic field. However, we can use the solenoidal
vector potential as a useful way to solve Maxwell’s equations;

in the later sections we shall see that its gauge invariance is
a characteristic that leads us to think that it is a physically
relevant vector field.

Thus, Maxwell’s equations (1) after applying the
Helmholtz theorem come down to the system of two
equations (12) and (21), separated with respect to the vector
and scalar potentials:

∇
28= −4π%

∇
2As −

1

c2

∂2As

∂t2
= −

4π

c
js

 . (22)

The most important characteristic of the potentials As and8 is
that they, in common with the electric E and magnetic B fields,
are invariant under the gauge transformations (4), where A
and ϕ are the generally accepted vector and scalar potentials
of the electromagnetic field in an arbitrary gauge (or to be
more exact, without any gauge).

Indeed, let us apply the Helmholtz theorem to the
electromagnetic fields (2) expressed in terms of A and ϕ

without taking into account any gauge condition. Applying
the theorem to (2), we have

Ei = −∇ϕ−
1

c

∂Ai

∂t
, (23)

Es = −
1

c

∂As

∂t
, (24)

Bi = 0, (25)

Bs = ∇ × As. (26)

One can represent the potential Ai , by definition, as

Ai = −∇ϕA, (27)

where ϕA is some scalar function. Substituting equation (27)
into equation (23), we obtain

Ei = −∇ϕ +
1

c
∇
∂ϕA

∂t
= −∇

(
ϕ−

1

c

∂ϕA

∂t

)
. (28)

From equations (28) and (11), one can see that the relation of
8 to ϕ is

8= ϕ−
1

c

∂ϕA

∂t
. (29)

Now, if we apply the gauge transformations (4) and the
Helmholtz theorem, from

A′
= A′

i + A′

s = Ai + As + ∇ψ, (30)

equating solenoidal parts, we obtain

A′

s = As. (31)

In order to obtain the transformation law for 8

(equation (29)), we at first find the corresponding
transformation for ϕA. From equation (30), we obtain
for the irrotational part of A′

A′

i = Ai + ∇ψ, (32)

3
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and substituting equation (27) into this equation, we have

− ∇ϕ′

A = −∇ϕA + ∇ψ = −∇(ϕA −ψ)⇒ ϕ′

A = ϕA −ψ.

(33)
Finally, using equation (29) for 8′ and taking into account
equations (4) and (33), we obtain

8′
= ϕ′

−
1

c

∂ϕ′A

∂t
=

(
ϕ−

1

c

∂ψ

∂t

)
−

1

c

∂

∂t
(ϕA −ψ)

= ϕ−
1

c

∂ϕA

∂t
=8. (34)

Thus, we have ascertained that As and 8 are invariant under
the gauge transformations.

We have to note that the gauge transformations affect only
the component Ai, but it does not participate in the definitions
of the vectors E and B of the electromagnetic field:

E = −∇8−
1

c

∂As

∂t

B = ∇ × As

 . (35)

Perhaps this calculation represents a hard rationale for
something that should be clear from the start: any gauge
transformation is irrelevant if we use the Helmholtz theorem,
and in this way, we eliminate any objection to our method
based on the idea that with a gauge transformation we
can find another representation for the fields so that the
action at a distance can be eliminated, but this is not
actually the case: within the scope of the Helmholtz
theorem, action-at-a-distance fields cannot be eliminated
using gauge transformations, because the basic field variables,
the potentials, do not change with their help, and that change
of representation is the whole point of gauge transformations.

3. The puzzle with gauge transformations

The Helmholtz theorem gives us a representation for the
electromagnetic field that, jointly with Maxwell’s equations,
allows us to know the fields in a unique way once we
define the boundary value problem for the four differential
equations (22). Besides, using again the Helmholtz theorem
we can show that the introduced potentials are gauge invariant,
a result that implies that any theory of gauge transformations
is useless because the whole point of gauge transformations
is missed: we cannot use them to change the equations that
satisfy the potentials and not even the potentials themselves.
For this reason, the potentials introduced with the help of the
Helmholtz theorem are not the same, and cannot be related
to the usual potentials, which we may call ‘g-potentials’.
However, there is a drawback in the Helmholtz representation:
it introduces a component Ei which shows action at a distance.
Obviously, this is in open conflict with special relativity,
a point that has taken some people to the belief that this
component must be a mathematically introduced function
without any counterpart in physical reality that depends
somehow on the Lorentz invariant functions or on solutions
to Lorentz invariant equations [7]. We have already discussed
this objection [8] (see also [9]), showing that Ei is a vector
function independent of Es; hence, at least this objection

