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Abstract. It is shown that the generally accepted definition of the Poynting vector and the energy flux
vector defined by means of the energy density of the electromagnetic field (Umov vector) lead to the
prediction of the different results touching electromagnetic energy flux. The experiment shows that within
the framework of the mentioned generally accepted definitions the Poynting vector adequately describes
the electromagnetic energy flux unlike the Umov vector. Therefore one can conclude that a generally
accepted definitions of the electromagnetic energy density and the Poynting vector, in general, are not
always compatible.

PACS. 03.50.-z Classical field theories – 03.50.De Classical electromagnetism, Maxwell equations

1 Introduction

In the article “Motion equations of the energy in the bod-
ies” [1] that appeared in the year that “Tractate” was
published by Maxwell (1873), Umov developed the con-
sequences from the idea of the energy localization in the
mediums. To each volume element in the medium, the par-
ticles of which are in movement, an energy, constituted by
the sum of the alive forces of the particles and elements
and the potential energy, is associated. Umov thinks about
the problem of settling down in general form “the laws of
the transition of the energy from an element to another”,
and to determinate, starting from general principles, the
study of the movement of the energy in the mediums.
Starting from the energy conservation law Umov deduces
the motion equation for the energy in the mediums. If
we represent the energy density in a given point of the
medium by means of w, and through vx, vy and vz the
energy velocity components in this point, then the energy
density loss in that point in unit of time is determined by
the relationship

−∂w

∂t
=

∂ (wvx)
∂x

+
∂ (wvy)

∂y
+

∂ (wvz)
∂z

. (1)

“The expression (1), similar to the expression of the
mass conservation law in hydrodynamics, is the ex-
pression of the elementary energy conservation law
in the mediums”, Umov writes. From this expres-
sion it can be established “the relationship among
the quantity of energy, that in unit time leaves
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toward the medium through its frontier, and the
change of the quantity of energy in the medium”.

This relationship is expressed with the integral expres-
sion (Umov theorem)

∫∫∫
∂w

∂t
dxdydz +

∫∫
wvndσ = 0. (2)

The vector wv defines the energy flow which crosses, in
the unit time, the perpendicular to this vector unitary
surface. This is the so-called Umov vector.

The case of the electromagnetic field, as particular case
of the Umov theorem, and therefore of the Umov vector,
was studied by Poynting.

In the year 1884 Poynting published the article [2] that
contained the previously mentioned Umov-Poynting the-
orem. In this work Poynting independently arrives to the
same point of view developed 10 years before by Umov.
Poynting writes:

“If we recognize the continuity of the energy move-
ment, that is to say we recognize that when the en-
ergy disappears in some point and appears in other,
it should pass through the intermediate space, then
we are obliged to reach the conclusion that the sur-
rounding medium contains at the least a portion of
the energy and that it is capable to transmit the
energy from one point to another.”

Further on Poynting, leaning on the Maxwell idea
about the energy localization in the field, formulates in
this way the main idea of his work:

“The objective of this article is to demonstrate that
there exists a general law for the energy transport,
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in agreement with which the energy in any point
moves perpendicularly to the plane containing the
lines of the electric and magnetic forces, and that
the quantity of the energy passing through the uni-
tary surface in this plane, for unit of time, is equal
to the product of the magnitudes of these two forces
multiplied by the sinus of the angle among them
and divided among 4π”.

By this way Poynting defines the energy-flux vector for
the case of the electromagnetic field.

Discussing today the conception of the Poynting vec-
tor and the number of basic difficulties associated with
this concept one can sense clearly that neither among
researchers (see, e.g., [3,4] and corresponding references
there) nor among authors of the generally accepted text-
books of classical electrodynamics (see, e.g. [5–9]) a gen-
eral agreement exists about the essence of the energy-flux
vector related with electromagnetic fields. Actually, the
well-known authors Panofsky and Phillips state [5]:

“Paradoxical results may be obtained if one tries to
identify the Poynting vector with the energy flow
per unit area at any particular point”.

