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Introduction

Students of physics mainly suppose that solutions of free
Maxwell equations (FME) (i.e. Maxwell equations without
charges and currents) do not lead to anything especial
surprising. However, a set of  solutions of  FME exists which
refute this almost generally accepted opinion. It should also
be stated that the existence of such solutions almost is not
in the picture in modern textbooks.1

It is well known that from the system of complete
Maxwell equations (CME) (i.e. equations with non-zero

density of a charge and non-zero density of a current of
conductivity) it follows that any solution E and B of this
system must be E-polar vector and B-axial vector in the
microscopic consideration. One can satisfy oneself that this

1.       Truly, in the textbook by M. Born and E. Wolf (1999) the general solution of FME was

adduced. This general solution was obtained by G. M. Mie (1980). Of course, this

solution formally encompasses all possible particular cases. Our article is devoted to

obtaining and investigating those unusual particular solutions of FME mentioned in

the Introduction.

Abstract: Some unusual properties of
solutions of so called free Maxwell equations
are discovered. We show the existence of
solutions that represent electromagnetic
waves in a vacuum for which the Poynting
vector does not coincide with the Umov
vector. We show solutions which correspond
to standing magnetic waves of an unusual
configuration in a vacuum; solutions
describing spherical and ring-like stable field
formations in vacuum. It is shown that in a
vacuum, according to the solutions obtained,
the electric field E can be a polar vector as
well as an axial vector, and the magnetic field
B, in turn, can be an axial vector as well as a
polar vector. It is also shown that such
solutions exist when the vectors E and B are
neither polar vectors nor axial vectors.
Furthermore, these solutions correspond to
electromagnetic waves which transfer neither
energy nor momentum at any point in a

vacuum.
Key words: Poynting vector, Umov vector,
axial vector, polar vector, wave solutions.

Sobre algunas propiedades inusuales de las
ecuaciones libres de Maxwell
Resumen: Se descubren algunas propiedades
inusuales de las soluciones de las llamadas
ecuaciones libres de Maxwell. Mostramos la
existencia de soluciones que representan las
ondas electromagnéticas en el vacío para los
cuales el vector de Poynting no coincide con
el vector de Umov. Se presentan soluciones que
corresponden a ondas magnéticas estacionarias
de una configuración inusual en el vacío, que
describen en el vacio formaciones estables
anulares y esféricas de campo. Se demuestra
que en el vacío, de acuerdo a las soluciones
obtenidas el campo eléctrico E puede ser un
vector polar así como un vector axial; y el
campo magnético B, en su turno, puede ser un
vector axial así como también un vector polar.
Se muestra que tales soluciones existen
cuando los vectores E y B, no son vectores
polares ni axiales. Además, estas soluciones
corresponden a ondas electromagnéticas que
no transfieren energía ni momentos en
cualquier punto del vacío.
Palabras clave: vector de Poynting, vector
de Umov, vector axial, vector polar,
soluciones ondulatorias.
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fact directly follows from equation div E = 4π! and from
other equations of  CME. Actually, seeing that ! is a scalar
with respect to the spatial inversion transformation for
coordinates and the operator ‘‘div’’ changes its sign, the vector
E is a polar vector because it behaves as E →→→→→ E′     = –E.

If one follows this claim, then it is obvious that so called
free Maxwell equations (FME)

div E = 0,                                                             (1)

rot E = tc ∂
∂− B1 ,                                                        (2)

div B = 0,                                                            (3)

rot B = tc ∂
∂− E1 ,                                                        (4)

must correspondingly have only solutions of this type.
However, if  we consider FME from a purely formal,

mathematical point of  view, then this condition (E-polar
vector and B-axial vector) is not obligatory. The point is that
one of the authors of the present work argued (Chubykalo
et al., 1998) of Gauss’ law to constructing CME leads to
realizing the fact that FME and, correspondingly, so called
free electric and magnetic fields are not a consequence of CME:
one just may postulate them.

