
The inertial property of approximately inertial frames of reference

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 Eur. J. Phys. 32 1347

(http://iopscience.iop.org/0143-0807/32/5/022)

Download details:

IP Address: 81.18.138.131

The article was downloaded on 03/08/2011 at 09:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0143-0807/32/5
http://iopscience.iop.org/0143-0807
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING EUROPEAN JOURNAL OF PHYSICS

Eur. J. Phys. 32 (2011) 1347–1356 doi:10.1088/0143-0807/32/5/022

The inertial property of approximately
inertial frames of reference

Andrew E Chubykalo1, Augusto Espinoza1 and
B P Kosyakov2

1 Escuela de Fı́sica, Universidad Autónoma de Zacatecas, Apartado Postal C-580,
Zacatecas 98068, Zacatecas, Mexico
2 Russian Federal Nuclear Center, Sarov, 607190 Nizhnii Novgorod Region, Russia

E-mail: achubykalo@yahoo.com.mx, drespinozag@yahoo.com.mx and kosyakov@vniief.ru

Received 13 April 2011, in final form 1 June 2011
Published 2 August 2011
Online at stacks.iop.org/EJP/32/1347

Abstract
Is it possible to compare approximately inertial frames in the inertial property?
If this is the case, the inertial property becomes a measurable quantity. We give
a positive answer to this question, and discuss the general principle of design
of devices for making the required measurements. This paper is intended
for advanced undergraduate and graduate students in high energy physics and
relativity. Our aim is twofold: (i) to provide a deeper insight into the essentials
of classical dynamics, and (ii) to give impetus to ingenious young people to
devise new clever, useful and highly sensitive tools for measuring the inertial
property following the pattern outlined in the present discussion.

1. Introduction

In laboratory practice, the most frequently used frames of reference are approximately inertial
frames. Are they comparable in the degree of approximation of the property ‘to be inertial’?
In other words, is it possible to measure the extent to which a frame deviates from the perfect
regime of Galilean motion, so as to render the inertial property a measurable quantity? Below
we give a positive answer to this question.

It transpires that the conventional definition of inertial frames, proposed by Neumann
and Lange, is inappropriate for handling this problem. However, the proper acceleration
of a given frame can be measured indirectly if the so-called apparent forces are taken into
account. This issue is addressed in section 3. In contrast, an alternative definition of inertial
frames based on the notion of unstable equilibrium [1] turns out to be adaptable to the desired
measurements in a direct way. We offer the general principle of design of devices for making
such measurements in section 4.

This discussion, apart from its pedagogical value, may be of utility in experiments on
the detection of gravitational waves. It is anticipated that the Advanced LIGO [2], the laser
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interferometer detector which should be operational in 2014, will detect gravitational waves
from bursts of highly relativistic objects such as supernovae. However, it may well be that
gravitational waves from lower level sources are too feeble to be detected by the most sensitive
operational instruments, as well as the proposed laser interferometer space antenna, LISA,
consisting of three spacecraft in solar orbit. We then must take care to increase still further
the measurement precision. Note that a platform for the detector—not only terrestrial but also
spaceship-mounted—undergoes perturbations. To be specific, satellite-mounted detectors
undergo numerous perturbations due to flows of cosmic waste, solar wind and irregularities
in the Earth’s rotation about its axis, not to mention minor accelerations owing to the Earth’s
orbit about the Sun, the Sun’s orbit in the galaxy and the galaxy’s motion in the Virgo Cluster.
For example, a body with ballistic coefficient CB = 0.1 m kg−1 separated from the Sun by
one astronomical unit d0 is exposed to radiation pressure P ≈ 1.4 × 103 W m−2, which yields
an acceleration of 0.5 × 10−7 g [3]. For a body separated from the Sun by a distance d, this
value is multiplied by the factor (d0/d)2. To control the inertial property of the platform it
is necessary to ensure that perturbations do not exceed some threshold. Unstable systems
provide a useful check on whether this condition is fulfilled.

This paper is intended for advanced undergraduate and graduate students in high energy
physics and relativity. Our aim is twofold: (i) to provide a deeper insight into the essentials of
classical dynamics, and (ii) to give impetus to ingenious young people to devise new clever,
useful and highly sensitive tools for measuring the inertial property following the pattern
outlined in the present discussion.

2. The conventional treatment of inertial frames

Before going into experimental procedures aimed at rendering the inertial property a
measurable quantity, effort must be made to refine the very notion of inertial frames of
reference.