cannot be considered seriously. Anyway the main objection
remains: what about Lorentz invariance? At this point, we
must be careful, because the electric and magnetic vector
fields are not Lorentz invariant, but the equations that define
them are. These fields are related to their counterparts in
any inertial frame by means of a Lorentz transformation,
and this is the meaning of the Lorentz invariance of the
D’Alembert equations: if we have a given solution on one
inertial frame, on any other frame we can build a solution
using a Lorentz transformation without in any way altering
the functional form of the field equations. It is clear that
an isolated electric field without magnetic counterpart is
not related to another field on another reference frame by
a Lorentz transformation [10] and this is not a reason for
rejecting it, because in the low velocity limit the right
transformation group is the Galileo group. Therefore, our best
explanation for the presence of action-at-a-distance solutions
to Maxwell’s equations is as follows: imagine that the Lorentz
invariance of the D’Alembert equation allows us to define a
group orbit starting from a given initial solution; in this way
starting with a set of solutions to the D’Alembert equation
we can build, with the help of Lorentz transformations,
any other solution. However, when we use the Helmholtz
theorem an isolated electric field is present, such that its
field equation is not Lorentz invariant (or covariant); hence,
we cannot build its solutions using Lorentz transformations,
obtaining a completely nonrelativistic field that is, however, a
necessary piece for the solution that we obtain for Maxwell’s
equations. Hence, this solution is not the set of usual solutions
that can be obtained with the help of special relativity or
gauge transformation theory. The question is whether this
explanation is sound at all or whether it is only an ad hoc
rationale for non-physical solutions that can be rejected using
special relativity postulates. Let us try to show that this is
not the case and that even in the usual framework of gauge
transformations, there arise action-at-a-distance solutions
that, on the basis of general ideas, cannot be eliminated;
hence, our challenge here is going to be directed against gauge
transformation theory, not special relativity.

It is clear that an isolated electric field without a magnetic
counterpart is not a Lorentz invariant concept [10] and this
is not a reason for rejecting it, because in the low velocity
limit, no function is a Lorentz invariant. Our best explanation
is to assert that the Helmholtz representation selects functions
in the space of solutions to Maxwell’s equations, which are
not Lorentz invariant. If we suppose that Lorentz symmetry
relates two solutions in the space of solutions to Maxwell’s
equations, defining an orbit, the Helmholtz theorem shows
that not all solutions of Maxwell’s equations lie on the orbits
of the Lorentz group. This could be considered as a weak
reason to believe in the existence of non-Lorentz invariant
solutions to Maxwell’s equations; hence, let us show that
even in the conventional approach these kinds of solutions are
possible.

The usual g-potentials present these types of solu-
tions too when the Coulomb gauge is used, but these
solutions are considered harmless because there exist
gauge transformations that relate potentials that satisfy a
non-Lorentz invariant equation with potentials that satisfy a
Lorentz invariant one. This answer is complemented with

4
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the hope that such a transformation is easy to obtain or, to
say the least, that its existence can be proved in principle.
This possibility is implicit in the framework that needs gauge
transformations, because in this framework the potentials are
non-gauge invariant and can be changed at will, or that is the
hope. We are not aware of such a general existence proof,
but now we shall consider some general ideas that lead us
to believe that if such a proof exists, it is quite restrictive.
Therefore, if the method proposed in the previous section is
rejected because it leads to action-at-a-distance solutions, the
standard method in the Coulomb gauge must be rejected for
the same reason. Let us suppose that a gauge transformation
relating g-potentials exists in the Coulomb gauge 〈AC, ϕC〉

with g-potentials in the Lorentz gauge 〈AL, ϕL〉. Hence, we
can write down the equations

AC = AL + ∇ψ

ϕC = ϕL −
1

c

∂ψ

∂t

 . (36)

But with the advanced supposition we have made petitio
principii, by following this way we prove nothing because
we have introduced the function whose existence we want to
prove. The right procedure is to show that the differential form

(AC − AL) · dr + c(ϕC −ϕL) dt (37)

is integrable.
There are two kinds of integrability concepts for this

differential form: the local one that makes use of cross
differentiation and the global one that makes use of a
procedure of integration along paths in the space of definition
of the one-form. Local integrability gives us a set of
differential equations that must be identically satisfied by
the g-potentials, and must be used case by case. Global
integrability requires the consideration of space connectivity;
that is, if the space in which we define the one-form is simply
connected, a gauge function globally defined exists, whereas
otherwise it does not exist, and on each connected component
of the space, a different function may exist or not and a
matching procedure can be employed or not. Now, directly
from the gauge transformation and the gauge conditions, it is
very easy to deduce that the gauge function ψ must satisfy the
following coupled pair of differential equations:

1ψ = −
1

c

∂ϕL

∂t
, ∇

2ψ −
1

c2

∂2ψ

∂t2
= −

1

c

∂ϕC

∂t
. (38)

Hence, if the one-form is integrable this pair of differential
equations is satisfied, and the integrability conditions of the
one-form turn out to be the integrability conditions of these
equations. Therefore, it is non-trivial to prove the existence
of the gauge function that transforms the g-potentials in the
Coulomb gauge into g-potentials in the Lorenz gauge, and in
this sense such a transformation is not generally guaranteed
and the certainty that we can eliminate the action-at-a-distance
fields is lost even in the standard approach. Obviously
we can support our belief in the standard approach for
many reasons, for example a blind faith in special relativity
theory, but we cannot be confident that we can eliminate the
action-at-a-distance fields in all cases.

