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In this work we substantiate the applying of the Helmholtz vector de-
composition theorem (H-theorem) to vector fields in classical electro-
dynamics. Using the H-theorem, within the framework of the two-
parameter Lorentz-like gauge (so called v-gauge), we show that two
kinds of magnetic vector potentials exist: one of them (solenoidal) can
act exclusively with the velocity of light c and the other one (irrota-
tional) with an arbitrary finite velocity v (including a velocity more
than c) . We show also that the irrotational component of the electric
field has a physical meaning and can propagate exclusively instanta-
neously.

Key words: Helmholtz theorem, v-gauge, electromagnetic potentials,
electromagnetic waves.

1. INTRODUCTION

Lately the use of a two-parameter Lorentz-like gauge (so-called v-gauge,
see, e.g., [1-5]) in classical electrodynamics gained popularity among
physicists. Most likely one can explain this by attempting to pro-
vide, from the classical electrodynamics point of view an explanation
of superluminal signals detected in a series of well-known experiments,
performed at Cologne [6], Berkeley [7], Florence [8] and Viena [9], ex-
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periments by Tittel et al. [10] which revealed that evanescent waves
(in undersized waveguides, e.g.) seem to spread with a superlumi-
nal group velocity. For example, in recent experiments by Mugnai et
al. [11] superluminal behavior in the propagation of microwaves (cen-
timeter wavelenth) over much longer distances (tens of centimeters) at
a speed 7% faster than c was reported.

For example, in the recent work [5] by using the two-parameter
Lorentz-like gauge (v-gauge [1-4]) and using the Helmholtz theorem
it was shown that within the framework of classical electrodynamics
the instantaneous action at a distance can exist (scalar potential acts
instantaneously while the vector potential propagates at the speed of
light) that implicitly confirms results of the works [12-14] (in these
works the possibility of the existence of instantaneous action at a dis-
tance was rationalized out of the framework of the v-gauge theory).
However the author of [5] does not substantiate the defensibility of the
use of the Helmholtz vector decomposition theorem for time-dependent
vector fields: The point is that recently J. A. Heras [15] showed that
there is an inconsistent mathematical procedure here, which is due to
the common misconception that the standard Helmholtz theorem [17]
(which allows us to write E = Ei+Es, where Ei and Es are irrotational
and solenoidal components of the vector E) can be applied to retarded
(time-dependent) vector fields. In other words, when one introduces
the time dependence into a vector field E and requires a decomposition
of E into integral components one must prescribe the propagator. For
electric and magnetic fields obeying Maxwell’s equations, the causal
propagator is the retarded Green function DR(x − x′), where x is 4
variables (x, y, z, t). Thus, by Heras [15], the Helmholtz theorem for
time-dependent vector fields must be formulated (using Heras’ nota-
tion with c = 1) as follows: A time-dependent (retarded) vector field
E(x) vanishing at spatial infinity is decomposed into three components

irrotational, solenoidal and temporal one: E = Ẽi + Ẽs + Ẽt, where

Ẽi(x) = −∇
∫

DR(x− x′)∇′ · E(x′)d4x′, (1)

Ẽs(x) = ∇×
∫

DR(x− x′)∇′ × E(x′)d4x′, (2)

Ẽt(x) =
∂

∂t

∫
DR(x− x′)

∂E(x′)
∂t′

d4x′. (3)

In its standard formulation (E = Ei + Es) [17], Heras specifies (see
footnote 2 in [15]) that Helmholtz theorem can consistently be applied
to time-dependent vector fields only (!) when an instantaneous propa-
gation for the fields is assumed.

