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BTZ entropy from topological M-theory
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By determining the relation between topological M-theory and the Chern-Simons actions for a
gauge field constructed from the Lie algebra of either SL(2,R) × SL(2,R) or SL(2,C) × SL(2,C),
depending on the sign of the space-time curvature, we show that the standard and exotic actions
of 3-dimensional gravity can be recovered from topological M-theory. With this result, we provide
a concrete realisation of a conjecture by Dijkgraaf et al. stating that the partition function of
topological M-theory is equivalent to the partition function of a black hole in a related theory. We
do this for the standard and exotic BTZ black holes in 3-dimensional gravity.

One of the most useful tools to understand the gravita-
tional interaction, is three dimensional gravity. Not only
has 2+1 gravity been quantized, it has other remarkable
features that are of great value as a guide to understand
the foundations of gravity. Some of these features can
be easily derived from the fact that it can be written as
a Chern-Simons action [1]. And although 2+1 gravity
is topological and therefore might seem physically unre-
alistic (it lacks propagating degrees of freedom), there
is a black hole solution, known as the BTZ black hole
[2]. The BTZ solution is asymptotically anti-de Sitter
and has no singularity, but it has many of the features of
the Kerr black hole, it has an event horizon and an inner
horizon for the rotating case and thermodynamic proper-
ties analogous to 4 dimensional black holes. Interestingly,
the BTZ solution solves any 2+1 gravity model that ad-
mits anti-de Sitter vacuum, and the mass and angular
momentum to some linear combination of the parame-
ters. When the role of mass and angular momentum is
reversed, the resulting black hole is known as an exotic
BTZ black hole. The entropy of the BTZ black hole is in
agreement with Hawking-Bekenstein entropy, but for the
exotic case the entropy is related to the inner horizon.
This appalling contradiction was resolved in [3] by con-
sidering that the BTZ is a solution to the standard action
and the exotic BTZ is a solution to the exotic action, and
therefore the entropy must be given by,

S =
π

2G
(αr+ + γr−). (1)

The standard and exotic actions, are the two independent
actions that are derived in the Chern-Simons formulation
of 2+1 gravity [1, 4].

The description of the gravitational field in terms of
gauge fields or p-forms has been continuously developed.
In these theories the metric does not appear explicitly
but it is reconstructed from the dynamical fields under
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consideration. These descriptions are referred to as form

theories of gravity. Some of these form theories, includ-
ing Chern-Simons (CS) three dimensional (3d) gravity
and the A and B models of topological strings can be
unified in a seven dimensional space-time, X , through
the topological M-theory (TMT) proposed by Dijkgraaf
et al. [5]. Essential in this theory is the volume form, V ,
constructed from an invariant p-form whose existence is
characteristic of special holonomy manifolds. The study
of manifolds admitting stable non-degenerate forms is an
interesting topic by itself, see for example [6] for a clas-
sification of all stable forms on R

n. In particular, for
seven dimensions, there are two non-trivial p-forms in-
variant under the holonomy group G2, one of which is a
3-form and the other a 4-form. The same is true for the
stable p-forms invariant under the dual group G̃2. Us-
ing the 3-form Φ with holonomy in G2, Dijkgraaf et al.
showed that the equations of motion for 2+1 gravity are
recovered under a convenient partition of X . However,
it is known that for non-vanishing cosmological constant,
λ, there are two classically equivalent actions to describe
gravity in 2+1 dimensions, known as standard and exotic

actions [1]. In [7], the authors obtain these actions from
TMT. To write down the standard and exotic actions
they first show how to obtain the CS actions for 2+1
gravity. This result opens up the possibility to apply the
formalism and ideas of TMT to several models of 2+1
gravity that are built in terms of the CS actions. Using
this result we present a concrete realisation of a conjec-
ture that states that the partition function of a theory
with an action defined by the Hitchin volume functional,
is related to the partition function of a BPS black hole in
the gravitational theory allowed by the p-forms used to
construct the volume functional [5]. Since we deal with
3d gravity, the relevant black hole solution will be the
BTZ space-time [2]. As a side result we shed some light
on the proposal in [3] for the entropy of BTZ black holes.

