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Abstract. The deflection of light in the strong field limit is an important test for

alternative theories of gravity. However, solutions for the metric that allow for analytic

computations are not always available. We implement a hybrid analytic-numerical

approximation to determine the deflection angle in static, spherically symmetric

spacetimes. We apply this to a set of numerical black hole solutions within the class

of theories known as Degenerate Higher Order Scalar-tensor Theories. Comparing

our results to a more time consuming full numerical integration, we find that we can

accurately describe the deflection angle for light rays passing at arbitrary distances

from the photon sphere with a combination of two analytic-numerical approximations.

Furthermore, we find a range of parameters where our DHOST black holes predict

strong lensing effects whose size is comparable with the uncertainty in the properties of

the supermassive black hole in M87 reported by the Event Horizon Telescope, showing

that strong lensing is a viable alternative to put constraints on these models.

1. Introduction

The gravitational deflection of light is one of the most studied predictions of the theory

of General Relativity (GR). This effect has been observed in several scenarios, from our

Solar System to massive clusters of galaxies (see [1] for a review). In many cases, a

weak field approximation to gravitational deflection is enough to explain the existing

phenomenology and obtain important information about the theory of gravity. For

instance, post-Newtonian studies based on the weak deflection of light by the Sun show

that the GR prediction is accurate up to a relative error ∼ 10−4 [2], forcing any other

theory of gravity to satisfy the same constraint. For more complex systems, such as

clusters of galaxies, the weak lensing theory based on the assumption that the deflection

angle is small has been used to analyse the validity of different theories of gravity on

cosmological scales [3, 4].

The deflection of light due to strong gravitational fields has also been studied for

a long time. In 1959, Darwin obtained an exact expression for the deflection angle of

light in a Schwarzschild spacetime [5], and some years later further analysis of black
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hole lenses were presented, in what could be considered as the beginning of black

hole imaging [6, 7]. Interest in strong lensing received a boost when the possibility

of obtaining an image of the area near a black hole was first discussed [8, 9]. Recently,

the Event Horizon Telescope (EHT) imaged the structure around a supermassive black

hole [10], finding a ring structure with an angular diameter of 42 ± 3µas. This offers

a way not only to investigate the region around a black hole, but also to use this

information to test alternative theories of gravity in the strong field regime, imposing

constraints on these theories that are complementary to those obtained under weak

field approximations. This has motivated several studies of the strong deflection angle

in spacetimes predicted by modifications to GR (see, e.g., [11, 12, 13, 14, 15]). These

studies rely on the existence of an analytical solution for the metric in the modified

theory of gravity under consideration‡. The deflection angle is then studied under

some approximations, in particular, Bozza [17] introduced a method that separates and

carefully describes the divergent part of the deflection angle at the photon sphere from

the regular part. For a Schwarzschild black hole, Bozza’s method can be compared

with the exact result, giving a discrepancy in the deflection angle of about 0.06%. For

other black holes, the results of the approximation are sometimes compared with the full

numerical results, also giving good agreement near the photon sphere. By construction,

Bozza’s approximation is valid only at very short distances from the photon sphere.

For larger distances, a different approximation that is equally capable of handling any

spherically symmetric, static, asymptotically flat spacetime was presented in [18], where

it was also shown that this approximation is in good agreement with exact results for

Schwarzschild and Reissner-Nördstrom black holes almost up to the photon sphere.

In this work we use the approximations mentioned above to study the deflection

angle in a particular model of modified gravity. Specifically, we use a numerical solution

for a static, spherically symmetric spacetime in a scalar-tensor theory that belongs

to beyond Horndeski [19, 20], a generalization of Horndeski gravity [21], which is the

most general scalar-tensor theory with equations of motion that are explicitly second

order, thus avoiding the propagation of Ostrogradski degrees of freedom [22]. In beyond

Horndeski and further generalizations, known as Degenerate Higher Order Scalar-tensor

theories (DHOST) [23, 24] or Extended Scalar-tensor Theories (EST) [25], higher order

equations of motion are allowed as long as the Hessian matrix of the system is degenerate,

thus introducing constraints that prevent the propagation of the Ostrogradski ghost.

Scalar-tensor modifications of gravity are generally motivated by their applications

to cosmology (see [26] for a review). On the other hand, the phenomenology of these

theories in astrophysical scenarios needs to be studied as well in order to evaluate their

physical viability, this has been explored in several works considering the properties of

black holes and relativistic stars in scalar-tensor theories [27, 28, 29, 30, 31, 32, 33].

Findings are diverse, depending on the specific model under consideration, black hole

solutions may or may not be the same as in GR, either exactly or asymptotically. An

‡ There are exceptions, in [16] a numerical computation is presented for the deflection angle in higher

derivative gravity theories, however, the method is tested against weak deflection data.
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important restriction on the models that can be considered is that the propagation

speed of gravitational waves, cGW , is within 10−16 of the speed of light [34], this is

derived from the detection of gravitational waves with an electromagnetic counterpart

made by LIGO, VIRGO and several other observatories [35]. Within Horndeski, only

the quadratic and cubic sectors predict cGW/c = 1. However, when beyond Horndeski

is included, this condition can be satisfied by particular combinations of quartic and

quintic Lagrangians (e.g. [36]).