4. Conclusions

Now we point out the following characteristics of the
potentials As and 8, which are solutions of equations (22),

∇
28= 4π%,

∇
2As −

1

c2

∂2As

∂t2
= −

4π

c
js

 :

1. These equations are already separated with respect to
vector and scalar potentials, so there is no necessity
of using the gauge transformations and, accordingly, of
making use of either the Lorentz or Coulomb condition
(unlike the case of the conventional potentials A and ϕ
(see equations (3)), when one must introduce either the
Lorentz or Coulomb condition (5) in order to separate
equations for these potentials. Note again that our
approach saves us the trouble of using both the Lorentz
and Coulomb conditions (see e.g. [1, 2]).

2. The vector potential As (equation (21)) and the scalar
potential 8 (equation (12)) introduced thus are uniquely
defined. The scalar potential 8 is a generator of the
so-called instantaneous action at a distance, whereas
the solenoidal vector potential As can propagate with
the velocity of light and it is responsible for the
retarded action of the electromagnetic field (obviously,
equation (21) can have non-wave solutions, too).

3. Because of their one-valued definiteness and for the
reason that the potentials As and 8 are invariant under
the gauge transformations, the potentials As and 8

are, by their nature, physical quantities (unlike the
conventional potentials A and ϕ, which are regarded as
nothing more than an auxiliary mathematical tool, which
does not reflect a physically existing phenomenon) and
completely characterize the electromagnetic field.

4. Our criterion to consider a mathematical function as a
measurable physical quantity is that this function remains
invariant under some group action (in our case, the action
of the gauge group); in addition, it must be well defined
by the mathematical problem; that is, it must exist in
the mathematical sense. These are necessary conditions
of physical reality borrowed from the properties of the
electromagnetic field, because the electric and magnetic
fields are gauge invariants and in most or in all the
problems are well defined by the boundary value problem
for the field equations. Therefore, by analogy, we suppose
that they are sufficient conditions of physical reality.
Hence, in fact, we can consider this supposition to be
a prediction of our theoretical method of solution for
Maxwell’s equations.

5. The physical meaning of As in classical electrodynamics
is that its variation in time and in space generates the
solenoidal fields Es and Bs (equations (24) and (26)).
On the other hand, the spatial variation in 8 gives the
irrotational field Ei (equation (11)). Hence, one can
conclude from this that the electromagnetic potentials
As and 8 are real physical quantities in addition to the
electric E and magnetic B fields. In corroboration of

5
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this conclusion, we quote from the book by R Feynman
et al [11] (section 15–5): ‘. . . is the vector potential a
‘real’ field? . . . for a long time it was believed that A
was not a ‘real’ field. . . . there are phenomena involving
quantum mechanics which show that in fact A is a ‘real’
field in the sense that we have defined it . . . E and B
are slowly disappearing from the modern expression of
physical laws; they are being replaced by A [the vector
potential] and ϕ [the scalar potential]’.

6. Note that the Aharonov–Bohm effect proves the physical
reality of the vector potential As. Indeed, in their original
work [12], Aharonov and Bohm showed that the phase
shift of the electron wave function ought to be

1S/h̄ = −
e

ch̄

∮
A · dx, (39)

where
∮

A · dx =
∫

B · ds is the total magnetic flux inside
the circuit (see [12], p 486). But in our approach ∇ × A =

∇ × As + ∇ × Ai and ∇ × Ai = 0 by definition; hence by
the Stokes theorem

1S/h̄ = −
e

ch̄

∮
As · dx. (40)

7. The physical reality of the scalar electric potential was
demonstrated in 1998 by van Oudenaarden et al [13],
who showed that just as the phase shift of the wave
function depends on the magnetic vector potential, it also
depends on the scalar electric potential. It is obvious
that the electric potential 8 plays a leading role in this
effect [13], because in the static case our8 coincides with
the conventional ϕ.

Hence, we have proved that one can introduce,
uniquely defined, electromagnetic potentials As and8, which
completely characterize the electromagnetic field, and that
there is no necessity to introduce the gauge transformations.
Thus, we have ascertained that the quantum-mechanical
reality (see e.g. [11–14]) of the electromagnetic potentials
is also a classical-electrodynamics fact (note that the
problem of the physical reality of electromagnetic potentials
within the framework of the classical-electrodynamics
theory has already been discussed in the literature; see
e.g. [15–19]). Thus, we have reason to expect that in future,
classical-electrodynamics experiments, which confirm the
physical reality of electromagnetic potentials As and8, could
be performed. It must be emphasized that 8 and As naturally
emerge from our method without artificially including a gauge
condition.
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