Therefore results obtained in [5] could be incorrect if one takes
into account the inferences of [15]. Nevertheless, taking into account
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this possible impropriety in [5], we have to note the following: the
inferences of J. A. Heras [15] can be incorrect at least in the case of
the time-dependent electric field written by means of scalar and vector
potentials in the Coulomb gauge. It is obvious that for the electric field

E(r, t) = −∇ϕ(r, t)− 1

c

∂A(r, t)

∂t
(4)

in this case an instantaneous propagation is not assumed because the
field E in (4) can be a retarded solution of the wave equation

∇2E− 1

c2

∂2E

∂t2
= 4π

(
∇6 +

1

c2

∂j

∂t

)
. (5)

Accordingly, it is clear that here although the electric field (4) can be
retarded, it is decomposed into just two parts, one of which is pure
irrotational and the other is pure solenoidal:

E = Ei + Es, Ei = −∇ϕ(r, t), Es = −1

c

∂A(r, t)

∂t
(6)

(in the Coulomb gauge ∇·A = 0). This alone shows that the inference
of J.A. Heras [15] that a retarded field cannot be decomposed into only
two parts (irrotational and solenoidal) can be insufficiently rigorous.
Note also that in his recent work F. Rohrlich [16] has brought out
clearly that the Standard Helmholtz theorem can be applied to time-
dependent (retarded) vector fields.

2. TWO KINDS OF MAGNETIC VECTOR POTENTIAL

In our calculations we use the generalized gauge condition (the so-called
v-gauge)

∇ ·A +
c

v2

∂ϕ

∂t
= 0, (7)

the using of which in classical electrodynamics is already well-founded
(see, e.g., [1-5]). Here v is some arbitrary velocity of propagation for
electromagnetic potentials (and it is not necessarily that v has to be
equal to c). In the Maxwell equations, if we express E and B through
potentials, taking into account v-gauge (7) and after simple transfor-
mations we obtain

∇2ϕ− 1

v2

∂2ϕ

∂t2
= −4π6, (8)

∇2A− 1

c2

∂2A

∂2t
=

(
v2 − c2

cv2

)
∇∂ϕ

∂t
− 4π

c
j. (9)
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Let us start from Eq. (9) which, taking into account Eq. (7),
can be written as

∇2A− 1

c2

∂2A

∂2t
+

(
v2 − c2

c2

)
∇(∇ ·A) = −4π

c
j (10)

or, using the identity ∇(∇·A) = ∇× (∇×A)+∇2A and multiplying
by c2/v2, we find

∇2A− 1

v2

∂2A

∂2t
+

(
v2 − c2

v2

)
∇× (∇×A) = −4πc

v2
j. (11)

Now let the vectors A and j satisfy the conditions of the
Helmholtz theorem. So

A(r, t) = As(r, t) + Ai(r, t), and j(r, t) = js(r, t) + ji(r, t). (12)

After substituting Eqs.(12) into (10) and (11), we have, respec-
tively,

∇2(As + Ai)− 1

c2

∂2(As + Ai)

∂2t

+

(
v2 − c2

c2

)
∇(∇ · (As + Ai)) = −4π

c
(js + ji), (13)

∇2(As + Ai)− 1

v2

∂2(As + Ai)

∂2t

+

(
v2 − c2

v2

)
∇× (∇× (As + Ai)) = −4πc

v2
(js + ji). (14)

By virtue of the uniqueness of the decomposition of vectors
into solenoidal and irrotational parts (see [19], e.g.) one can equate
solenoidal components of lhs and rhs of Eq.(13) and irrotational com-
ponents of lhs and rhs of Eq. (14). The resulting equations are

∇2As − 1

c2

∂2As

∂t2
= −4π

c
js, (15)

∇2Ai − 1

v2

∂2Ai

∂t2
= −4πc

v2
ji. (16)

Thus one can see that two kinds of magnetic vector potential
exist: one of which (As) propagates exclusively with the velocity of
light c and the other one with an arbitrary velocity v (including v > c).
Note that for v → ∞ the vector potential Ai vanishes within the
framework of the conditions of the Helmholtz theorem (in accordance
with the assertion of [5]). However one can see that Ai exists for
c < v < ∞.

40 Chubykalo et al. 



3. TWO KINDS OF ELECTRIC FIELD

Note, however, the following very important “feature”: in the v-gauge
the irrotational part of the electric field (4) can propagate instanta-
neously only!