In this work we use one of the beyond Horndeski models that is compatible with

cGW/c = 1. The static, spherically symmetric vacuum solutions of this model, studied

in [32], are not exactly Schwarzschild, making it interesting to explore their observational

signatures in the strong field regime. Furthermore, since these models contain an

angular deficit, we discuss the constraints that can be imposed in the weak deflection

limit. Not less importantly, the solutions that we use are known in analytic form

only asymptotically, and numerically for the complete range of the radial coordinate,

offering a non-trivial situation where we can demonstrate that the methods proposed

in [17, 18] for computing (strong) deflection angles in spherically symmetric spacetimes

can be implemented numerically, and the results are consistent with a full numerical

computation of the deflection angle.

This work is organised as follows. In Sec. 2 we give an overview of beyond Horndeski,

the particular model that we use, and the black hole solutions of this model. In Sec. 3 we

outline the strong deflection limit and related lensing observables following the method

of [17]. In Sec. 4 we perform a numerical implementation of this method in order to

compute the strong deflection angle in the spacetimes that we are interested in. The

results of this section are applied in Sec. 5 to compute lensing observables for two

supermassive black hole candidates: Sagittarius A* and M87; in particular, we obtain

the asymptotic position and separation of the lensed images. In Sec. 6 we discuss

the deflection angle far from the photon sphere, using a numerical implementation

of [18], and we discuss how well the methods that we use approximate the results of full

numerical computations. Sec. 7 is devoted to discussion and concluding remarks.

2. Black hole solutions in beyond Horndeski

The Horndeski Lagrangians [21] describe the most general scalar-tensor theory with

equations of motion that are explicitly second order, thus guaranteeing that the system

is free of Ostrogradsky instabilities [22]. Let φ be the scalar field, the Horndeski

Lagrangians are given by [37, 38]

L2 = G2,

L3 = G3 [Φ] ,

L4 = G4R +G4,X

{
[Φ]2 − [Φ2]

}
,

L5 = G5GµνΦ
µν − 1

6
G5,X

{
[Φ]3 − 3[Φ][Φ2] + 2[Φ3]

}
, (1)
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where Φ is a matrix with components ∇µ∇νφ, Gi,X denotes derivatives of the functions

Gi with respect to X, and

X = −1

2
∂µφ∂

µφ , [Φn] = tr (Φn) , 〈Φ〉 = ∂µφ∂µ∂νφ∂
νφ . (2)

Assuming that the action is invariant under the shift φ → φ + const, Gi are arbitrary

functions only of X. The condition that the equations of motion are explicitly second

order can be relaxed without introducing Ostrogradsky ghosts as long as the Hessian

matrix of the system, obtained by taking second derivatives of the Lagrangian with

respect to velocities, is degenerate. In this case it is said that the Lagrangian is

degenerate. These generalizations were first introduced as Degenerate Higher Order

Scalar-tensor Theories (DHOST) [23] or Extender Scalar-tensor Theories [25] for

Lagrangians that depend quadratically on second derivatives of a scalar field, and then

generalized in [24] for cubic dependence on second derivatives. The first realisations of

DHOST theories were given in [19, 20], and are known as beyond Horndeski or GLPV

Lagrangians.

Astrophysical systems in DHOST theories provide a way for testing these models of

gravity. One feature of these theories is the presence of screening mechanisms that are

usually very efficient outside matter sources, but can be broken in the interior region.

For instance, in different sectors of the theory, it has been shown that outside the source

the metric behaves qualitatively as the standard solutions of GR [39], that it is exactly

Schwarzschild-de-Sitter [28], or that it is exactly Schwarzschild [33]. The breaking of

the screening mechanism inside astrophysical bodies has been studied in these same

references (see also [40]). The fact that the screening works well outside the matter

source makes it more difficult to devise tests for these theories of gravity using compact

objects, but tests using galactic scale systems have been proposed. On the observational

side, the detection of gravitational waves from the neutron star merger GW170817 and

its associated electromagnetic counterpart GRB170817A[35] put tight constraints on the

speed of gravitational waves, that are satisfied by a limited class of DHOST theories.

One of the models within this limited sector is given by

Lc = X + L4 + LbH4 , (3)

where the quartic beyond Horndeski Lagrangian is

LbH4 = −1

2
F4 ε

µνρ
σε
µ′ν′ρ′σ∂µφ∂µ′φΦνν′Φρρ′ , (4)

and F4 is subject to F4 = G4,X/X. After some manipulations, Lc is reduced to

Lc = X +G4R +
G4,X

X

(
〈Φ2〉 − 〈Φ〉[Φ]

)
. (5)

Static, spherically symmetric solutions to this model were studied in [32], both for black

holes and relativistic stars, with

G4(X) = M2
Pl + g4X , (6)

and g4 a constant with dimensions of inverse mass squared. A feature of these solutions

is that the metric acquires a deficit angle as a result of a linear dependence in time of
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the scalar field and of the presence of the kinetic term X in the LagrangianS. Even

if the remaining components of the metric are very similar to GR solutions, the deficit

angle signals a breaking of the screening mechanism outside the astrophysical source,

and it opens up the possibility for testing this model with phenomenology away from

the source. In order to do so, let us present in more detail the black hole solutions to

the model (5). The assumptions for the scalar field and metric are

φ = MPl(φ0t+ φ1(r)) , (7)

ds2 = − f(r)dr2 + h(r)−1dr2 + s−10 r2(dθ2 + sin2 θdϕ2) , (8)

where φ0 and s0 are constant. The form of G4 and φ is such that MPl factors out of the