Contrarily, Feynman states [9] that exclusively the
identification of the Poynting vector (in its generally ac-
cepted form) with the energy flow per unit area allows
to understand the law of conservation of the angular mo-
mentum in some special cases. Other well-known authors
Landau and Lifshitz state [6]:

“Therefore the integral
∮

Sdf must be interpreted
as the flux of field energy across the surface bound-
ing the given volume, so that the Poynting vector
S is this flux density — the amount of field energy
passing through unit area of the surface in unit
time.”

Tamm [7] also identifies the Poynting vector with the
energy flow per unit area at any particular point, however,
taking into account that the definition S = (c/4π)(E×H)
is not unique. In turn Jackson claims in his famous text-
book [8]:

The vector S, representing energy flow, is called the
Poynting vector. It is given by S = E×H (6.109)1...
Relativistic considerations (Sect. 12.10) show that
(6.109) is unique.”

The only way we can verify the standard formula for
the energy flow due to the electromagnetic field is by ex-
periment. Feynman said [9]:

“There are, in fact, an infinite number of possibili-
ties for w (energy density) and S, and so far no one
has thought of an experimental way to tell which
one is right.”

In this work we theoretically rationalize that the
Poynting vector (in its standard definition) does not al-
ways coincide with the energy flux vector (Umov vector)

1 Jackson uses SI.

related with electromagnetic waves. The results of the
experiment show that the Poynting vector is not always
compatible with the generally accepted definition of the
electromagnetic energy density.

2 Theoretical motivation of the experiment

More often than not physicists implicitly suppose that the
Poynting vector

S =
c

4π
E× B (3)

and Umov (energy flux) vector2

U = wvn (4)

always coincide for any electromagnetic wave spreading in
vacuum in every point. Here n is a unit vector along the
direction of propagation of the electromagnetic energy, v is
the transferring energy velocity (in the case of electromag-
netic waves in vacuum v = c) and w is the energy density
of the electromagnetic wave. In actual fact, this assertion
is shown at least for plane and spherical electromagnetic
waves in vacuum (see, e.g., [6], Eq. (47.5)). Nevertheless,
the assertion that S = U for waves of a more general kind
is not proved in textbooks and monographs.

Let us study what condition in vacuum for E and B
in an electromagnetic wave must be satisfied when the
equality S = U is valid. We have in CGS (Gauss’ system):

S =
c

4π
E × B =

c

4π
EB sin αn (5)

and
U = wcn =

c

8π
(E2 + B2)n. (6)

Equating (5) and (6) we obtain

2EB sin α = E2 + B2 (7)

or
(E − B)2 + 2EB(1 − sin α) = 0. (8)

According to the problem definition we choose real values
of E, B and α only, where α is the angle between E and B.
Therefore the last equality (8) can be valid if and only if
E = B and α = π/2. Thus the Theorem takes place: for
the equality of the Poynting vector and Umov vector it is
necessary and sufficient that E⊥B and E = B.

In the next sections we propose and perform the ex-
periment which allows us to check the incompatibility of
the conventional functional forms of the Poynting vector
and the electromagnetic energy density when the electro-
magnetic wave field does not satisfy the conditions

E⊥B and E = B. (9)
2 The expression of the Umov vector (U = wv) is obtained

from the general energy conservation law (∂w/∂t = −∇{wv})
and describes the energy flux density of any kind of energy
(not only electromagnetic energy), w is the corresponding en-
ergy density and v is the propagation velocity of the energy
in a given point. Thus the Poynting and Umov vectors should
always coincide.
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Fig. 1. Position of
the point sources
and the screen.

3 Theoretical predictions

In order to obtain theoretically the electromagnetic energy
flow observed in the experiment described in Section 4, we
model the sources with the help of two point sources emit-
ting spherical waves and we calculate the flow intensity by
using the definition of the electromagnetic energy flow ac-
cording to the Poynting vector and according to the Umov
one.

Let the source 1 be placed in (0,−l, 0) and the source
2 in (0, l, 0). The screen is placed in the plane z = h with
−a ≤ x ≤ a and −b ≤ y ≤ b (Fig. 1).