Indeed, if we let the operator “−grad” act on Eq. (8), we obtain

∇2Eϕ − 1

v2

∂2Eϕ

∂t2
= 4π∇6, (17)

where Eϕ = −∇ϕ is a field produced exclusively by means of the
electric potential from (4). Next we rewrite (4) in the form

E(r, t) = Eϕ(r, t)− 1

c

∂Ai(r, t)

∂t
− 1

c

∂As(r, t)

∂t
(18)

or
E(r, t) = Ei(r, t) + Es(r, t), (19)

where, obviously,

Ei(r, t) = Eϕ(r, t)− 1

c

∂Ai(r, t)

∂t
, (20)

Es(r, t) = −1

c

∂As(r, t)

∂t
. (21)

Let us now act with the operator “−1
c

∂
∂t

” on Eq. (16):

∇2

{
−1

c

∂Ai(r, t)

∂t

}
− 1

v2

∂2

∂t2

{
−1

c

∂Ai(r, t)

∂t

}
=

4π

v2

∂ji
∂t

. (22)

Finally, summing (22) and (17) and taking into account (20), we get

∇2Ei − 1

v2

∂2Ei

∂t2
= 4π

(
∇6 +

1

v2

∂ji
∂t

)
. (23)

It is obvious1 that this expression reduces to ∇2Ei = 4π∇6.
Correspondingly, for Es we have

∇2Es − 1

c2

∂2Es

∂t2
=

4π

c2

∂js
∂t

. (24)

1Applying the Helmholtz theorem to the Maxwell equation ∇×B = 1
c

∂E
∂t + 4π

c j,
after time differentiation we obtain ∂2Ei

∂t2 = −4π ∂ji
∂t .
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Thus we see that the vector fields Ei and Es are solutions of the
different equations with Ei-“wave” propagating instantaneously and
Es-wave propagating with the velocity c respectively.

By virtue of the uniqueness of the decomposition of vectors into
solenoidal and irrotational parts, the values of Ei and Es cannot depend
on a gauge. To verify this let us now construct the wave equation for
the field E from the Maxwell equations

rotB =
4π

c
j +

1

c

∂E

∂t
, rotE = −1

c

∂B

∂t
, div E = 4π6, (25)

∇2E− 1

c2

∂2E

∂t2
= 4π

(
∇6 +

1

c2

∂j

∂t

)
. (26)

Then, after applying the Helmholtz theorem to the vectors E and j
in (26), we can equate solenoidal and irrotational parts of lhs and rhs
of (26) respectively by virtue of the uniqueness of the decomposition
of vectors in accordance with the Helmholtz theorem. The resultant
equations are (see footnote 1):

∇2Ei − 1

c2

∂2Ei

∂t2
= 4π

(
∇6 +

1

c2

∂ji
∂t

)
=⇒ ∇2Ei = 4π∇6, (27)

∇2Es − 1

c2

∂2Es

∂t2
=

4π

c2

∂js
∂t

. (28)

In that way the “paradox” that Ei can be simultaneously re-
tarded and istantaneous, observed by Rohrlich (see Eqs. 3.12-3.17
in [18]), is resolved: one can see that Ei must be exclusively instanta-
neous.

Let us consider the case when exlusively Ei can be responsible
for a signal transfer from one point charge q to the other point charge
Q (or to some fixed point of observation).

Let us suppose the charge q is vibrating by means of some non-
electrical force along the X-axis, then charge Q (or the fixed point
of observation), lying at the same axis at some fixed distance from
the charge q vibration centre, will obviously “know” that charge q is
vibrating: in the observation point the value of the energy density w
(which is a point function of E at the X-axis) will also oscillate.