In [8], it is conjectured that the partition function of
a 4d BPS black hole is related to the topological string
partition function by

ZBH = |Ztop|2 . (2)

Furthermore, it is pointed out that the topological par-
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tition function can be interpreted as a wave function,
this interpretation comes from [9]. Thus, the conjecture
above becomes

ZBH = |Ztop|2 = |ψ|2 . (3)

A similar proposal exists in TMT [5], where the parti-
tion function ZH of a 6d theory (contained within TMT
and constructed from a volume form) is associated to a
Wigner function arising from the B model of topological
strings.

Here we present a realization of these ideas, but in the
context of 3d gravity. As shown in [5] at the level of the
equations of motion and in [7] at the level of the action,
3d gravity is contained in TMT as a particular splitting
of the 7d manifold. In order to give a concrete example
of the relation between ZH and the black hole entropy
we consider an extremal BTZ black hole, compute its
volume form in terms of the 2+1 dimensional standard
and exotic actions for gravity, then we obtain ZH , and
finally we compare it to the norm of the wave function
for the same black hole [10].

The organization of this work is as follows. First, we
review and formalize the derivation of the standard and
exotic actions for 2+1 gravity from TMT and construct
the topological partition function. Then, we also review
the BTZ black hole solutions and its partition function
obtained from canonical quantization. Finally, we show
how these results are related.

I. STABLE FORMS IN 7D

In this section we study the relation between invariant
stable forms and structures on a 7d Riemannian mani-
fold, R7. To understand the geometric structures defined
by stable forms, we need to study the isotropy subgroup
of such forms under the action of the general linear group
GL(7). We start by recalling the structure on R

7. Later
we use such construction to understand the case of a
manifold X .

Let V be a real 7d vector space with basis {ei} and

consider the space of 3-forms ∧3V ∗. A form ω in ∧3V ∗

can be written as

ω =
7
∑

i,j,k=1

aijke
ijk, (4)

where eijk = ei ∧ ej ∧ ek and {ei} is a basis for V ∗.
Consider the group G = GL(7) of automorphisms of V .

There is a natural action Gy ∧3V ∗ and it is known that
there are two distinguished orbits given by this action,
namely

G · ω1, (5)

G · ω2, (6)

where ωi is the form defined as

ω1 = e123 − e145 + e167 + e246 + e257 + e347 − e356, (7)

ω2 = e123 + e145 − e167 + e246 + e257 + e347 − e356. (8)

To each form corresponds an isotropy group, the Lie
group

Gω1
= G2, Gω2

= G̃2. (9)

It is proved in [11] that G2 is compact, connected, sim-
ple, simply connected, 14-dimensional and it fixes the Eu-
clidean metric g1 =

∑

(xi)2 where x = xiei and y = yiei
induced by

〈x, y〉ω1
= x1y1+x2y2+x3y3+x4y4+x5y5+x6y6+x7y7.

G2 also preserves the orientation of the forms ω1 and ∗ω1

with respect to g1, and G2 is isomorphic to the group of
automorphisms of the octonians.

There are analogous results for the group G̃2, this
group preserves ω2, ∗ω2, the metric induced by

〈x, y〉ω2
= x1y1+x2y2+x3y3−x4y4−x5y5−x6y6−x7y7,

and it is the non-compact dual ofG2. It is also connected,
of dimension 14 and simple.

In this case the natural identification

G · ωi = G/Gωi
,

is in fact a diffeomorphism. Since dim(G) = 49 and

dim(G2) = dim(G̃2) = 14 then the dimension of these
orbits dim(G · ωi) = 49 − 14 = 35 coincides with the

dimension of the ambient space dim(∧3V ∗) = 35 and we
conclude as in [11] that both orbits are open and the
forms ω1 and ω2 are stable. In [6], the authors show that
the forms ω1, ω2 are essentially the unique stable forms,
in the sense that any stable form ω ∈ ∧3V ∗ is either in
the orbit of ω1 or ω2.