Thus the present work is devoted to the research of
some unusual theoretical results connected with certain
solutions of  FME. We show below that such nonstandard
solutions of FME exist, when the electric field E can be a
polar vector as well as an axial vector, and the magnetic
field B in turn can be an axial vector as well as a polar
vector. Of  course, we omit the consideration of  the trivial
case when one can make the following interchange in FME:
E →→→→→ –B′, B →→→→→ E′. Obviously, the axial vector E′ and the
polar vector B′ are solutions of  FME too. And it will be
shown also that such a solution exists when the vectors E
and B are neither polar vectors nor axial vectors. Generally
speaking, if one considers free Maxwell equations without
taking into account a history of  their origin, one can formally
construct solutions that are not subject to polarity conditions.
In Section 1 we show a way of  constructing these solutions.

We show that even solutions with a standard polarity lead
to unusual results such as ball-like and ring-like stable free
field formations in vacuum. We also show that in such
solutions, absolute values of  the Poynting vector S =

π4
c (E×××××B) and the Umov vector (energy-flux) vector U =

wcn do not coincide! Here n is a unit vector along the
direction of  propagation of  the energy, i.e. along the
direction of  the Poynting vector.

1. Unusual Solutions of FME with Different
Polarities

One can represent the solutions of (1-4) as follows:

[ ] )sin()r()r( 21 tΩ+= be E CC  and [ ] )cos()r()r( 21 tΩ+= eb B CC ,      (5)

where C1, C2 and Ω are constant and where vectors e and b
are solution of the system

be
c
Ω=rot ; eb

c
Ω=rot                                                 (6)

such that e is a polar vector and b is an axial vector (c is
the velocity of light in vacuum). This solution expressed
by components (cartesian and spherical ones) is:

ϕ
θααα e e ˆsin0,,–
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where D is a dimension constant [D] = M1/2L5/2T–1;
2

23 sin ;
c c

β α Ω Ω = −   
2r r

;)(;sincos 2/1222 zyxrrrr ++=

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
 Ω+





 ΩΩ−=

ccc
α

and here êϕ, êr, êθ, are orts of the spherical coordinate system.
From the whole class of solutions of the system (6) we
have chosen the most simple non-trivial one. We adduce
the detailed way of obtaining this solution in Section 3.

Let us consider the solutions (5) for some different
constants C1 and C2.

Following to I.E.Tamm (1957), we accept that
identification of  the Poynting vector with the energy flux
in a given point leads to the equality of the velocity of
transmission of  energy and the velocity of  the carriers of
this energy, that is, the electromagnetic waves. In other
words, the existence of the fact that, in every point in a
given area of  a space, the Poynting vector is not zero, attests
that in this area the energy transferring process takes place.

2.1. Case T1: Transferring Energy Wave Solution
with an Usual Polarity
Let C1 = 1 and C2= 0. In this case from Eqs. (5) we have:

)sin()(1 tT Ω= reE  and )cos()(1 tT Ω= rbB                           (9)



291C I E N C I A  e r g o  s u m ,  V o l .  1 3 - 3 ,  n o v i e m b r e  2 0 0 6 - f e b r e r o  2 0 0 7

NÚMERO ESPECIAL: FÍSICA

In this case

011 =⋅ TT BE  and ( ) ( ) ( ) 02sin
84 111 ≠Ω×=×= tcc

TTT beBES
ππ   (10)

( ) ( )1

2 2
2 21 2 2

1
1 sin cos ,

8 8
T T

T t t
π π
+  = = Ω + Ω bw

E B
e                    (11)

where wT1
 is the density of  energy, ST1

 is the energy-flux
vector, index T1 means that this solution corresponds to
the case (T1). Note that the energy distribution in this field
has a central symmetry as well as an axial one with respect
to the origin of  coordinates and Z-axis. If  we write the
solutions (5) in the spherical system of coordinates
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one can see that they are a superposition of intricate
electromagnetic waves with amplitudes and phases
depending on r, θ and spreading along opposite directions
from the origin of  coordinates to infinity and conversely.