Lagrangian. The equations of motion fix s0 = 1− 3g4φ
2
0. The functions f(r), h(r) and

φ1(r) are found asymptotically as

f(r) = 1− 2M

r
− 4g24φ

2
0 (g4φ

2
0 − 2)

r2
+O

(
1

r3

)
, (9a)

h(r) = 1− 2M

r
+

4g24φ
2
0 (1− g4φ2

0)

r2
+O

(
1

r3

)
, (9b)

φ′1(r) = φ0 +
2Mφ0

r
+

2φ0 [2g34φ
4
0 + (2M2 − g4)− 3g24φ

2
0]

r2
+O

(
1

r3

)
,(9c)

where M is an integration constant. Solutions for arbitrary r are obtained numerically,

imposing (2) as asymptotic conditions. In Fig. 1 we reproduce a set of solutions

presented in [32] for 2M = g4 = 1 and different values of φ0. As φ0 increases, the horizon

shrinks until it finally disappears, this defines the range of φ0 that admits regular black

hole solutions for a given mass. In the next sections, we present the formalism for

studying strong lensing and then we apply it to this set of solutions, first for arbitrary

masses in order to analyse the generic properties of the model, and then for two specific

astrophysical black holes whose masses and distances are known observationally.

3. Strong deflection limit

Let us briefly review the analytical method that we use as a starting point for our

numerical computations. We consider geometries described by the line element‖

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dθ2 + sin2 θdϕ2) . (10)

A dimensionless variable x(r) is often introduced. If the metric components A,B are

asymptotically Schwarzschild, as is the case for the metrics we consider in this work,

this variable is naturally defined as x = r/2M , where M is the Schwarzschild mass. We

S The exact Schwarzschild exterior metric found in [33] is for a model that does not include the standard

kinetic term.
‖ The asymptotic conditions limr→∞A = limr→∞B = 1 and limr→∞ C = r2 are sometimes imposed

in order to ensure asymptotic compatibility with the Minkowski metric. In our case, only the first two

conditions are true, while limr→∞ C = s−10 r2, with s0 defined in (8). Mathematically, the method we

are using works also for this asymptotic condition.
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Figure 1. Numerical BH solutions for 2M = g4 = 1. The figure shows the metric

component grr in GR (black, dashed line) and in the beyond Horndeski model we are

considering, with φ0 spanning between 0.02 and 0.32 (blue, solid lines). The size of

the black hole horizon decreases as φ0 increases. The profiles for the metric component

gtt, not shown, are similar.

are interested in studying the deflection of light rays passing near the photon sphere,

whose radius xm is given by the outermost solution of

C ′(x)

C(x)
=
A′(x)

A(x)
, (11)

where primes denote derivatives with respect to x. Following the classical computation

of [41], it has been shown [11] that the metric (10) predicts that the deflection angle of

photons is

α(x0) = 2

∫ ∞
x0

dx

√
B(x)

C(x)

[
C(x)A(x0)

A(x)C(x0)
− 1

]− 1
2

− π

≡ I(x0)− π , (12)

where x0 is the distance of closest approach of the light ray to the center of the

gravitational attraction. In the strong deflection limit, the integral I(x0) diverges

logarithmically [42]. Indeed, it can be separated into a divergent and a regular part,

I(x0) = ID(x0) + IR(x0) . (13)

After taking expansions near x0 = xm, and writing x0 in terms of its associated impact

parameter [17, 42]

b(x0) =

√
C(x0)

A(x0)
, (14)

the deflection angle can be written as

α(β) = −c1 log

(
b

bc
− 1

)
+ c2 +O[(b− bc) log(b− bc)] , (15)
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where bc is the critical impact parameter, i.e., the impact parameter for a light ray

with closest approach distance x0 = xm. The parameters c1 and c2 depend only on

xm – although xm itself could depend on the parameters of the black hole solution.

The divergent part of the integral I(x0) appears in the deflection angle through the

logarithmic term, and its coefficient c1 is equal to

c1 =

√
2AmBm

C ′′mAm − CmA′′m
, (16)

where a subscript m denotes evaluation at the photon sphere, xm. The regular part is

left explicitly in

c2 = c1 log

[
x2m

(
C ′′m
Cm
− A′′m
Am

)]
+ IR(xm)− π . (17)

Notice that IR takes the photon sphere radius xm as parameter instead of x0, this is

because we are in the limit x0 → xm, and the correction terms of order (b−bc) log(b−bc)
or higher are all being neglected. In order to avoid integrating up to infinity, it is

convenient to introduce a new coordinate z defined by

x(z) =
xm

1− z
. (18)

In terms of this coordinate, IR is written as

IR(xm) = 2xm

∫ 1

0

dz

[√
B(z)

C(z)

(
C(z)Am
A(z)Cm

− 1

)− 1
2 1

(1− z)2

]
− c1
xm z

. (19)

The last term comes from the definition of IR, which implies subtracting from I(x0) the

part that integrates to a logarithmic divergence [17].

Summing up, the method described above allows us to compute the deflection angle

by performing the following steps:

i. Use Eq. (11) to determine xm.

ii. Obtain c1 from Eq. (16).

iii. Compute IR from Eq. (19).

iv. Compute c2 from Eq. (17).