The scenario we study in this paper is the case when X
is a complete 7d Riemannian manifold, x ∈ X is a point
and V = TxX . A stable form induces a Gωi

-structure on
X , as follows (see [12]) :

Consider the fiber bundle ∧3T ∗X and the open sub-
bundle P i(X) with fiber

P i
x = {ω ∈ ∧3V ∗|∃f : V → R

7 with f∗(ωi) = ω},

where in the last definition f is an oriented isomorphism.
From the previous discussion P3

x
∼= G · ωi. Fix a form

ω over X such that ω|p ∈ P i
x = g · ωi and consider the

frame bundle F of X with fiber

Fx = {f |f : V → R
7 is an isometry}.

Let Q be the principal subbundle of F whose fiber con-
sists in isomorphisms preserving ω. Hence the fiber is
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Qx
∼= Gωi

and ω determines Q which defines a Gωi
-

structure on X , preserving the metric gω induced by the
inner product

〈x, y〉ω = g · 〈x, y〉ωi
.

There is a converse for this construction: given an ori-
ented Gωi

-structure we can define a metric g, a 3-form
ω and ∗ω requiring that the corresponding metric is pre-
served by the action of Gωi

.
Let X be a Riemannian 7d manifold with a G2-

structure (ω, g) and denote as ∇g the Levi-Civita connec-
tion associated to g. Let ∇gω be the torsion of this G2-
structure. We say that (ω, g) is torsion-free if ∇gω = 0.
Finally define a G2-manifold as a triplet (X,ω, g) such
that (ω, g) is torsion-free.

Consider a G2-manifold X . The existence of a G2

holonomy metric is equivalent to the existence of a 3-
form Φ satisfying as in [5],

dΦ = 0,

d∗ΦΦ = 0.
(10)

A stable 3-form can be written in terms of a 7d vielbein
as

Φ =

7
∑

i,j,k=1

Ψijke
iejek, (11)

where Ψijk are the structure constants of the imaginary
octonions. There are analogous constructions for stable
forms on a G̃2-manifold, since the orbits of ω1, ω2 corre-
spond with the holonomy groups G2 and G̃2 respectively.

In order to define a volume on a Gωi
-manifold X con-

sider a 3-form Φ on X as before, invariant by the corre-
sponding holonomy group and define a volume as

V7(Φ) =

∫

X

Φ ∧ ∗ΦΦ. (12)

As above since in the 7d case there are only two open
orbits of maximal dimension hence is natural to consider
only forms in these orbits to get a notion of genericity as
in [5].

II. 3D GRAVITY FROM TOPOLOGICAL

M-THEORY

In [5], Dijkgraaf et al. introduced a notion for TMT in
7d with the property that it seems to unify several lower
dimensional topological models. In particular, they find a
dimensional reduction that recovers the equations of mo-
tion of 2+1 gravity from the volume of the 7d manifold
X discussed in the previous section. A similar construc-
tion was given by Bryant et al. [11], where starting from
a rank-4 spin bundle S over a 3d space of constant curva-
ture (space form), a 3-form Φ satisfying dΦ = d∗ΦΦ = 0
is constructed by making use of the structure equations

for a manifold with constant sectional curvature κ ≡ 4Λ,
i.e.,

de = −A ∧ e− e ∧A , (13a)

dA = −A ∧ A− Λe ∧ e , (13b)

where {e1, e2, e3} is a basis of the tangent space at a point
of the 3-manifold, and A is a Levi-Civita connection 1-
form. As [5, 11] point out, a 3-form that generalizes
ω1 (7) can satisfy the conditions dΦ = d∗ΦΦ = 0 in some
special cases. In order to write down this 3-form ψ it
is convenient to introduce first a set of local coordinates
on the 4d fibre. Let yi be those coordinates, we define

r = yiy
i. Notice that this is SO(4)-invariant. With the

following 2-forms,

Σ5 = e12 − e34,

Σ6 = e13 − e42,

Σ7 = e14 − e23,

(14)

we can write the 3-form Φ that satisfies dΦ = d∗ΦΦ = 0
as

Φ = f3(r)e567 + f(r)g2(r)em ∧ Σm . (15)