The monochromatic spherical waves created by these
sources can be modeled with the following expressions for
the electric and magnetic fields:

E1 =
E0

R1
cos (k1 ·R1 − ωt)eθ1, (10)

B1 =
B0

R1
cos (k1 ·R1 − ωt) eϕ1 (11)

E2 =
E0

R2
cos (k2 ·R2 − ωt)eθ2, (12)

B2 =
B0

R2
cos (k2 · R2 − ωt) eϕ2, (13)

where k1 = (k/R1)R1 and k2 = (k/R2)R2, E0 and B0

are amplitudes, k = 2π/λ is wave number for both waves.
By this way the energy flow has radial direction for each
of these sources

S1 =
cE0B0

4πR2
1

cos2 (k1 ·R1 − ωt) eR1, (14)

S2 =
cE0B0

4πR2
2

cos2 (k2 ·R2 − ωt) eR2, (15)

where eR1, eθ1, eϕ1 and eR2, eθ2, eϕ2 are the correspond-
ing local spherical orts associated to the sources 1 and 2.
By means of r, θ y ϕ we will designate the spherical coordi-
nates in our coordinate system. The corresponding electro-
magnetic energy densities are defined by the expressions

w1 =
E2

0 + B2
0

8πR2
1

cos2 (k1 ·R1 − ωt) , (16)

w2 =
E2

0 + B2
0

8πR2
2

cos2 (k2 ·R2 − ωt) . (17)

If we take into account that E0 = B0, then for each of the
two spherical waves, created by the sources 1 and 2, the
conditions E = B and E ⊥ B are fulfilled and therefore
the Poynting and the Umov vectors coincide

S1 = U1, (18)

S2 = U2. (19)

Let us consider now the resulting electromagnetic field by
these two sources at the same time

ET = E1 + E2, (20)

BT = B1 + B2. (21)

In this case the Poynting vector and the Umov vector will
have the form

ST =
c

4π
ET × BT

= S1 + S2 +
c

4π
(E1 × B2 + E2 × B1) (22)

and
UT = wT cn, (23)

where

wT =
E2

T + B2
T

8π
= w1+w2+

1
4π

(E1 · E2 + B1 ·B2) (24)

and where n is the direction of the electromagnetic en-
ergy propagation for the resulting field, that is to say the
unitary vector in the direction of the vector ST .

The energy flow measured experimentally is the inte-
gral over the screen surface (with normal k, unitary vector
in the positive direction of the Z-axis) of the temporary
average of the energy flux density. For each source we have

Φ1 =
∫ b

−b

∫ a

−a

〈S1 · k〉t dxdy

=
∫ b

−b

∫ a

−a

〈U1 · k〉t dxdy, (25)

Φ2 =
∫ b

−b

∫ a

−a

〈S2 · k〉t dxdy

=
∫ b

−b

∫ a

−a

〈U2 · k〉t dxdy, (26)

and for the resulting field according the Poynting
definition

ΦP =
∫ b

−b

∫ a

−a

〈ST · k〉t dxdy (27)

and according Umov definition

ΦU =
∫ b

−b

∫ a

−a

〈UT · k〉t dxdy, (28)

where the designation 〈. . .〉t is the time average value.
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Laborious calculations show that

Φ1 = Φ2 =
chE0B0

8π

∫∫
dxdy

R3
1

=
chE0B0

8π

∫∫
dxdy

R3
2

≡ Φ0

(29)
and that the exact relationships between the resulting flow
and the flows for separate sources (K = Φ/2Φ0) are

KP =
ΦP

2Φ0
= 1 +

γ

2β
(30)

for the Poynting definition, and for the Umov definition

KU =
ΦU

2Φ0
=

κ

β
, (31)

where

see equations (32–42) below.

γ =
∫ b

−b

∫ a

−a

cos (k (R1 − R2))
U1U2R2

1R
2
2

[
(R1 + R2)R2R1

r2
sin2 θ − 2

l

r
(R2 − R1) sin3 θ sinϕ

−
(

l

r

)2

(R1 + R2)
(
2 sin2 θ sin2 ϕ + cos2 θ + 2 sin3 θ cos2 ϕ

)]
dxdy, (32)

β =
∫ b

−b

∫ a

−a

dxdy

R3
1

, (33)

κ =
∫ b

−b

∫ a

−a

∫ 2π
kc

0

(F + GH) (J + KL)

(A + B + C + 2D + 2E)1/2
dtdxdy, (34)

A =
1

R4
1

cos4 (kR1 − ωt) , (35)