We see, besides, that these waves which are usual in the
sense of  polarity nevertheless are unusual enough. For
example, let us consider the behavior of the wave fields
(12) and (13) along the Z-axis. In the spherical coordinates
it will mean that θ = 0. The electric field (12) along this axis
is zero according to the value of  A1(r, θ), and the magnetic
field (13) becomes:
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  (14)

It is clear that Eq.(14) represents a standing “longitudinal”2

magnetic (not electromagnetic!) wave along the Z-axis (we call
it ‘‘longitudinal’’ because vector B vibrates along Z). In order
to prove that (14) is really a standing wave we just have to

prove that solutions r of the equation BT1
 = 0, which define

nodal points of a wave, do not depend on time t, i.e. r ≠
r(t). It is easy to show that these solutions are also solutions
of the equation

c

r

c

r Ω=




 Ωtan .

Hence, one can see that r does not depend on t and,
consequently, Eq. (14) represents the standing longitudinal
wave of a magnetic field.

Vector BT1
 disappears with r → ∞ and in the point r = 0:

( )
3

3

10 3
cos2lim
c

t
T

ΩΩ=
→

DB
r

.                                            (15)

Aside from the unusual properties of the solution T1

cited, we adduce another curious property. In our recent
work (Chubykalo and Espinoza, 2002) it is shown that for
the solution T1 (Eqs. 12 and 13) electromagnetic energy
within spheres of the radii R which are solutions of the
equations

c

R

c

R Ω=




 Ωtan

or

2

22
1

tan

c

R

c

R

c

R

Ω
−

Ω

=




 Ω ,

does not change with time. Let us also direct attention to an
interesting fact; at the surfaces of the spheres of the radius
R, from the first of these equations only the magnetic field
is present, and the electric field at these surfaces does not
exist. We call these spheres magnetic spheres. In turn there are
rings at the plane z = 0 with radii satisfying the second of
these equations, where a magnetic field is not present. We
call these rings electric rings. We emphasize that these surfaces
and rings do not deform, do not displace and do not rotate
with time in vacuum.

2.2. Case T2: Transferring Energy Wave Solution
with an Inverse Polarity
Now we consider the case when in Eqs. (5) C1 = 0 and C2

= 1. In this case from Eqs. (5) we have:

)sin()(2 tT Ω= rbE  and )cos()(2 tT Ω= reB                         (16)

2          It is the fact unexpected enough because there is the generally accepted point of view

in textbooks that theoretically exclusively transversal  waves can exist in vacuum.
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We see now that this solution is already unusual in the
sense of polarity: ET2 is an axial vector and BT2 is a polar
one! It is easy to show that the electromagnetic wave formed
by this field spreads in the opposite direction with respect
to the direction of wave spreading (12), (13). Actually

022 =⋅ TT BE  and ( ) ( ) ( )tcc
TTT Ω×−=×= 2sin

84 222 beBES
ππ

   (17)

and the energy density

( ) ( )[ ]ttT
T

T Ω+Ω=
+

= 2222
2

2
2

2 cossin
8
1

8
2 eb

BE
ππ

w  .                (18)

Here, however, a certain doubt can arise: can one apply
these definitions of  the energy density and the energy-flux
vector to fields of nonstandard polarity? It easy to show
that one can apply these definitions to these nonstandard
fields if the mentioned fields are solutions of FME. Indeed,
let us multiply both sides of Eq. (2) by BT2 and both sides
of Eq. (4) by ET2 (taking into account that BT2 and ET2 are
solutions of these equations) and combine the resultant
equations. Then we get

( )2222
2

2
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2 rotrot11
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T
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T tctc

BEEBBBEE ⋅−⋅−=
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∂⋅+
∂

∂⋅ .         (19)

Using the well-known formula of  vector analysis, we
rewrite this relation in the form

( ) ( )22
2

2
2
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2
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TTTTtc
BEBE ×−=+
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∂

or after multiplying this relation by 
4
c
π

2
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t
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


 +
∂
∂
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Now we show that the vector

( )222 4 TTT
c BES ×=
π                                                  (21)

and the relation ( )22 BE 22 TT + /(8π) are the energy-flux vector
and the energy density of  the field (16). First we integrate
(20) over a volume and apply Gauss’ theorem to the term
on the right. Then we obtain3

2 2
28

T T
T

d dV d
dt π

+
= − ⋅∫ ∫!