Since f and g depend only on r, Φ preserves the SO(4)
invariance of ω1. Remembering that SO(4) is a subgroup
of G2, and by the discussion of the previous section, the
fact that Φ is SO(4)-invariant is a good indicator that it
can define a G2 structure – thus satisfying the required
equations. The local coordinates yi are also used to define
a basis of 1-forms in the fibre direction as

α = dy − yA . (16)

The four components of α are identified as a local basis
on the fibre, αi = ei, i = 4, 5, 6, 7. As a consequence of
eqs. (13), these 1-forms satisfy

dα = −α ∧ A+ (κ/4)yω ∧ ω. (17)

Using Eqs. (13),(17), and

∗ΦΦ = −1

6
g4Σm ∧ Σm +

1

2
f2g2ǫmnpem ∧ en ∧Σp, (18)

in [13] it is showed that the equations dΦ = d∗ΦΦ = 0
hold if

f(r) =
√
3Λ(1 + r)1/3 ,

g(r) = 2(1 + r)−1/6 .
(19)

Conversely, the authors of [5] start with dΦ = d∗ΦΦ = 0
and verify that the above assumptions for f(r) and g(r)
lead to the structure equations, (13), i.e., in their inter-
pretation, the equations of motion for 3d gravity arise
from the equations for a 3-form with G2-holonomy. If
these equations of motion are recovered from such a 3-
form Φ, it is natural to look for a Lagrangian for Φ that
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encompasses the main points of the derivations above and
reduces to the known Lagrangians for 3d gravity. This
Lagrangian is given precisely in terms of the volume form
discussed around Eq. (12). In order to convert Eq. (12)
into an expression that we can recognise as the action
for 2+1 gravity we perform the following steps. First,
we rewrite the integrand Φ ∧ ∗ΦΦ using the antisymme-
try of the wedge product and of the Levi-Civita tensor,
obtaining

V7(Φ) =

∫

X

40

3
(3Λ)3/2(1 + r)1/3e567 ∧ Σi ∧ Σi . (20)

Now, let Σ be the curvature of a connection α, i.e.,

Σ5 = dα5 + 2α6α7 , (21)

and cyclically for the others. Later on we will relate
this α to the connection 1-form A. Notice that this is
compatible with the equations (14) that express Σi in a
local orthonormal basis [14]. Using again the properties
of the wedge product, and noticing that as a consequence
of the structure equations (13) we have d(e567) = 0 [13],
the volume V7 can be written as

V7(Φ) =

∫

X

40

3
(3Λ)3/2(1 + r)1/3d

[

e567 ∧ (αi ∧ dαi

+
2

3
ǫijkαiαjαk)

]

. (22)

The argument of the differential does not depend on r,
therefore, by an appropriate choice of coordinates, its
prefactor can be integrated out so that it becomes a
global factor of a 6d integral. We can further reduce
these dimensions by using Stokes theorem, obtaining1

V7(Φ) ∝
∫

X
5
e567 ∧ (αi ∧ dαi +

2

3
ǫijkαiαjαk) . (23)

Finally, since the argument of the integral only depends
on quantities defined over the 3-manifold M with basis
{e5, e6, e7}, the volume can be expressed as

V7(Φ) ∼
∫

M

e567 ∧ (αi ∧ dαi +
2

3
ǫijkαiαjαk). (24)

Expanding the wedge product in components, relabeling
the internal indice as (a, b, c) and using (i, j, k) for the
spacetime indices, we get

V7(Φ) ∼
∫

M

ǫijk(2αa
i ∧ ∂jαa

k +
2

3
ǫabcα

a
i α

b
jα

c
k). (25)

1
We have to be careful with the notation: all p-forms are inte-

grated over p-dimensional manifolds. If the dimensions of the

integral and the order of the p-form obtained by counting wedge

products does not match, this means that one of the differentials

dx
i
has been integrated out, and we have to remember this when

writing the form in component notation.