We first become aware of this notion in middle school where we gain an impression of
inertial frames by a series of simple comparative examples: a carriage which is affected by pits
and bumps versus a car which is moving gently along a smooth horizontal highway, a revolving
carousel versus a chamber in a free fall, without rotation, etc. In the studentship season, we
return to this notion at a higher level when we ponder over the question: ‘Why did Newton
accentuate the statement that a free body continues in its state of rest or uniform motion in a
straight line as a separate law, Newton’s first law, even though the state of non-accelerating
motion is an obvious consequence of Newton’s second law in the absence of external forces?
Doesn’t the equation of motion mẍ = 0 imply that x(t) = x0 + vt , where v = const?’ At
this juncture, our tutor reminds us that while a free body indeed moves at a constant rate with
respect to inertial frames, the term ‘inertial’ is yet to be explained. Newton’s first law is not a
law at all. This is a statement to introduce the notion of inertial frames. Making this statement,
Newton gave an implicit definition of the type of frames with respect to which the laws of
mechanics are to be formulated. Authoritative texts tell us: ‘There is at least one frame of
reference in which free particles move uniformly along straight lines. Every frame which has
a uniform motion of translation relative to this frame is also an inertial frame’ [4, 5]. The
Springer Encyclopedia of Physics [6] gives just this definition of inertial frames.

Based on this argument, we envision that free particles move uniformly along straight
lines in inertial frames assuming tacitly that we have appropriate criteria for deciding whether
a given particle is ‘free’, its motion is ‘uniform’ and its path is ‘rectilinear’. Strictly speaking,
none of these qualities are possible to verify independently of each other when we have no
prior knowledge that the frame under examination is inertial.
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The naive idea that ‘a particle is almost free if it is well off other particles’ is valid until we
recall self-interaction. Any particle is a source of some field which acts back on this particle.
Does Newton’s first law govern self-interacting particles? Experiment seems to point that
sufficiently isolated bodies behave as free Galilean objects. However, it is not inconceivable
that the current observations are insufficiently purposeful to grasp an anomaly in the motion of
self-interacting particles. It has long been known that the Maxwell–Lorentz electrodynamics
involves the so-called self-accelerated solutions (see e.g. [7, 8]): a free classical charged
particle moves with the exponentially increasing four-acceleration squared,

a2(s) = a2(0) exp(2s/τ0), (1)

where s is the proper time, a2(0) is the initial acceleration squared and τ0 = 2e2/3mc3 is a
characteristic time interval, where τ0 ≈ 6 × 10−24 s if we choose e and m to be the charge and
mass of a real electron. Note that equation (1) is consistent with Newton’s first law. Indeed,
if the motion was uniform before the instant s = 0, then a2(0) = 0, and hence the motion is
uniform for all time. Many people think of the self-accelerated solution (1) as an unphysical
phenomenon because a charge continually accelerates and continually radiates. This may
seem contrary to energy conservation. However, the reader may consult [8] to see that the
energy violation is only apparent. The key idea is that self-interaction rearranges the initial
mechanical and electromagnetic degrees of freedom into two new entities: dressed particles
and radiation. The energy of a dressed particle is indefinite: increasing velocity need not be
accomplished by increasing energy. A diligent student will verify that the energy of a dressed
particle executing self-accelerated motion steadily decreases, which exactly compensates the
increase in energy of the electromagnetic field emitted [9].

The notion of rectilinearity can be modelled in geometrical optics with the help of light
rays. However, light propagates along a straight line only in inertial frames. Furthermore,
the notion of uniform motion cannot be defined unless an inertial frame of reference is fixed
because the time rate that reads our clocks is sensitive to the type of frame that has been
chosen. This leads to a vicious circle: a notion A is formulated in terms of B and C whose
own sense is intangible unless they are formulated in terms of A.

It is widely believed that such circularity is inevitable in any physical discipline. According
to this view, to define the fundamental notions individually and verify them separately is ill-
advised but their system analysis in the unity would be a distinct possibility. To illustrate, the
exposition of electrodynamics must not begin with complete definitions because ‘the latter
will be derived from their interrelation through the basic equations of the theory, which can
be tested by experiment’ [10]. A refined version of this teaching is: ‘Here and elsewhere in
science, as stressed not least by Henri Poincaré, that view is out of date which used to say,
Define your terms before you proceed. All the laws and theories of physics, including the
Lorentz force law, have this deep and subtle character, that they both define the concepts they
use (here B and E) and make statements about these concepts. Contrariwise, the absence of
some body of theory, law, and principle deprives one of the means properly to define or even
to use concepts’ [11].