Let us now analyse the equations for Ei, Es, ji and js:

∇ · Ei = 4π6, (29)

∂Ei

∂t
= −4πji, (30)
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and, for solenoidal components,

∇× Es = −1

c

∂B

∂t
, (31)

∇×B =
1

c

∂Es

∂t
+

4π

c
js. (32)

From (31) and (32), we obtain the wave equations

∇2Es − 1

c2

∂2Es

∂t2
=

4π

c2

∂js
∂t

, (33)

∇2B− 1

c2

∂2B

∂t2
= −4π

c
∇× js. (34)

Here one can see that the solenoidal components of the electromagnetic
field are in charge of the electromagnetic radiation with the derivatives
of js as a source of these waves. Let us consider now the field created
by a point charge with an arbitrary movement:

rq = rq(t), (35)

vq = vq(t) = drq(t)/dt. (36)

The charge density and current density are given as

6(r, t) = qδ(r− rq(t)), (37)

j(r, t) = qvqδ(r− rq(t)). (38)

These quantities are not independent:

∂6

∂t
+∇ · j = 0. (39)

Let us find the irrotational and solenoidal components of the
current density. From the Helmholtz theorem, we have

ji(r, t) = − 1

4π
∇

∫ ∇′ · j(r′, t)
|r− r′| dV ′. (40)

Taking into account Eq. (39), we obtain

ji(r, t) =
1

4π
∇ ∂

∂t

∫
6(r′, t)
|r− r′|dV ′. (41)
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Finally, substituting (37), we have

ji(r, t) =
q

4π
∇ ∂

∂t

1

|r− rq(t)| . (42)

One can rewrite this expression in the form

ji(r, t) = − 1

4π

3n(̃j · n)− j̃

|r− rq(t)|3 , (43)

where
j̃ = qvq(t), (44)

n =
r− rq(t)

|r− rq(t)| . (45)

Pay attention to the similitude of Eq. (43) and the well-known expres-
sion for the electric field created by a dipole.

On the other hand, for the solenoidal component we have

js(r, t) =
1

4π
∇×

∫ ∇′ × j(r′, t)
|r− r′| dV ′. (46)

After some calculations, we get

js(r, t) = qvqδ(r− rq(t)) +
1

4π

3n(̃j · n)− j̃

|r− rq(t)|3 . (47)

So, comparing (47) and (43), we conclude that

js(r, t) = −ji(r, t) (48)

at every point with the exception of the point of location of the charge.
The obtained expressions permit us to find the irrotational com-

ponent Ei of the electric field created by the charge. Comparing (30)
and (42), we obtain

Ei = q
r− rq(t)

|r− rq(t)|3 . (49)

One can see that the field Ei is a Coulomb type field: it is conserva-
tive and has a spherical symmetry with respect to the instantaneous
location of the charge. Besides the field Ei “moves” (changes) instan-
taneously everywhere in space together with the charge.

As an example, consider the case when the point charge q per-
forms harmonic oscillations along the X-axis:

rq(t) = (A0 sin ωt)i, (50)
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where i is the unit vector in the positive direcction of the X-axis. Using
(42) and (48) we obtain for any point2 on the X-axis (r = xi):

ji = −js = − q

4π

A0ω cos ωt

|x− A0 sin ωt| i, (51)

Ei = q
x− A0 sin ωt

|x− A0 sin ωt|3 i. (52)

So one can see that Ei is directed along the X-axis on the X-axis.
In order to determine the solenoidal component Es we do the

following. The field E created by the charge has to be periodic and
consequently we can develop its solenoidal and irrotational components
in the Fourier series:

Ei(r, t) =
∞∑

n=0

Eine
−in(k·r−ωt), (53)

Es(r, t) =
∞∑

n=0

Esne
−in(k·r−ωt). (54)

From the properties of these fields,

∇× Ei = 0, (55)

∇ · Es = 0, (56)

we obtain, for every n,
k× Ein = 0, (57)

k · Esn = 0. (58)

The last equations mean that the vectors Ei and Es must be mutually
perpendicular everywhere in space and thus Es must be perpendicular
to the X-axis in every point of the X-axis (Ei (Eq. (52) is collinear to
X-axis).

On account of the symmetry of the problem and because of
E = Ei + Es, Es must be equal to zero along of the X-axis. It can
mean solely the following: The irrotational component of the electric
field has a physical meaning and in some cases is charged with the
instantaneous energy and momentum transmission.