This method has been used for studying the deflection angle of several black holes,

such as Schwarzschild and Reissner-Nördstrom [17, 42], but it has also been used for

a particular exact solution of Horndeski gravity [14], as well as for the Janis-Newman-

Winicour naked singularity in GR minimally coupled to a massless scalar field [11],

and for a Schwarzschild black hole pierced by a cosmic string (which induces a deficit

angle) [43], to mention a few examples. Before obtaining results for the deflection angle,

let us define the lensing observables that we are interested in.
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3.1. Lensing observables

We start with the lens equation in the situation where the source and lens are almost

perfectly aligned [44],

β = θ − DLS

DOS

∆αn , (20)

where β and θ are, respectively, the angles between the observer and the source and

between the observer and the image, both measured with respect to the optical axis,

DLS is the distance between the lens and the source plane measured along the optical

axis, DOS is the distance between the observer and the source plane, also measured along

the optical axis, and α = 2πn + ∆αn. This last relation expresses the fact that, in the

strong gravity regime, the high alignment between lens and source does not imply that

the deflection angle is small, instead, light rays may complete n loops around the lens

and then travel towards the observer with an effective deflection angle |∆αn| � 1. The

deflection angle Eq. (15) can be written in terms of θ by noticing that, by assumption,

θ is a small angle, and can therefore be approximated as θ ≈ b/DOL, thus

α(θ) = −c1 log

(
θDOL

bc
− 1

)
+ c2 + . . . . (21)

As described in [44], the effective angle ∆αn can be translated to a small change in θ

by expanding α(θ) angle around the value θ0n such that α(θ0n) = 2πn, i.e.,

∆θn = θ − θ0n , (22)

with

θ0n =
bc
DOL

(1 + en) ,

en = exp

(
c2 − 2nπ

c1

)
. (23)

Notice that θn decreases exponentially as n increases. Taylor expanding α(θ) near θ0n
and substituting the previous result, we find

∆αn = −c1DOL

bc en
∆θn . (24)

Using this result, the lens equation (20) becomes

β = θ +
DLS

DOS

c1DOL

bc en
∆θn . (25)

This can be used to compute the magnification,

µn =
1

β
θ
∂β
∂θ

∣∣∣∣∣
θ

≈ 1
β
θ
∂β
∂θ

∣∣∣∣∣
θ0n

, (26)

where we are neglecting the correction term ∆θn. After a few manipulations, this

becomes

µn = en
b2c(1 + en)DOS

c1βD2
OLDLS

. (27)
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Instead of working with individual magnifications, it is more convenient to define

r = µ1

(
∞∑
n=2

µn

)−1
, (28)

i.e., the ratio between the magnification of the outermost image, located at θ1, and the

sum of the magnification of all the other images, whose position quickly approaches θ∞,

given by the limit as n→∞ of Eq. (23). The denominator in r can be summed exactly

as a geometric series, and the result can be approximated under the assumption that c1
and c2 are of order unity, which is known to hold for Schwarzschild and can be verified

for the metrics that we consider later on. The final, approximated result is simply

r = e2π/c1 . (29)

Thus, obtaining r is straightforward from the results described in the previous

subsection. In order to agree with the conventions used in the literature, we will report

the values of

rm = 2.5 log10 r .

The second observable that we report is the separation between the first image and

the others, given by

s = θ1 − θ∞ ≈ θ01 − θ∞ . (30)

Under the same assumptions that we made for r, this is reduced to

s ≈ θ∞ exp

(
c2 − 2π

c1

)
=

bc
DOL

exp

(
c2 − 2π

c1

)
. (31)

The observables r and s are completely determined by c1, c2, bc and DOL. This last

quantity is fixed by observations, while the other three depend on the parameters that

appear in the black hole solution under consideration, i.e., on the mass – also observed

– and on the parameters that appear as a result of considering alternative models of

gravity. In the next section we compute quantities that do not depend on DOL for several

numerical black hole solutions of beyond Horndeski, while the ones that do depend on

DOL are presented in Sec. 5.

4. Numerical implementation and results

Let us study the deflection angle in the strong gravity regime for the solutions of beyond

Horndeski presented in Fig. 1. Since these solutions are numerical, our results here are

also numerical. However, the limit φ0 → 0 recovers the Schwarzsdhil solution, thus it

can be used as a reference to validate our results. Although not strictly necessary, it

is convenient to introduce variables such that the black hole solution does not depend

explicitly on the Schwarzschild mass M . This is achieved by using 2M as unit of

distance, i.e., introducing x = r/2M , and redefining the constants that appear in the

asymptotic solutions (which act as boundary conditions) in order to absorb any factor

of M . The appropriate redefinitions for eqs. (2) are g4 = 4M2g̃4 and φ0 = φ̃0/2M . One
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should keep in mind that this redefinition is only for numerical convenience, and it is

not well justified from a theoretical point of view, for instance, g̃4 cannot be interpreted

as parameters of the model since now it depends on the mass scale of the system under

consideration. It is convenient to keep in mind that g4φ
2
0 = g̃4φ̃

2
0.