This is the Chern-Simons action. At this point it is con-
venient to notice that the 2-forms Σ are anti-self-dual,
i.e., ∗Σi = −Σi. For this reason, we rename it as −Σi,
with associated connection −αi, and we also rename the
form Φ given in eq. (15) as −Φ. Now we are ready to see
the relevance of the discussion of the previous section.
The form −Φ is constructed out of the stable form ω2

presented in eq. (8). However, we have seen that the vol-
ume form can also be constructed in terms of ω1, eq. (7).
Furthermore, these two possibilites, ω1 and ω2 are unique
in the sense discussed in the previous section. With these
considerations in mind, we construct a volume form for
each of the 3-forms

−Φ = f3(r)e567 + f(r)g2(r)em ∧ −Σm , (26)
+Φ = f3(r)e567 + f(r)g2(r)em ∧ +Σm . , (27)

where +Σm are the self-dual 2-forms

+Σ5 = e12 + e34,
+Σ6 = e13 + e42,
+Σ7 = e14 + e23,

(28)

and r is defined in the same way as described before.
When f(r) = g(r) = 1, −Φ, +Φ are equivalent to ω2 and

ω1, respectively. The 4-forms associated to −Φ and +Φ
are

∗Φ
∓Φ =∓ 1

6
g4∓Σm ∧ ∓Σm

± 1

2
f2g2ǫmnpem ∧ en ∧ ∓Σp . (29)

We can use either of ±Φ to construct the volume of the
7-manifold X ,

V ± ≡ V7(
±Φ) =

∫

X

±Φ ∧ ∗Φ
±Φ . (30)

By the same steps of the previous section, V7 can be
written as

V ± ∼
∫

M

ǫijk(2±αa
i ∧∂j±αa

k+
2

3
ǫabc

±αa
i
±αb

j
±αc

k), (31)

where +αi is the connection associated to +Σi. Thus,
we have found two Chern-Simons actions derivable from
the volume of a 7-manifold that admits two special stable
forms. Now we want to understand how these two actions
are related to 2+1 gravity. From the results of [5, 13],
we know that the equations of motion arising from the
volume of −Φ are those of 2+1 gravity with a cosmolog-
ical constant. Since V (+Φ) describes the same volume

as V (−Φ), the 3d equations of motion derived from both
actions have to coincide. This is remarkably similar, and
consistent, with the results of [1], where it is shown that
there are two 3d actions, named standard and exotic,
that lead to the same equations of motion that we are
interested in. Furthermore, they show that these actions
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can be written precisely in terms of the Chern-Simons
actions (31) by setting

±αa
i = Aa

i ±
√
λeai , (32)

where Ai and ei are the fields introduced around Eq. (13).
The combinations

Ist =
+I −− I

4
√
λ

, (33)

Iex =
+I +− I

2
, (34)

where ±I are the integrals in Eq. (31), give respectively
the standard and exotic actions.

Now we can reinterpret the standard and exotic actions
in terms of the volume functional as

Ist =
h+V + − h−V −

4
√
λ

Iex =
h+V + + h−V −

2
. (35)

where h± are the inverses of the proportionality factors
in Eq. (31). In this way, we can see the standard and
exotic actions as two different combinations of pieces of
the volume of the 7-manifold X. Applications of the ideas
developed so far to the Immirzi ambiguity in 3d gravity
have been presented in [7]. In the next section we explore
the entropy of the BTZ black hole from the point of view
of TMT and we discuss the relation of our results to the
conjecture ZBH = |Ztop|2.

III. BTZ BLACK HOLE: PARTITION

FUNCTION

Using the results described above we can provide evi-
dence that the conjecture discussed around Eq. (2) also
applies for G2-manifolds and 3d black holes, i.e., that
in general, the partition function of a theory with ac-
tion defined by a Hitchin functional is related to the
partition function for a BPS black hole in the gravita-
tional theory allowed by the p -forms used to construct
the Hitchin functional. The possibility that the relation
between BPS objects and form theories of gravity ex-
tends to G2-manifolds was hinted in [5]; however, it was
only studied for 4d and 5d black holes embedded in a
6d SU(3)-manifold. In this work we show explicitly that
the partition function of the BTZ black hole is recovered
from the partition function associated to the volume V7.
Given the different ways of writing down V7 either in
terms of V +, V − or both, one could think that the result
only applies to the extremal case, which turns out to be
associated to the situation were we demand that the lin-
ear combinations of V + and V − – for instance Ist and Iex
– preserve a given multiple of V7; but as we argue below,
the partition function obtained from TMT correctly gives

the BH partition function even away from the extremal
case.