2 2E B S f                                        (22)

If the integral extends over all space, then the surface
integral vanishes because the field is zero at infinity (one
can see this from Eqs. (7) and (8)). Then (22) becomes

2 2 0
8

T Td dV
dt π

 +
= 

 
∫

2 2E B                                               (23)

Thus, for the closed system consisting of the electromagnetic
field of  a nonstandard polarity, the quantity with dimensions of
an energy in brackets in this equation is conserved. We can
therefore call the quantity ( )22 BE 22 TT + /(8π) the energy density
of the electromagnetic field (16).

Now, if  we integrate over any finite volume, then the
surface integral in (22) generally does not vanish, so that
we can write the equation in the form

2 2
28

T T
T

d dV d
dt π

 +
= − ⋅ 

 
∫ ∫!

2 2E B S f                                     (24)

On the left stands the change in the total energy of  field
per unit time. Therefore the integral ∫ ⋅ fS dT 2  must be
interpreted as the flux of  field energy across the surface
bounding the given volume, so that the vector ST2 is a density
of  this flux (the Poynting vector) the amount of  field energy
passing through unit area of the surface in unit time.

Thus we can see that the expressions for energy density
and the Poynting vector were obtained without subjecting
the field to any polarity conditions.

We are not going to consider in detail the T2-solution of
FME, instead, we emphasize that the waves formed by this
solution spread in the opposite direction with respect the
waves formed by the T1-solution. Absolute magnitudes of
the Poynting vectors for T1 and T2 coincide, while the
distribution of  the energy density is different.

2.3. Case NT: Non-transferring Energy Wave
Solutions
Consider the case when in Eqs. (5) C1 = ± C2= 1. In this
case the solutions (5) become

[ ] ( )tNT Ω±= sin)()( rbreE  and [ ] ( )tNT Ω+±= cos)()( rbreB       (25)

Here we just adduce the obvious list of unusual properties
of this solution:

1) The vectors ENT and BNT do not have any polarity, in
other words these electric and magnetic vectors are neither
polar nor axial ones.

2) The vectors ENT and BNT are mutually collinear (this
directly follows from Eq.(25)), and, consequently, the
Poynting vector, corresponding to these electromagnetic
fields, is zero in every point of space.3.  Recall that in this case tdt

d
∂
∂= .
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3) In spite of the fact that the electric and magnetic
intensities depend on time, the energy density distribution
is a constant with respect to time and depends on spatial
coordinates only:

[ ].)()(
8
1 22 rbre +=
πNTw

                                                            
(26)

For r → 0 and r → 1 the energy density
correspondingly becomes:

6

62

0 18
lim

cNT π
Ω=

→

D
w 

r
 and 0lim =

∞→ NTw 
r

                                (27)

However, the integral of  wNT over all space diverges. It
means that all energy of  the electromagnetic fields (25) in
infinite space is infinite.

Thus, we obtained from FME the unusual free electro-
magnetic fields which oscillate in every point of space but
are not traveling waves and, correspondingly, do not transfer
energy and momentum (that is why we can call them
‘‘standing’’ waves).

One of these solutions ( C1 = C2 = 1 corresponds to the
solution of FME found by Rodrigues and Maiorino (1996)
and Chu and Ohkawa (1982):

( )tNT Ω= sin)(raE  and ( )tNT Ω= cos)(raB                        (28)

where vector a(r) satisfies the vector equation rot a(x, y, z) =

c
Ω a(x, y, z).

These fields are formed by vectors having no polarity,
the energy density of  these fields does not change with
time, waves of  this field do not transfer energy and
momentum. But these electromagnetic fields are a solution
of the free Maxwell equation!