The conventional view of the notions of ‘uniform motion’, ‘straight line’, ‘free particle’
and ‘inertial frame’ had formed at the turn of the 19th century (for historical details and further
references see [12]). It was Lange who coined the expression inertial frame [13], which has
since become standard. The idea of inertial frames was inspired by a proposal that Neumann
made in his habilitation address [14], concerning time. Neumann realized that the notion of
uniform motion is empty of content unless we know what is meant by ‘equally long time
intervals’. To define equal intervals of time he invoked the concept of free particles. Neumann
reasoned that two free particles move in such a manner that equal path distances of the one
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always correspond to equal path distances of the other. The motion of one particle can be
taken as defining equal units of time. This convention defines the standard time rate t, namely
the rate which appears in Newton’s second law.

The next step made by Lange [13] is to show that, for three or fewer particles, the
rectilinearity of Newton’s first law has no physical content, because whatever the motion of
those particles, it is always possible to choose a coordinate system in which their trajectories
are rectilinear. The claim that they are moving along straight lines is a matter of convention.
On the other hand, relative to a coordinate system in which three free particles, projected from
a single point, move in straight non-coplanar lines and travel mutually proportional distances,
the motion of any fourth free particle will be rectilinear and uniform. (Lange’s intricate line
of reasoning is recast in an easy-to-read form in [15].) Lange called this coordinate system
the inertial frame of reference.

The use of the notion of free particles to define the standard time rate and inertial frames
rests heavily on the dynamical laws. Conceptually, the Neumann–Lange method is very
sophisticated because the most fundamental elements of the scheme are defined in terms of
themselves (for an extended discussion of this issue see [12]). Therein lies a weak point of
the method: at least one fundamental element eludes definition. It may be worth emphasizing
that the undefined element, the concept of free particles, is the least elementary if we keep in
mind the self-interaction problem.

3. The apparent forces

Neumann–Lange’s trajectory-based concept did not acquire experimental utility. All modern
timekeeping methods use periodic processes rather than freely moving particles. The closest
fit to the standard time rate is by atomic clocks. As to the experimental measurement of the
inertial property of different frames, there is little point in thinking of how Lange’s construction
of four free particles can be adaptable for this purpose.

However, there exists an indirect way of measuring deviations of a frame of reference from
the inertial state based on the phenomenon of weight experienced by a test mass that resides
in this frame. All available accelerometers are devices that measure this kind of apparent
force—weight per unit of test mass. An accelerometer senses the proper acceleration of this
device, and hence the proper acceleration of the frame in which this accelerometer is rigidly
fixed.

We begin with a brief overview of the design and performance of general purpose
accelerometers (for an extended discussion see [16]). Electromechanical accelerometers
are a commonly used tool in automotive, biomedical, industrial and numerous consumer
applications since it is crucial for safety, measurement and control. The essential principle
of design of a typical accelerometer reads: it behaves as a damped mass on a spring. When
the accelerometer experiences an acceleration, the proof mass is displaced to the position that
the spring is able to deform. The displacement q is then measured to give the acceleration a.
Piezoelectric and capacitive components are widely used to convert the mechanical motion of
the proof mass into an electrical signal.

Most common acceleration and vibration measurements are simple in nature, being either
of compressional or torsional types. To perform them requires a single-axis system whose
mechanical component is governed by

q̈ + νq̇ + ω2
0q = a. (2)

Here, q is the proof mass displacement, ν is the damping factor and ω0 = √
k/m is the

natural resonant frequency, with k and m being, respectively, the spring constant and the
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mass of the proof mass. (In order for more complex measurements related to, say, a
combination of compressional, torsional and transverse vibrations to be made, we need a
three-axis accelerometer whose behaviour is governed by a set of three ordinary second-order
differential equations rather than a single equation.) The solution to equation (2)

q(t) = 1

2π

∫ ∞

−∞
dω

∫ ∞

−∞

eiω(t−τ)a(τ ) dτ

−ω2 + iων + ω2
0

(3)

involves a major part of information about the accelerometer characteristics: sensitivity,
frequency range, dynamic range and minimum detectable acceleration.