B =
1

R4
2

cos4 (kR2 − ωt) , (36)

C =
(

r

U1U2R2
1R

2
2

)2

cos2 (kR1 − ωt) cos2 (kR2 − ωt)

×



[
(R1 + R2)

R2R1

r2
sin2 θ +

(
R1U

2
2 − R2U

2
1

) l

r
sin θ sin ϕ − (R2 + R1)

(
l

r

)2

cos2 θ

]2

+ cos2 θ

[
(R2 − R1) sin2 θ sinϕ + 2

l

r
(R2 + R1) sin θ cos2 ϕ −

(
l

r

)2

(R2 − R1) sin ϕ

]2

+ cos2 ϕ

[
R1R2

r2
(R2 − R1) sin2 θ − 2

l

r
(R1 + R2) cos2 θ sin θ sin ϕ +

(
l

r

)2

(R1 − R2) cos2 θ

]2

 , (37)

D =
r2

R3
1R

3
2

[
1 −

(
l

r

)2
]

cos2 (kR1 − ωt) cos2 (kR2 − ωt) (38)

E =
r2

U1U2R2
1R

2
2

cos (kR1 − ωt) cos (kR2 − ωt) ×
[

1
R2

1

cos2 (kR1 − ωt) +
1

R2
2

cos2 (kR2 − ωt)
]

×
[(

1 +
R1R2

r2

)
sin2 θ −

(
l

r

)2 (
1 +

R1R2

r2
− 3 sin2 θ + 4 sin2 θ sin2 ϕ

)
+

(
l

r

)4
]

(39)

F =
1

R3
1

cos2 (kR1 − ωt) +
1

R3
2

cos2 (kR2 − ωt) , (40)

G =
1

U1U2R2
1R

2
2

cos (kR1 − ωt) cos (kR2 − ωt) , (41)

H = (R1 + R2)
R2R1

r2
sin2 θ − 2 (R2 − R1)

l

r
sin3 θ sin ϕ

−
(

l

r

)2

(R1 + R2)
[
2 sin2 θ sin2 ϕ + cos2 θ + 2 sin3 θ cos2 ϕ

]
, (42)
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Fig. 2. Theoretical curves of the behavior of the coefficient K
versus angle according the Poynting and Umov vectors.

J =
1

R2
1

cos2 (kR1 − ωt) +
1

R2
2

cos2 (kR2 − ωt) , (43)

K =
r2

U1U2R2
1R

2
2

cos (kR1 − ωt) cos (kR2 − ωt) , (44)

L =
(

1 +
R1R2

r2

)
sin2 θ −

(
l

r

)2 (
1 +

R1R2

r2

−3 sin2 θ + 4 sin2 θ sin2 ϕ
)

+
(

l

r

)4

, (45)

U1 =
(

sin2 θ + 2
l

r
sin θ sin ϕ +

l2

r2

) 1
2

, (46)

U2 =
(

sin2 θ − 2
l

r
sin θ sin ϕ +

l2

r2

) 1
2

, (47)

R2
1 = r2 + l2 + 2lr sin θ sin ϕ, (48)

R2
2 = r2 + l2 − 2lr sin θ sin ϕ. (49)

The KP and KU values as a function of the angle α be-
tween the rays, were obtained numerically for the val-
ues

√
l2 + h2 = 0.3 m, λ = 632.8 nm, a = 3.5 mm and

b = 2.5 mm used in the experiment. The graph of these
dependencies are presented in Figure 2.

It is not difficult to show that the previous results
for the relationship between the resulting flow and the
flows for separate sources (K = Φ/2Φ0) are conserved if
the spherical waves 1 and 2 are modeled by means of the
equations

E1 =
E0

R1
cos (k1 · R1 − ωt) eϕ1, (50)

B1 = −B0

R1
cos (k1 ·R1 − ωt)eθ1, (51)

E2 =
E0

R2
cos (k2 · R2 − ωt) eϕ2, (52)

B2 = −B0

R2
cos (k2 ·R2 − ωt)eθ2. (53)

Fig. 3. The experimental arrangement diagram. I1 and I2 are
optical obturators. ADC is the analog digital converter.

4 Description of the experiment

The diagram of the experimental arrangement is shown in
Figure 3.