Using the redefined quantities x, g̃4, φ̃0, the asymptotic metric takes the form

f(x) = 1− 1

x
−

4g̃24φ̃
2
0

(
g̃4φ̃

2
0 − 2

)
x2

+O
(

1

x3

)
, (32a)

h(x) = 1− 1

x
+

4g̃24φ̃
2
0

(
1− g̃4φ̃2

0

)
x2

+O
(

1

x3

)
. (32b)

Strictly speaking, one should redefine r also in the line element. This would introduce a

global factor of 4M2 both in the radial and in the angular components of the redefined

metric, these factors are not explicitly considered in the literature, but are correctly

accounted for when reporting the impact parameter, Eq. (14), as b/2M instead of

simply b (see, e.g., [17]). The global factors of 4M2 cancel out in all the other quantities

introduced in the previous sections. Having clarified this, we proceed to apply the

formalism of Sec. 3, with the identifications

A(x) = f(x) , B(x) = 1/h(x) , C(x) = (1− 3g̃4φ̃
2
0)
−1x2 . (33)

Let us describe the numerical implementation of the steps i - iv enumerated in Sec. 3.

For concreteness and numerical convenience, we make g̃4 = 1, and we vary φ̃0 in the

range 0 < φ̃0 ≤ 0.32 where regular black hole solutions exist.

i. Use Eq. (11) to determine xm. We use a numerical root finder in the range

xh < x < 2, where xh is the size of the horizon obtained from the numerical

solutions for each value of φ̃0. For φ̃0 → 0, xh recovers the horizon of a Schwarzschild

black hole, xh = 1, and it decreases as φ̃0 increases. Similarly, xm approaches its

Schwarzschild value, xm = 3/2xh = 3/2 for small φ̃0, and it decreases as φ̃0 increases.

It is interesting to note that the ratio between the photon sphere and the horizon,

xm/xh, remains nearly constant as φ̃0 varies: the relative differences 1 − xm/xh
are of order 10−3, i.e., for these black holes the photon sphere is relatively at the

same distance from the horizon than it is for a Schwarzschild black hole. Once

xm is known, it is straightforward to compute also the critical impact parameter

bc = b(xm) using Eq. (15). Studying the relation between bc and xh we find that

their ratio increases with φ̃0: for the black holes that we are considering, the horizon

is smaller than it is for a Schwarzschild black hole, but they capture photons over

a larger radius in relation to the size of their horizon. This is shown in Fig. 2.

ii. Obtain c1 from Eq. (16). Once we have xm, it is straightforward to evaluate the

argument of Eq. (16) as long as an interpolation of the numerical solutions and

their derivatives at xm are known. If that is not the case, we have verified that

a cubic polynomial interpolation on a set of data points spaced by ∆x = 0.01 is

enough to get values of c1 with a relative difference of order 10−4 with respect to
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Figure 2. Critical impact parameter, b̃c = bc/2M , divided over the horizon of each

solution, for 0 < φ̃0 < 0.26.
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Figure 3. Parameters c1 and c2 that determine the strong deflection limit in Bozza’s

approximation, for 0 ≤ φ̃0 ≤ 0.24. Notice that the relative change with respect to

Schwarzschild (φ̃0 = 0) is much smaller in c1 than in c2.

those obtained for a more precise solution with ∆x = 0.0005. Our results for c1 are

displayed in the left panel of Fig. 3. We see a small relative change, around 10−2,

from the Schwarzschild value c1 = 1. As we notice below, this change is also small

in comparison to the change in c2.

iii. Compute IR from Eq. (19). For this step it is convenient to write the solutions

for the metric in terms of the variable z defined in Eq. (18). It is important to

notice that this redefinition is different for every solution since it depends on the

value of xm. Nevertheless, it has the advantage of reducing the range of integration

to 0 ≤ z ≤ 1. Numerically we cannot use these exact limits since at z = 0 the

argument of the integral diverges and z → 1 implies x → ∞. Instead, we use

z = 0.00001 and z = 0.997. These limits ensure that the result of the integral does

not change by more than 10−3 if the integration range is extended. One should be

careful with changing the upper limit because of the inverse relation between x and

1− z: if z was very close to 1 we would need to know the numerical solution up to

a very large value of x, for instance, z = 0.998 translates to x > 500 for all of the

values of xm that we find, and z = 0.999 translates to x > 1000. The value that
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Figure 4. Magnification due to beyond Horndeski black holes with 0 < φ̃0 < 0.3.

Assuming that φ̃0 is constrained to be very close to 0 by other types of observations,

this would mean that the magnification rm would be nearly indistinguishable from the

magnification due to a Schwarzschild black hole.

we use, z = 0.997, requires a moderate knowledge of the numerical solution, up to

x . 450 and gives a precision of at least three decimal places in the result of IR.

iv. Compute c2 from Eq. (17). Having all the previous results at hand, this step is a

simple substitution into Eq. (17). The results are shown in the right panel of Fig. 3.

Notice that the relative change in c2 is one order of magnitude bigger than the

change in c1. This is in contrast with known results for Horndeski black holes [14],

and also with the case of Reissner-Nordström (e.g., [17]), where the changes in

c1 and c2 arising from changes in the charges or parameters of each model are

comparable, but is similar to results for the Janis-Newman-Winicour (JNW) naked

singularity [17], where at leading order c1 remains equal to 1 while c2 experiences

changes of order 1. However, it is possible to distinguish JNW from our beyond

Horndeski solutions by the sign of the changes in c2: for JNW, c2 is larger than its

Schwarzschild value, while for the beyond Horndeski solutions that we study the

opposite is true.