Note that m should be big enough to make the device quite immune to the mechanical
noise due to Brownian motion of the proof mass. Here, we do not consider the electric
chain noise which, however, may be dominant in such systems. On the other hand, m has
to be small enough, for a given ν, to approach critical damping ω2

0 = ν2/4, which ensures
maximum bandwidth. Piezoelectric accelerometers are unmatched in terms of their upper
frequency range. Capacitive accelerometers excel in sensitivity and high performance in the
low frequency range.

Mention should be made of kinematic accelerometers, which are based on timing the
passage of an unconstrained proof mass between points marked on the accelerated base.
These types of accelerometers find use as an absolute instrument in gravimetry.

Three-axis electrostatic accelerometers, exhibiting ultra-high sensitivities compatible
with femto-g resolution [3, 17], are of primary concern to space applications such as the
equivalence principle tests. An electrostatic accelerometer measures the voltage between
charged electrodes in terms of force required to sustain a movable electrode at a given
separation from affixed electrodes. The device is completed with a feedback system. An
electrode of known mass and area is mounted on a light pivoted arm for moving relative to the
fixed electrodes. The nominal gap between the pivoted and fixed electrodes is maintained by
means of a force balancing servo system capable of varying the electrode potential in response
to signals from a pick-off that senses relative changes in the gaps.

It is interesting that the inertial property of terrestrial frames lends itself to control
much better than that of spaceship-mounted platforms. Gravimeters, the accelerometers that
measure tiny changes within the Earth’s surface gravity, are typically designed to be much more
sensitive than usual general purpose accelerometers. The most accurate relative gravimeters
are superconducting gravimeters, which achieve sensitivities of 10−12 g. This is due to the
fact that the basic constraints on sensitivity of accelerometers can be largely removed when a
stable constant background acceleration is available, as happens with gravimetry.

It is possible to detect the proper acceleration of a non-inertial frame of reference which
rotates with constant angular velocity Ω about a fixed axis by taking into account the Coriolis
force −2mΩ × v and centrifugal force −mΩ × (Ω × r), two further kinds of apparent forces
which exert on a test particle of mass m in this frame. Here, r and v are, respectively, position
vector, drawn from the origin on the axis of rotation, and velocity of the particle which is
measured with respect to this rotating frame. A well-known case where the Coriolis force
manifests itself as a measurable effect relates to the Foucault pendulum experiment. If a
pendulum is set at the north pole, it must swing in a fixed plane while the Earth rotates beneath
it. An observer on the Earth will then see that the plane of oscillation rotates with angular
velocity Ω. In general, the apparent forces in rotating frames can be measured through the use
of gyroscopes.

There exists the possibility of testing much more subtle phenomena predicted by general
relativity, the geodetic and frame-dragging effects, by means of gyroscopes in the Earth’s orbit.
Indeed, the Gravity Probe B (GP-B) mission was designed to test whether there would be tiny
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Figure 1. Magnetic needle in the state of unstable equilibrium.

changes in the directions of spin of four cryogenic gyroscopes contained in a satellite, circling
the Earth in a polar orbit, in response to spacetime warping by the presence of the Earth and
local spacetime dragging by the Earth’s rotation about its axis [18]. The idea of the GP-B
experiment is quite simple. A telescope is rigidly connected to the gyroscope housing. The
telescope always points to a remote guide star, IM Pegasi, which provides the experiment’s
frame of reference in space. Initially, the gyroscopes’ spin axes are aligned with this guide
star. The gyroscopes, made up of fused quartz balls coated with superconducting niobium,
rotate up to 5000 times min−1. Each ball produces a magnetic field, so that changes in their
orientations relative to the guide star could be detected. Analysis of the data from all four
gyroscopes, gained as the spacecraft made over 5000 orbits around the Earth, results in a
geodetic drift rate of −6601.8 ± 18.3 mas yr−1 and a frame-dragging drift rate of −37.2 ± 7.2
mas yr−1 to be compared with the theoretical predictions of −6606.1 and −39.2 mas yr−1,
respectively (‘mas’ is milliarc-second; 1 mas = 4.848 × 10−9 rad). Thus, GP-B provides
measurements of the geodetic and frame-dragging effects at an accuracy of 0.28% and 19%,
respectively [18].