2. Non-equivalence of  the Poynting Vector and the
Energy Flux (Umov) Vector in Obtained Wave
Solutions

More often than not students of physics suppose that the
Poynting vector

BES ×=
π4
c                                                           (29)

and Umov (energy flux) vector4

nU cw=                                                               (30)

always coincide for electromagnetic wave spreading in
vacuum in every point. Here n is a unit vector along the

direction of propagation of the wave, c is the velocity
of  light (i.e. the transferring energy velocity) and w is the
energy density of  the electromagnetic wave. In actual fact,
this assertion is proved at least for plane and spherical elec-
tromagnetic waves in vacuum.5 Nevertheless, the assertion
that S = U for waves of a more general kind is not proved
in textbooks and monographs.

Let us study what condition in vacuum for E and B in an
electromagnetic wave must be performed when the equality
S = U is valid. We have in CGS (Gauss’ system):

nBES α
ππ

sin
44

EBcc =×=                                         (31)

and

( )nnU 22

8
BEcc +==

π
w .                                           (32)

Equating (31) and (32) we obtain that

2EB sinα = E2 + B2                                                (33)
or

(E – B)2 + 2EB(1 – sinα) = 0                                   (34)

where α is the angle between E and B. Last equality (34)
can be valid if and only if E = B and α = π/2. Thus for the
equality of  the Poynting vector and Umov vector it is
necessarily and sufficiently that E⊥⊥⊥⊥⊥ B and E = B.

If we hark back to the solutions (12) and (13) of the
FME then one can make certain that these fields do not
satisfy the condition E = B. Theoretically it can mean that
in this kind of  waves (which, obviously, are neither spherical
nor plane) either the Poynting vector or the Umov vector
(or both) cannot describe the energy flux density of  the
given waves.

As another example let us consider a plane polarized
electromagnetic wave spreading across the area where a
constant homogeneous electric field Ec is present. Let the
constant field Ec be collinear to the variable electric field
of the wave (Ew) in every point at any instant of time.

4.       The Umov vector (U = wv)  is a more general vector (unlike the Poynting vector)

describing the energy flux density of any  kind of energy, w is the density of a

corresponding kind of the energy (not excepting electromagnetic energy) and v  is

a velocity of spreading of the energy in a given point. Thus the Poynting vector

formally must be a particular case of the Umov vector.

5.      See, e.g. classical textbooks. Tamm (1975) or Landau and Lifshitz (1973).
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Without taking into account the existence of the field Ec,
in this area absolute values of electric and magnetic
components of the wave are equal (Ew = Bw) and6

Bw = n×Ew.                                                         (35)

However after ‘‘turning on’’ the field Ec, the absolute value
of the resultant electric component Er of the wave changes:

Er = Ew+ Ec                                                          (36)

where Ew is the electric component of the wave without Ec.
It is obvious that the resultant magnetic component Br does
not change when one takes into account the field Ec, i.e.

Bρ+ Bw.                                                              (37)

Let us now calculate the Poynting and Umov vectors
(31), (32) (for α = π/2) taking into account that according
to the superposition principle fields E and B must be
resultant fields:

( )wr BES ×=
π4
c .                                                     (38)

Thus taking into account Eqs. (34)-(36) we obtain:

nnS ππ
χ

8
2

8

22
www

EE
cBEc ++= ,                                                     (39)

and in turn

nnnU πππ
χ

8
2

8
2

8

222
cEc

EE
cBEc +++= www                               (40)

Of course, the integration of the expressions (39) and
(40) along of some closed surfaces gives the equal result.

Thus the following questions appear:
1. Why do the Poynting and Umov vectors, while they

are defined both as a density of  a flux of  energy, not
coincide?

2. Must fields (like Ec, for example), which have no
relation to the electromagnetic wave, be a component part
of  the expression for the energy-flux vectors (39), (40)?7

3. How does the ambiguousness of  the Poynting vector
affect calculation of  the energy flux across open surfaces?

According to the superposition principle, in order to
calculate fields in a given point one has to take into account
all fields (i.e. both wave fields and non-wave ones) but it
leads to inconsistent results. Many authors (see, e.g., Landau
and Lifshitz, 1973: 10 x 47: 111) just exclude non-wave
fields from consideration while it is not completely right
from the superposition principle point of  view.

Thus one can reach a conclusion about the existence of
a disagreement between the superposition principle and
energetic characteristics of  electromagnetic fields.