Let us close this section by analysing the observable r defined in Eq. (28). This

quantity depends only on c1, therefore we can study it without making reference to

particular masses or distances of an astrophysical system. As we discussed above, the

deviations of c1 with respect to its Schwarzschild value c1 = 1 are minimal, and this is

inherited to r. Fig. 4 shows rm = 2.5 log10 r.

5. Supermassive black holes

In the previous sections we obtained all the quantities required in order to make specific

predictions for observables that could be constrained, for instance, with future data from

the Event Horizon Telescope [10]. Let us focus in two astrophysical systems targeted

by these observations: the supermassive black hole candidate, Sagittarius A* [45] (Sgr

A*), at the center of our galaxy, and the one at the center of the giant elliptical galaxy
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Table 1. Estimates for the observables s and θ∞ defined in the text, for the

supermassive black hole candidate Sgr A*, assuming a mass MSgr = 4.28 × 106M�
and a distance DOL = 8.32 kpc. For clarity we display the range 0 ≤ φ̃0 ≤ 0.14. We

remind the reader that φ̃0 = 2Mφ0 and we have set g̃4 = g4/(4M
2) = 1.

φ̃0 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14

θ∞(µas) 26.40 26.37 26.30 26.18 26.01 25.80 25.52 25.18

s(µas) 0.0329 0.0328 0.0325 0.0321 0.0315 0.0307 0.0298 0.0288

Table 2. Estimates for the observables s and θ∞ defined in the text, for the

supermassive black hole candidate in M87, assuming a mass MM87 = 6.5 × 109M�
and a distance DOL = 16.8Mpc. For clarity we display the range 0 ≤ φ̃0 ≤ 0.14. We

remind the reader that φ̃0 = 2Mφ0 and we have set g̃4 = g4/(4M
2) = 1.

φ̃0 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14

θ∞(µas) 19.85 19.83 19.77 19.69 19.57 19.40 19.19 18.94

s(µas) 0.0248 0.0247 0.0245 0.0241 0.0234 0.0231 0.0224 0.0216

M87[46].

For Sgr A* we use the central values of the observational data reported in [47]:

MSgr = 4.28 × 106M�, where M� is the solar mass, and DOL = 8.32 kpc. Both

measurements have systematic and statistical uncertainties in the order of 10−1.

Reintroducing the appropriate factors of the Newton constant G and the speed of light c,

we have 2M = 2GMSgr/c2 = 1.26× 1010m, this is used to compute bc from b̃c = bc/2M .

Then we obtain θ∞ = bc/DOL, and finally we get s from Eq. (31). It is worth noticing

the advantage of having redefined all the quantities in the metric in such a way that the

mass does not appear explicitly: obtaining results for specific systems from the generic

results reported in the previous section only requires introducing the appropriate values

of the mass in b̃c. The results for θ∞ and s are shown in Table 1.

For M87 we use the central values adopted in [48]: M = 6.5 × 109M� and

DOL = 16.8 Mpc. Restoring factors of G and c, this mass leads to 2M = 1.92× 1013 m.

The values of θ∞ and s are reported in Table 2.

The consequences of the results displayed in Tables 1 and 2 for the values of g4 and

φ0 have to be interpreted with some care. We are actually using the redefined quantities

g̃4 and φ̃0, which are given in relation to the value of 2M for each astrophysical system,

so, for instance, φ̃0 = 0.02 implies a different value of φ0 for each M . Furthermore, we

are fixing g̃4 = g4/(4M
2) = 1. This implies large values of g4, but we also have small

values of φ0, so that the combination g4φ
2
0 remains natural. Indeed, as we noticed before,

these parameters satisfy g4φ
2
0 = g̃4φ̃

2
0. If one wishes to fix g4 ∼ 1, a large φ̃0 – order

2M – would be required in order to recover values of g̃4φ̃
2
0 similar to the ones we have

used, but the terms of order 1/x2 in the metric would still be suppressed by a factor of

order M2, leading to smaller deviations from a Schwarzschild black hole. Considering

that angular measurements from EHT have an uncertainty of about 3µas, our results

show that even for a large coupling g4, beyond Horndeski black holes lead to lensing
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observables that are compatible with current data, although could be excluded in the

near future.

6. Deflection angle for large x0

As we mentioned before, Bozza’s approximation is accurate only near the photon sphere

located at xm. For light rays whose closest approach distance x0 is away from xm, we

explore the deflection angle under a different approximation. We follow the methodology

presented in [18] – later generalized in [49], where using the method introduced by Amore

et al. [50] and the principle of minimal sensitivity (PMS) [51] to minimize the error, an

analytical approximation for the deflection angle is obtained. This methodology, which

we briefly review below, is not based on a perturbative expansion, and it describes

accurately the physics of our problem almost up to the photon sphere.