4. Another way of looking at inertial frames

There exists an alternative concept of inertial frames [1]. A key idea is to use the notion
of unstable equilibrium. Intuition suggests that states of unstable equilibrium of any
physical system can be maintained only in inertial frames of reference because shocks and
blows associated with accelerated motions of non-inertial frames prevent unstable systems
from being balanced. This gives a simple operational criterion for distinguishing between
inertial and non-inertial frames based on the capability of inertial frames for preserving
unstable equilibria. An arrangement for checking whether the frame is inertial is shown in
figure 1. A magnetic needle is installed halfway between north poles of two identical static
magnets on the axis along which the magnets are lined up. A state of unstable equilibrium is
attained when the needle is perpendicular to this axis. The magnets are mounted rigidly to the
laboratory platform, and their separation is fixed. The system must be shielded by a protective
metal screen and contained in a cryostat. A minute perturbation will suffice for the needle to
swing through +90◦ or −90◦, so that its resulting direction is either aligned with or opposed to
the magnet axis. The swing signals that a deviation from the state of Galilean motion occurs3.
A triplet of such arrangements, set along the perpendicular axes, is sensitive to every small
perturbation, including slow rotations of the frame.

This criterion is suitable for identifying not only idealized inertial frames but also real
approximately inertial frames, which provides us with a simple and natural way for making the
inertial property a measured quantity. To do this a testing system is required which is stable
against infinitesimal perturbations but unstable against finite perturbations whose magnitude is

3 An electrostatic accelerometer, minus the feedback system, may well be considered as an alternative to this
arrangement. Indeed, by Earnshaw’s theorem, the charged proof mass cannot be held in a stable equilibrium by
electrostatic forces alone.
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U(x)

(a) (b)

U(x)

Figure 2. Two kinds of instability: (a) a particle in an equilibrium state, which is unstable against
finite perturbations and (b) a particle in an absolutely unstable equilibrium.

Figure 3. A system in unstable and neutral equilibrium: a schematic representation of the key
phenomena underlying the two concepts of inertial frames.

above some threshold. Figure 2 illustrates these two kinds of instabilities. We see a particle in
two different potentials U(x). One of them (left) affords a stable equilibrium state which can
be violated when perturbations are greater than the depth of the potential pit while the other
(right) refers to an absolutely unstable equilibrium. Given the former system as the testing
device, the inertial property can be expressed in terms of the threshold value of perturbation.
Indeed, for the potential of the form U(x) = 1

2 μx2 − 1
4 λx4, displayed in the left plot, the

threshold is �E = 1
4 μ2/λ. This quantity may be used to express the range of accuracy

within which the given frame is held to be inertial. Likewise, for the testing system shown in
figure 1, use can be made of the frictional bond (static friction) on the axle of the magnetic
needle. The magnetic needle swings if perturbations are large enough to overcome the
frictional bond. Thus, the friction threshold of the device corresponds to the maximum
allowable deviation of the frame from the Galilean regime of motion. If we take an array of
devices whose operations relate to friction thresholds assuming different values, this would
provide a way for making the inertial property a continuous quantity.

It is interesting that the conventional concept of inertial frames is readily translated into
the language of equilibrium states: if a free particle is at rest in a particular inertial frame,
then this particle may be regarded as being in the state of neutral equilibrium. Consider a
potential U(x), and suppose that U(x) has a local maximum at x = x∗ and a plateau at
x∗∗ � x � x∗∗∗. These two agents for revealing inertial frames are shown in figure 3. Does
every particle coming to x = x∗ attain the rest state? No. The extremum of U(x) provides
only the condition which is necessary for this to occur. The sufficient condition is that the
velocity of the particle at x = x∗ is vanishing in some inertial frame. On the other hand, if
the coordinates x are subjected to a nonlinear transformation, x = x(x̄, t), which is another
way of stating that the inertial frame is changed for a non-inertial one, then the possibility
of forming unstable equilibrium states disappears. Thus, the notion of unstable equilibrium,
essential for this definition of inertial frames, is itself formulated in terms of inertial frames,
which makes the definition circular. Is there a loop-hole which would allow us to unravel this
tangle of notions?