3. Simple Solving of the System (6)

In order to solve this system, let us first note that formally
summing two equations (6) we obtain

( ) ( )bebe +Ω=+×∇
c

 or aa
c
Ω=×∇ .                               (41)

So, at first we resolve Eq. (41) with respect to a, and
then we obtain from the vector a (which, obviously, has no
polarity) the polar vector e and the axial vector b. Actually,
one can express polar and axial parts of any vector without
polarity, in general, as follows:

[ ])()(
2
1)( rarare −−=                                              (42)

and

[ ])()(
2
1)( rararb −+=                                             (43)

Now, if  we calculate a rotor of  both parts of  equations
(42), (43) one can be satisfied that the system (6) is fulfilled:

[ ] )()]()([
2
1)()(

2
1)( rbrarararare

ccc
Ω=−Ω+Ω=−×∇−×∇=×∇   (44)

and

[ ]1 1( ) ( ) ( ) [ ( ) ( )] ( )
2 2 c c c

Ω Ω Ω∇ × = ∇ × + ∇ × − = − − =b r a r a r a r a r e r .  (45)

Here we take into account that after inverting the coor-
dinates, the equation ∇× a(r) = c

Ωa(–r) becomes –∇× a (–
r) = c

Ωa(–r). Thus, one can see that if we find a as a
solution of Eq. (41) it means that we find e and b as solution
of the system (6).

In spite of the fact that equation (41) was already solved
in the literature (Rodríguez and Maiorino, 1996; Chu and

6.     See Landau and Lifshitz (1973), § 47. In our case ε=µ=1.

7.      See Landau and Lifshitz (1973),  § 31.  We just note that the expressions for the Poynting

vector S and for the energy density w were obtained without taking into account the

origin  of the electric and magnetic fields in these expressions.
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Ohkava, 1982) we decide to adduce here a different and
very simple method of the solution of this vector equation.

One can satisfy oneself that a simple way to obtain a solution
of Eq.(41) exists, if we represent the vector  in the spherical
system of coordinates as an axial-symmetrical vector:

ϕϕθθ θθθ eeea ),(),(),( rrr rr aaa ++= .                              (46)

The rotor of a vector in spherical coordinates out of the
origin is:

( ) ( )

( ) ( )

2
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θ θ ϕ
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(47)

Taking into account Eq. (41) and comparing (46) and
(47) we obtain the following system:
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From the system (48) one can obtain a differential equation
for aϕ only:

( ) ( ) 0sinsin
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2

2
=Ω+







∂
∂

∂
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ϕϕϕ θθθθ a
c

aa rr
r

r                  (49)

If  we look for the solution of  Eq. (49) in the form

)()( θϕ Θ= rRa                                                           (50)

we obtain that these functions have to satisfy the following
equations respectively:

22 2

2 2

( )
0

c
 Ω+ + = 
 

2 d rR r
r p rR

dr
                                    (51)

and

0)sin(sin
1 =Θ−


 Θ pθθθθ d

d
d
d                                     (52)

where p is an arbitrary constant. If  p were zero, the solution
for rR in Eq. (51) would be A cos c

rΩ  + B sin c
rΩ  (A and

B are constants). Accordingly, in general, we are going to
look for the solution of  Eq.(51) in the form

c
rr

c
rrrR Ω+Ω= )sin(cos)( BA                                      (53)

here A(r) and B(r) are some functions of  r. Substituting
(53) in Eq.(51) and taking into account that coefficients of
sine and cosine (which have the same argument) must be
equal to zero separately, we obtain a system of  two ordinary
differential equations:

0'2'' 2 =Ω++ BcAA
r

p  and 
2

2'' ' 0B B A
c
Ω+ − =p

r
.                 (54)

Let us propose that A(r) = µrm and B(r) = νrn, where
µ, ν, m, n are constants and m, n enter. Substituting these
values in Eqs.(54) we obtain ‘‘characteristic’’ equations:

( ) 021 1 =Ω++− +−mn

c nrpmm νµµ
                                 (55)

02)1( 1 =Ω−+− +−nmrmcpvnvn µ ,

that one can verify only in the two following cases:
I. m = 0, n = –1, p = –2, µ = – c