So we have made sure that the irrotational component of the
electric field has a physical meaning and in some cases, obviously, it
is solely in charge of the energy and momentum transmissions which,
evidently, have to be instantaneous in this case (see Eqs. (23), (27)

2Except for the location point of q, of course.
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and footnote 1). It is obvious also that this field cannot be directly
obtained from the well-known expression for the electric field created
by an arbitrarily moving charge,

E(r, t) = q

{
(R−RV

c
)(1− V 2

c2
)

(R−RV
c
)3

}
t0

+q

{
[R× [(R−RV

c
)× V̇

c2
]]

(R−RV
c
)3

}
t0

, (59)

where V = V(t0) is the velocity of the charge q, t0 = t − R/c, R =
|r − rq(t0)|, because the full field E in (59) was obtained from the
Liénard-Wiechert potentials taking into account the retardation, and
our field E = Ei at the X-axis is not retarded in accordance with Eqs.
(23), (27). So at the X-axis, taking into account the instantaneousness
of Ei we must put a velocity of the propagation of the field E c = ∞
and then we obtain Eq. (52).

4. CONCLUSION

One can see that the irrotational part Ai of the vector potential A and
the scalar potential ϕ can propagate with an arbitrary finite velocity
including a velocity more than c as well as instantaneously in the case
of the scalar potential (we showed that for v →∞ the vector potential
Ai vanishes within the framework of the conditions of the Helmholtz
theorem).

In regards to the irrotational conponent of the electric field (see
Eqs. (23) and (27)), it has a physical meaning and can propagate ex-
clusively instantaneously. Therefore we can conclude that there are
two mechanisms of the energy and momentum transmission in classical
electrodynamics:

(1) the retarded one by means of a radiation (Es and B), see
Eqs. (33), (34);

(2) the instantaneous one by means of the irrotational field Ei.
Note that for the describing of an energy transfer in the second

mechanism along the line of the interaction of two point charges the use
of the Poynting vector concept makes no sense at all. Note also that
Ei cannot have any functional relations with the magnetic field (see
Eqs. (29)-(34)). Thus we see that field Ei although is materially exis-
tent, cannot participate in the phenomenon known as electromagnetic
wave.

In view of the obvious spherical symmetry and the non-
retardation of the field Ei (49) we would like to make a quotation
of P.A.M. Dirac: “As long as we are dealing only with transverse
waves, we cannot bring in the Coulomb interactions between particles.
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To bring them in, we have to introduce longitudinal electromagnetic
waves... We thus get a new version of the theory, in which the elec-
tron is always accompanied by the Coulomb field around it. Whenever
an electron is emitted, the Coulomb field around it is simultaneously
emitted, forming a kind of dressing for the electron. Similarly, when
an electron is absorbed, the Coulomb field around it is simultaneosly
absorbed. This is, of course, very sensible physically, but it also means
a rather big departure from relativistic ideas. For, if you have a moving
electron, then the Coulomb field around it is not spherically symmet-
rical3. Yet it is the spherically symmetric Coulomb field that has to be
emitted here together with the electron.” [20]. So there is good reason
to believe that exactly the field Ei can play a role of the spherically
symmetric electric field, which is mentioned by Dirac, which always ac-
companies any point charge and it is not a generally accepted Coulomb
field because it depends on time. We would like to name this field Ei

“Dirac’s field”.
Everything described above can provide a theoretical rationale

(within the framework of classical electrodynamics) of a series of well-
known experiments [6-11] mentioned in the Introduction. Nevertheless
it is significant that one can find a theoretical rationale of the existence
of the superluminal interaction out of the framework of the Helmholtz
theorem and v-gauge-theory in the review works [21] and [22] (see also
the review [23]).

Finally, we can affirm that applying the Helmholtz theorem to
classical ekectrodynamics allows us to conclude that in classical electro-
dynamics so called instantaneous action at a distance with the infinite
velocity of interaction can take place as well as (within the framework
of the v-gauge-theory) the superluminal action with a finite velocity of
interaction.
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