Starting from Eq. (12) for the deflection angle, using a new variable z = x0/x¶,

and introducing a potential defined in terms of the components of the metric,

V (z) =
z4

x20

[
C(x0

z
)

B(x0
z

)
−

C2(x0
z

)A(x0)

B(x0
z

)A(x0
z

)C(x0)

]
+ x20

A(x0)

C(x0)
, (34)

the deflection angle can be written as,

α(z) = 2

∫ 1

0

dz√
V (1)− V (z)

− π , (35)

where A,B,C are as defined in (33). A note regarding the boundary conditions is

pertinent: in [18], it is assumed that limz→0C(x0/z) = x20/z
2, while A(z0/z) → 1 and

B(z0/z) → 1 in the same limit, so that V (0) = 0. In our case, limz→0C(x0/z) =

s−10 x20/z
2, leading to V (0) = A(x0)(−s−10 + s0), i.e., V (0) has a constant value. As we

can see, this constant value cancels out in Eq. (35); however, it is important to take it

into account in the analysis that we describe below.

The integral (35) can be solved analytically for particular cases, e.g.,

Schwarzschild [5, 52] and Reissner-Nordström [53]. For more general cases, the

methodology presented in [18] allows to find an analytical approximation. Under the

assumption that the metric is locally flat at infinity, the potential (34) is approximated

as a power series in z,

V (z) ≈ Vk(z) =
k∑

n=0

vn z
n , (36)

notice that unlike [18] we are including the constant term, v0, in order to account

correctly for the behaviour of V (z) at z = 0, and we are already recognising that the

power series may need to be truncated at some finite value k.

¶ Notice that this is not the same z that we used in previous sections. Since the contents of these

sections do not mix, we hope this is not misleading.
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Using a nonperturbative method based on a Linear Delta Expansion [50, 54], Amore

et al. obtain (see [18, 49] for details)

α
(1)
PMS =

√
π3

2 ρ(1)
− π, (37)

where (1) indicates the order of the approximation, and ρ(z) is given by

ρ(z) =
√
π

k∑
n=0

vn

(
Γ(n/2 + 1/2)

Γ(n/2)

)
zn , (38)

where Γ is the Gamma function.

In some cases, such as Schwarzschild and Reissner-Nördstrom, the power series for

V (z) is finite, and the set of coefficients vn can be exactly identified. In other cases, even

if the metric is known analytically, the power series is not finite, and a truncation needs

to be made, this happens, for instance, for the JNW metric and for Einstein-Born-Infeld

black holes. In our case, the metric is not known analytically, so we need to perform a

numerical fit of the potential V (z) to a power series in z, which we choose to truncate

at n = 6. Let us explain our methodology.

• First we select a value of φ̃0, then we construct V (z) from Eq. (34) using the

numerical solutions for the metric corresponding to this φ̃0. Since V (z) takes x0 as

a parameter, for each φ̃0 we get a set of profiles for V (z), each one associated to a

value of x0 in the range xm < x0 . 50, with xm computed from Eq. (11). Notice

that x0/z cannot be larger than the maximum x for which the numerical solution is

known, so, an upper limit on x0 translates into a lower limit in z. Now, for each x0,

we fit the numerical profile of V (z) to a power series in z truncated at k = 6, V6(z).

Figure 5 shows the results for φ̃0 = 0.02, with x0 = xm. The relative percentage

error of the numerical fit, |Vk(z)− V (z)| /V (z)× 100%, stays below 1%.

• With the coefficients vi at hand, we use Eqs. (37) and (38) to compute the deflection

angle for each x0.

We repeat the steps above for different values of φ̃0 in the range 0 ≤ φ̃0 ≤ 0.32. Fig. 6

shows the deflection angle as a function of x0 for different choices of φ̃0. As we can

observe, φ̃0 – or g̃4φ̃
2
0 as we infer from the angular part of the metric – modifies the

asymptotic behavior of the deflection angle, making it negative for sufficiently large

x0. A negative deflection angle indicates a divergent lens, this has been reported

in [55, 56, 57, 58] for wormholes and massless braneworld black holes. In [59, 60] some

consequences of negative deflection angles are discussed.

Phenomenologically, the weak field deflection angle is constrained by Solar System

observations (e.g., VLBI [2]) to be within ∼ 10−4 of the GR prediction. This would

imply a tight constraint on g̃4φ̃
2
0, but we need to remember that φ̃0 is a parameter of the

solution, not of the model, so it might well be different in different astrophysical scales.

Similarly, no gravitational, divergent deflection angle has been reported in flat space.

These observations indicate that in the weak field limit, g4φ
2
0 = g̃4φ̃

2
0 → 0. Recalling the
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Figure 5. Comparison between the approximated potential V6(z) and the full numerical

profile V (z). The inset shows the relative percentage error |∆| =
∣∣V̄ (z)− V (z)

∣∣ /V (z)×
100%. In this plot we use φ̃0 = 0.02, with the potential computed for a light ray whose

minimum distance approach is x0 = xm. For larger φ̃0, up to 0.32, |∆| grows, but

stays below 1%.

Figure 6. Deflection angle as a function of x0. The dashed line corresponds to

the exact result for Schwarzschild (Darwin,[5, 52]), while the others are for φ̃0 6= 0

using the PMS approximation. As φ̃0 increases, α deviates non-linearly from its

Shcwarzschild value. To exemplify this, we show (red dots) the deflection angle for

x0 = 5xm for each φ̃0. The fact that α becomes negative is discussed in the main text.

results of the previous section, there is still the possibility that in strong field regimes,

g4φ
2
0 ∼ 10−1.