Ω ν, and taking into account
Eq.(53) we obtain for ν = 1




 +ΩΩ−=
c

wr
c
r

c
r

r
R sincos1

2 ;                                    (56)

II. m = –1, n = 0, p = –2, ν = – c
Ω µ, and taking into

account Eq. (53) we obtain for µ = 1




 Ω+Ω+Ω=
c
r

c
r

c
r

r
R sincos1

2 .                                    (57)

So the general solution of Eq. (51) for Rr is:
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where C1 and C2 are arbitrary constants. The solution
(58) one can express in the form





 


 −ΩΩ+


 −Ω= δδ

c
r

c
r

c
r

r
 Rr sincos2

C ,                        (59)

where C and δ are arbitrary constants.
Now Eq. (52) becomes (p = –2):

( ) 02sinsin
1 =Θ+


 Θ θθθθ d

d
d
d                                     (60)

Its general solution is:

( )3 4( ) sin cot sin ln csc cotc cθ θ θ θ θ θΘ = + + −                     (61)

As a particular case we take the values C4 = 0 (because a
corresponding solution has a singularity in θ = (2n+1)π)
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and C3 = 1 (by virtue of homogeneity of the equation for
the vector a).

Thus, we can write the solution (50) as follows:

θαθϕ sin)( 2r
r =,a                                                     (62)

where


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 −ΩΩ+
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r

c
r

c
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Now, using Eqs. (48), we can find ar(r, θ) and aθ(r, θ):

θαθ cos2),( 3r
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= ca , θγθθ sin),( 3r
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where
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c
rr cos2

22

c
.

And so, we have found the solution of  Eq. (41) which in
the spherical system of coordinates is:

ϕθ θαθγθα eee a
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
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


+





= sinsincos2

233 crrr
r  D D D            (64)

where for convenience we multiplied the solution by D c
Ω .

Then using (64), (42) and (43) we obtain the solutions
(7), (8) of the system (6).

Conclusion

There is a widely held view that, in Maxwell’s Classical
Electrodynamic Theory, all has been done, all is

understood and that nothing further can be done other
than carry out calculations for ever more complex systems,
that is why it is necessary to move towards more
fundamental physical theories. This seems to be confirmed
as quantum physics was created out of the basis of this
theory and thus, quantum electrodynamics was born.
These two branches of physics use classical electrody-
namics as an impeccable instrument. Why concern
ourselves with the basis of classical electrodynamics when
quantum mechanics and quantum electrodynamics, with
all their achievements, have already demonstrated their
right to their own existence?

However, upon thoroughly analyzing the basics of classical
electrodynamics, almost at every step along the way we
have a sense of internal dissatisfaction. This feeling comes
from the conceptual problems which remain unresolved
by this theory, and which we have become accustomed to
avoiding in silence.8 There are various problems of this
type9 but we limited ourselves to those related to this work:
the incompatibility of the definition of electromagnetic
energy density and the principle of  the superposition of
the electromagnetic fields; the lack of uniqueness in the
definition of  the vector for the density of  energy flow
along open surfaces; the lack of coincidence between the
Umov vector and the Poynting vector; the transversal
character of electromagnetic waves, demonstrated for a
certain kind of electromagnetic waves only; the possibility
of a nonstandard polarity of the solutions of the free
Maxwell equations in vacuum etc.

In this article, on the basis of the solutions described, we
wished to show that not all is understood in the theory of
classical electrodynamics. This situation allows us the
possibility of finding unexpected elements, which can fuel
the imagination and analysis. Generally, in texts relating to
electrodynamics examples confirming the “well-established”
facts of the theory are described. However, we consider
that from a pedagogical viewpoint, the counter-examples,
which show that not all is well established, are also necessary
for a deeper understanding of the fundamentals of this
far from finished theory.