As coherent monochrome light source a He-Ne laser
model 08181.93 from the company “PHYWE” with pa-
rameters: wavelength λ = 632.8 nm, beam power P =
1 mW, polarization 500:1, beam diameter d = 0.5 mm, is
used. The laser beam goes to the beamsplitter B1, where
it is unfolded in two rays of the same intensity approxi-
mately. The reflected ray goes to the reference photodiode
PIN1, model 1PP75 from the company “TESLA”, that
works in short circuit regime. The photodiode-generated
current is amplified by an amplifier DC and by means
of an analogical-digital converter ADC is received on the
computer PC. This signal serves as a reference signal and
gives us information about the intensity changes of the
laser beam.

The part of the laser beam, which goes through the
beamsplitter B1, goes to the second beamsplitter B2,
where on the other hand it is unfolded in two rays. The
second-beamsplitter-reflected ray goes to the optic obtu-
rator I2, then reflected by the mirror M2 and falls on the
lens L2. The lens L2 is a biconvex lens and possesses fo-
cal distance of 18 mm. This lens transforms the cylin-
drical ray in a divergent beam. After going through the
lens the beam goes to the measuring photodiode PIN2
(type 1PP75 from “TESLA”) and it falls on its active
surface under an angle α. The ray that goes through the
beamsplitter B2, goes consecutively through the optic ob-
turator I1 and the adjustable compensator C, then is re-
flected by the mirror M1 and falls on the lens L1. The
lens L1 is of the same type as the lens L2 and has the
same function. After going through the lens L1 the diver-
gent beam, produced by the lens L1, falls on the measuring
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photodiode under the same angle. The angle between both
beams falling on the PIN2 is equal to 2α (Fig. 3). The pho-
todiode PIN2 also works in short circuit regime. Its signal
is amplified by another amplifier DC and goes through an
analogical-digital converter toward the computer. Its sig-
nal is proportional to the luminous flow that falls on its
active surface.

The mirrors M1 and M2 are movable. The distances
between each lenses and the measuring photodiode PIN2
are the same and they measure 30 cm. These distances
stay fixed during the experiment. The angle α is changed
only from 14o until 86o and its value is measured within
the accuracy of 0.5o. When carrying out the experiment
the result of each measurement is corrected with the read-
ing of the photodiode PIN1. By this way the error pro-
duced by the laser instability is avoided.

All the measurements are carried out in a dark room.
To avoid the influence of the laser instability on the ex-
perimental results, a normalization of the readings of the
photodiode PIN2 is executed with the help of photodi-
ode PIN1 for all the measurements. For each value of the
angle α the experiment is executed in three stages.

Stage 1: both optical obturators I1 and I2 are closed
up, and by means of the photodiode PIN2 the ground is
measured. As the ground value was always below 0.5% of
all other measurements, any correction is not applied to
the experimental results.

Stage 2: this stage has as a goal to equal and to mea-
sure the light energy flows that go through both optical
branches in the experimental arrangement: branch 1 (op-
tical obturator I1, adjustable compensator C, mirror M1,
lens L1) and branch 2 (optic obturator I2, mirror M2, lens
L2). The obturator I1 closes up and the obturator I2 opens
up. The photodiode-PIN2-generated current is measured.
Then the obturator I1 opens up and the obturator I2 closes
up. By means of the adjustable compensator C the present
current in the photodiode PIN2 is adjusted similarly to its
previous current with an error limited to 1%. By this way
the readings of the photodiode PIN2 that correspond to
the optical flow Φ1 that passes through the branch 1, and
also correspond to the optical flow Φ2, that passes through
the branch 2, are already known.

Stage 3: both obturators I1 and I2 open up and the
current of the photodiode PIN2 that represents the total
flow Φ is measured. Then the computer PC calculates the
coefficient

K =
Φ

Φ1 + Φ2
, (54)

and it memorizes these values as a function of the angle α.
The experiment was carried out for the two light flows

configurations shown in Figures 4 and 5, which correspond
to equations (10–13) and (50–53). The experimental re-
sults are presented in the graphs (Figs. 6 and 7).