Given that the asymptotic deflection angle is controlled by the angular part of the

metric (33), it is possible to use a further analytical approximation upon the PMS first

order result by replacing Eq. (33) with a Schwarzschild metric, but with the angular
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Figure 7. Comparison between the PMS-analytic (L. approx., Eq. (40), dashed lines)

and the PMS-numerical approaches (solid lines) for φ̃0 = 0.1 and φ̃0 = 0.2. For large

values of x0 both approximations are consistent.

component reescaled by s−10 . Following [18], this approach leads to

α
(1)
PMS = π

 √
s0√

1− 4
πx0

− 1

 . (39)

We remind the reader that s0 = 1− 3g̃4φ̃
2
0. If x0 � 1, we can write

α
(1)
PMS ≈ π (

√
s0 − 1) +

2
√
s0

x0
. (40)

Notice that for s0 = 0 the weak field GR deflection angle is recovered. Figure 7

shows that this analytical approach is consistent with the results of a numerical PMS

approximation.

To conclude this section, let us put together the two numerical methods to compute

the deflection angle presented so far. In Bozza’s approximation, we can obtain the

deflection angle for a given x0 with the help of Eqs. (14) and (15). The results are

shown in Fig. (8) for Schwarzschild and for φ̃0 = 0.2. On the other hand, using the

PMS method described in this section, we can also obtain the deflection angle for a

given x0, the results are shown in the same figure. As expected, these approximations

disagree close to the photon sphere and also for large distances. However, it is interesting

to note that, together, they describe accurately the deflection angle over all the range

of x0: when Bozza’s approximation begins to fail, the PMS method starts to give good

results. To see this, we include in Fig. (8) the exact solution for Schwarzschild, and

a full numerical result for φ̃0 = 0.2 obtained by direct integration of Eq. (12). It is

worth mentioning that direct integration is more computationally expensive than the

numerical implementation of Bozza’s method: for each φ̃0, Bozza’s method reduces to
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Figure 8. Reconstruction of exact or full-numerical deflection angles as the

union of the hybrid Bozza-numerical and PMS-numerical approximations. The

red triangles/circles are the full numerical/analytical deflection angles for φ̃0 =

0.2/Schwarzschild. Jumping from one approximation to the other at their intersection

(roughly x0 ≈ 1.4xm) the exact results are accurately described. The vertical dotted

line indicates xm.

computing only one integral, while a full numerical result requires one integral for each

x0.

7. Discussion

Gravitational deflection of light is an important test for modified theories of gravity.

Here we have focused on models that fit within the DHOST category of modified gravity.

Thanks to screening mechanisms, some of these theories admit an exact Schwarzschild

solution, thus automatically recovering the basic predictions of GR for weak and strong

deflection of light. However, on general grounds, the DHOST Lagrangian may contain

terms that lead to modifications of the Schwarzschild metric, and in many cases to

solutions that cannot be obtained in exact form but only under some approximations

or numerical treatment. In this work we studied one of these models, which besides

modifying the radial and time components of the Schwarzschild metric, also modifies

the angular part.

The deflection angle in the strong field limit is given by an integral that diverges

at the photon sphere, and that can be solved analytically only in a few cases. This

motivated the development of strong field approximations. In particular, Bozza’s

approximation has two advantages that are relevant for our work: first, it is given

in terms of coefficients that are directly related to observables, second, the same set of

coefficients – that depend on one integral – is accurate over a certain interval for x0
away from the photon sphere. Numerically, we could integrate the exact expression for
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the deflection angle, but this can be quite inefficient, since one integral is required for

each closest approach distance x0 that we want to investigate.

In view of the above, we investigated a hybrid analytic-numerical method based

on Bozza’s approach. In the Schwarzschild limit, we verified that our results near

the photon sphere agree with exact and fully analytic approximations. For the non-

Schwarzschild solutions of the DHOST model we consider, we compared our results to

full numerical integration, finding good agreement as well. These results are relevant not

only because they show that a hybrid method is a good replacement for full integration,

but also because this method can be used for static, spherically symmetric solutions

that are known only numerically. In this spirit, we also investigated a hybrid method to

compute the deflection angle away from the photon sphere, this time with the analytic

part based on the PMS approach. We verified that for x0 & 1.5xm, this method is

consistent with exact or full numerical results. In summary, we have shown that it is

possible to compute the deflection angle (12) over the entire range of x0 as the union of

two hybrid approximations,

α(x0) =

{
Bozza-numerical approach for xm . x0 . 1.5xm

PMS-numerical approach for x0 & 1.5xm .
(41)

Furthermore, we have shown that for x0 & 20xm, an analytic weak field approximation

based on the Schwarzschild metric with a reescaled angular component correctly

accounts for the effects of a constant angular deficit in the metric.

Regarding the phenomenology of the DHOST model we consider in this work, using

the strong deflection results we calculated the angular position θ∞ where lensed images

accumulate around a supermassive black hole, as well as the separation s between these

images and the outermost one. Specifically, we considered Sagittarius A* and M87,

finding that, for the range of parameters that we use, the deviations of θ∞ from its

Schwarzschild value are in the order of micro arc seconds. Current observations by

EHT constrain the angular diameter of M87’s shadow with an uncertainty of ±3µas.

In the near future, this type of observations could impose constraints on non-perfectly

screened modified gravity black holes at order 10−1 in the relative size of the corrections.

Although this is weaker than the constraints in the Solar System – order 10−4, strong

deflection tests a completely different regime of the theory and provides complementary

information that can be used to further reduce the space of viable modified gravity

models.
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