In this manner, on the basis of the solutions found (5)
for the equations of the electromagnetic field in a vacuum,
we show that certain “standard properties” generally
imposed on these solutions are not always fulfilled. The
lack of the polarity condition of these solutions at
microscopic level could indicate that the Maxwell equations
in a vacuum may not necessarily be a consequence of these
equations in medium with charges and currents. The latter,
as shown here, can lead to wave solutions which do not

8.       While R. Feynman (1964) wrote ‘‘[...] this tremendous edifice (classical electrodynamics)

which is such a beautiful success in explaining so many phenomena, ultimately falls on

its face. When you follow any of our physics too far, you find that it always gets into

some kind of trouble. [...] the failure of the classical electromagnetic theory. [...]Classical

mechanics is a mathematically consistent theory; it just doesn’t agree with experience.

It is interesting, though, that the classical theory of electromagnetism is an unsatisfactory

theory all by itself. There are difficulties associated with the ideas of Maxwell’s theory

which are not solved by and not directly associated with quantum mechanics [...]’’.

9.      See, for example, a purposeful review of this kind of works ‘‘Essay on Non-Maxwellian

Theories of Electromagnetism’’ by V. V. Dvoeglazov, Hadronic J. Suppl. , 241 (1997). See

also brilliant monographs: O.D. Jefimenko, ‘‘Causality, Electromagnetic Induction, and

Gravity’’ (Electret Scientific, Star City,1992); O.D. Jefimenko, ‘‘Electricity and Magnetism’’,

2nd ed.(Electret Scientific, Star City,1989); O.D. Jefimenko, ‘‘Electromagnetic retardation

and Theory of Relativity’’ (Electret Scvientific, Star City, 1997).
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transmit energy, as well as solutions where the electrical
field is parallel to the magnetic field.

Even if we restrict ourselves to the analysis of solutions
with “correct” polarity, the Maxwell equations lead to
unexpected results. It is surprising that the solution (9) has
strange properties such as the existence of longitudinal
stationary magnetic waves along the -axis. And if  this is
not surprising, let us look, in these solutions, at the existence
of  immobile spheres with constant form and dimensions,
in which the total electromagnetic energy is constant. These
circumstances make reference to the little studied processes
of  third-dimensional interference. Furthermore, the
existence of magnetic spheres of this kind opens up the
possibility of the solution of “practical” problems such as
the confinement of plasma, the explanation of the
enigmatic phenomenon known as ball-lightning ( for
example one can consider these solutions as a certain
mathematical rationale of  the Kapitsa’s hypothesis about

10.      Nevertheless J.D.Jackson in his well-known textbook (Jackson, 1998: 259),  says  ‘‘The

vector S, representing energy flow, is called the Poynting vector. It is given by S = E

x H  (6.109) [...] Since only its divergence appears in the conservation law, the Poynting

vector seems arbitrary to the extent that the curl of any vector field can be added to

it. Such an added term can, however, have no physical consequences. Relativistic

considerations (Section 12.10) show that (6.109) is unique’’.

11.   See, for example, the recent work by Chubykalo,  Espinoza and  Tzonchev  (2004).

interference nature of this phenomenon Kapitsa, 1955)
and also, who knows? the solution to some theoretical
problems such as the construction of a classical model of
the atom, and even a correction of the model of the internal
structure of  the stars.

On the other hand, concepts such as the density of
energy f lux and the density of  energy for the
electromagnetic field are still incoherent. By applying these
concepts to the fields, we come into contradiction with
the general principle of  superposition. Furthermore, the
natural definition of  the energy flux with the help of  the
Umov vector and the definition of this same concept from
the law of  energy conservation (that is, the Poynting
vector), in a curious manner only coincide under certain
restrictions on the superposed electromagnetic fields.
Theoretically both definitions of  the energy flux vectors,
for the Poynting vector as well as for the Umov, are not
unique: for the Poynting vector because of  the possibility
of adding a rotor of an arbitrary vector and for the Umov
because of ambiguousness of the definitions of its
direction, which, obviously, must coincide with the direction
of  the Poynting vector.

Here, as in all cases, experiment has the final word.11

Finally, it is significant that all unusual properties of  wave
solutions of free Maxwell equations discussed in the present
work take place exclusively in the reference frame which is
at rest relative to ‘‘magnetic spheres’’ described above.
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