5 Conclusions

Our work starts from the position that the Umov vector
defines, in a general way, the energy flow for any type

Fig. 4. Equivalent scheme of the experimental arrangement
when the electric field vectors from the wave in the branch 1
are parallel to the electric field vectors from the wave in the
branch 2, 2α is the angle between straights connecting each of
two sources with the centre of the sensor.

Fig. 5. Equivalent scheme of the experimental arrangement
when the magnetic field vectors from the wave in the branch 1
are parallel to the magnetic field vectors from the wave in the
branch 2.

of energy and it is a consequence of the energy conser-
vation law. Its expression for the particular case of elec-
tromagnetic waves is U = wcn. On the other hand the
Poynting vector defines the flow of the electromagnetic
energy as a consequence of the energy conservation law in
the Maxwell’s theory.

However, although both these vectors represent the
same physical quantity and therefore they must coincide,
we demonstrated that their equality is limited to the case
when the fields, generating the electromagnetic energy
flow, fulfill the conditions E = B (in CGS) and E⊥B.

Obviously these conditions are not general and there-
fore one can find situations when the electromagnetic field
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Fig. 6. The theoretical curves of the behavior of the coef-
ficient K versus angle according to the Poynting vector and
according to the Umov vector and the experimental results for
the case of the waves with parallel magnetic field vectors.

Fig. 7. The theoretical curves of the behavior of the coef-
ficient K versus angle according to the Poynting vector and
according to the Umov vector and the experimental results for
the case of the waves with parallel electric field vectors.

does not fulfill one or both these conditions. In order to
determine which of the definitions of the energy density
flux vector (Umov’s vector or Poynting’s vector), in the
case when these conditions are not fulfilled, gives correct
prediction about the energy flow, in the present paper we
experimentally measured the flow of the resultant electro-
magnetic energy of two bunches of electromagnetic waves
when aforementioned conditions are not fulfilled. This ex-
periment shows that the Umov vector does not describe
appropriately the electromagnetic energy flow, while the
Poynting vector does.

Therefore, the experiment apparently shows that the
energy flux density definition through the Umov vector in
general is not applicable to electromagnetic phenomena.
However such conclusion must be necessarily incorrect. In-
deed, the expression for the Umov vector is obtained start-
ing from the universally accepted conservation law of any
type of energy. Consequently the Umov and Poynting vec-
tors should always coincide. For this reason there is an
apparent contradiction in the fact that the flow theoreti-
cally predicted on the basis of Umov vector coincides nei-
ther with the experimentally measured flow nor with the
corresponding flow calculated by means of the Poynting
vector.

The explanation for this apparent contradiction can
reside in the following.

Because the Umov vector is a consequence of the en-
ergy conservation law, the Umov vector functional depen-
dence (U = wcn) should be correct and therefore it is
necessary to examine the elements used in its construc-
tion, namely, w (energy density), c and n.

The propagation velocity of the electromagnetic waves
(and consequently, of the electromagnetic energy) in vac-
uum is unique and is equal to c, and therefore there is no
problem.

However, on the one hand, if the standard definition of
the Poynting vector is correct it defines the correct direc-
tion of the electromagnetic energy flux and, in turn, obvi-
ously, the direction of the Umov vector, then the standard
expression of the electromagnetic density utilized to build
the Umov vector cannot be correct. On the other hand
if the standard definition of the energy density is correct
then the unit vector n (direction of the Poynting vector)
used for constructing the Umov vector must be incorrect
and therefore the direction of the energy propagation is
not correct. This would mean that the standard expression
for the Poynting vector does not define correctly the elec-
tromagnetic energy density flux. Note, however, that our
calculations and experiment in which we used the stan-
dard expression of the Poynting vector do not contradict
the last claim: the point is that the Poynting vector is
defined with the accuracy of the curl of an arbitrary vec-
tor and for this reason, in principle, it is possible that
the same result for the integral (27) will be obtained from
another expression for the electromagnetic flux density. If
this is the case then the direction of the energy flow does
not have the direction of E× B.

So for the case examined by us there is an incompatibil-
ity between the generally accepted definition of the elec-
tromagnetic energy density and the conventional defini-
tion of the energy flux density expressed by the Poynting
vector. This particular case allows us to affirm that, in
general, these standard definitions are incompatible.
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