Consider a Lagrangian system governed by the principle of least action:

δS = 0, (4)

where S is the action of the system. For simplicity, we restrict our consideration to the case
that the configuration space of the system is one dimensional; everything we say can readily
be extended to higher dimensions. We interpret a solution to equation (4) as an equilibrium
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state of the system at x = x∗ if the history is depicted by a straight world line that issues out of
the initial point (t0, x

∗). The existence of such states is due to the fact that we are dealing with
inertial frames. Indeed, a nonlinear coordinate transformation x = x(x̄, t), associated with
going to a non-inertial frame, would distort straight world lines. However, if our concern is
with the general notion of the unstable state, no matter whether or not such states are balanced,
then it is possible to explicate this notion in a coordinate-free form. It is well known from the
calculus of variation that a solution x(t) is unstable if

δ2S

δx2
< 0. (5)

The instability of x(t) means that this solution depends heavily on the initial position x∗ of
the system:

∂x(t; x∗)
∂x∗ ∼ exp(t/�), t � �. (6)

Here, � stands for a characteristic time interval.
Perform a smooth coordinate transformation, the so-called diffeomorphism, x = x(x̄, t).

Then, equation (4) implies

δS

δx̄
= δS

δx

∂x

∂x̄
= 0. (7)

It follows that

δ2S

δx̄2
= δ2S

δx2

(
∂x

∂x̄

)2

+
δS

δx

∂2x

∂x̄2
= δ2S

δx2

(
∂x

∂x̄

)2

< 0, (8)

where the second relationship is obtained through the use of equation (5). We thus see
that both Hamilton’s principle, equation (4), and the instability condition, equation (5),
remain unchanged under smooth coordinate transformations. The notion of unstable states
is diffeomorphism invariant. In other words, this notion can be defined in a coordinate-free
manner.

Let the given Lagrangian system possess unstable states. Some of them could be promoted
to unstable equilibrium states. With this aim in mind, we have to find such coordinates (global
Cartesian coordinates) and time rate (standard time rate) in terms of which the selected states
are represented by straight world lines. It remains to see whether self-interacting objects (or,
more precisely, dressed particles) can be assembled into both stable and unstable bound states.
If we are lucky, this procedure will be adapted for identifying inertial frames.

Devices such as the one in figure 1 may appear hardly practicable because they are valid
for one occasion only, and it is not clear whether our line of reasoning can be modified to
apply to permanent monitoring of the inertial property. Furthermore, if we have no prior
knowledge of the frame, what is the reason to hope that we will succeed in balancing the
magnetic needle? Note, however, that our main concern here is with the most basic points of
the subject (the proposed alternative to the conventional definition of inertial frames, and the
principle of operation of devices in unstable equilibrium) rather than details of the measurement
procedures. There are many varieties of unstable systems, to mention just three: supercooled
vapour, superheated liquid and an excited laser medium. With this hint in mind the ingenious
reader is invited to make his or her own contrivances, following the above line of attack, to
yield more useful instruments.

A few words are in order concerning the very idea of unstable equilibrium on the level of
fundamental theory. It is clear that thermal and, even at zero temperature, quantum fluctuations
must eventually disrupt any system which is in a truly unstable equilibrium, even if the system
exists in an inertial frame. There is an irreducible limit to how finely any device could
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quantify the inertial property of a frame. In the long run, quantum fluctuations in the geometry
of spacetime will put an end to the validity of the concept of inertial frames concurrently with
the existence of unstable equilibrium states. From this, we might reason that these fundamental
notions, the inertial frame and the unstable equilibrium state, are deeply intertwined.

5. Summary

The conventional paradigm of inertial frames is based on Neumann and Lange’s idea of
taking, as the starting point, the notion of free particles. Thus, the identification of
inertial frames derives from the identification of free particles. Conceptually, this scheme
is very sophisticated because the fundamental notions are defined in terms of themselves.
Furthermore, the Neumann–Lange constructions are of no use for measuring the inertial
property of approximately inertial frames of reference.

The definition of inertial frames based on the notion of unstable equilibrium is well suited
to the operational identification of inertial frames. Systems in unstable equilibrium are capable
of detecting the slightest deviations of the frame from the perfect Galilean state of motion.
With an array of devices in unstable equilibrium, it is possible to render the inertial property
of a frame a measurable quantity. In fact, we are dealing with a new type of accelerometer.
Note that conventional accelerometry is successfully employed on condition that an extra
inertial frame of reference is available. For example, the gyroscope precession in the GP-B
experiment was measured with respect to a distant inertial frame associated with a guide star,
as discussed in section 3. Accelerometers of the new type, contrastingly, dispense with the
need for auxiliary frames of reference. These instruments will find use as soon as the ultimate
accuracy will be required.
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