In the case of TMT, the total space X is 7d and as
we shown in the previous sections, its volume can be
constructed with either of the 3-forms +Φ and −Φ. A
certain combination of these volumes, Eq. (33), results
in the standard action for 3d gravity. In this theory, a
black hole solution is given by the BTZ space-time [2],
whose metric can be written as

ds2 = −N2dt2 +N−2dr2 + r2(Nφdt+ dφ)2, (36)

where the lapse N and shift Nφ are

N =

(

−M +
r2

ℓ2
+
J2

4r2

)1/2

, (37)

Nφ = − J

2r2
. (38)

The integration constants M and J are interpreted re-
spectively as the mass and angular momentum of the
black hole, and ℓ is related to the cosmological constant
of the theory by ℓ−2 = Λ/3. The lapse function van-
ishes at two distinct values of r, defining two coordinate
singularities, r±,

r± =
1

2

(

√

ℓ(ℓM + J)±
√

ℓ(ℓM − J)
)

. (39)

When J = 0 only r+ is different from zero, and in the
extremal case J = Mℓ the two horizons coincide. The
entropy of the BTZ black hole can be computed by dif-
ferent methods, for example, by Euclidean path integral
or by Noether charges [see e.g. 15], and it is given by

Sst
BTZ = 4πr+. (40)

These computations do not depend only on the metric
but also on the action, that is usually taken to be the
standard action, hence the superscript st. Originally,
this result comes from geometrical considerations on the
standard action of 2+1 gravity, and then deriving the en-
tropy from the grand canonical partition function in the
classical approximation [16]

Z = exp(Ist) .

Since the standard action is recovered from TMT, the
entropy of a BTZ black hole described by such an action
is recovered as well.

The same techniques that lead to Eq. (40) have been
applied to the exotic action, finding an entropy propor-
tional to the inner BTZ horizon, r−. The fact that the
entropy is proportional to the inner horizon raised doubts
about the validity of black hole thermodynamics. How-
ever, it has been shown that these laws hold [3]. Indeed,
the result is even more general: an entropy of the form

S ∼ αr+ + γr− (41)
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is in agreement with black hole thermodynamics.
Eq. (41) arises naturally in the context we are study-
ing in this work. Hitchin’s partition function is defined
in terms of the volume functional,

ZH(Φ) =

∫

[Φ]

dΦ exp(VH(Φ)) . (42)

Thus, when we write TMT as a theory of a 4d vector
bundle over a 3d base space such that the 7d manifold X
has a G2-structure, we can separate V7 in terms of the
volume functionals V ±,

λV7 = β+V
+ + β−V

− , (43)

for some coefficients λ, β±. Notice that, so far, all the
properties that hold for a theory based on V7 hold for a
theory based on a multiple λ of V7. In addition, V ± are
proportional to the Chern-Simons actions, Eq. (31), with

proportionality constants 1/h±. Putting all together, we
write Hitchin’s partition function as

ZH(Φ) =

∫

[Φ]

dΦ exp

[

∑

σ=+,−

βσ(h
σ)−1 σI

]

, (44)

As before, the basis of the 7d manifold can be decom-
posed into a 3d base space and a 4d bundle. The coef-
ficients β± can be chosen in such a way that the linear

combination of ±I in the argument of the exponential
reproduces either the standard or the exotic action, or
a combination of both. For the choice that leads to the
standard action, by the discussion above we confirm that
Hitchin’s entropy is related to the BTZ entropy,

ZH(Φ) ∝
∫

dedα exp(Ist) = ZBH . (45)

On the other hand, for a different choice of parameters
we can have

ZH(Φ) ∝
∫

dedα exp(Iex) = ZBH , (46)

i.e., the Hitchin partition function for the exotic action is
also related to a black hole partition function, only that
in this case ZBH corresponds to the exotic BTZ black
hole.

The extremal case, r+ = r−, admits an interpretation
from the point of view of TMT. Suppose we fix λ, e.g.
λ = 1. This imposes a constraint on the linear combi-
nations in Eq. (43), such that any choice of β± leads to
a fixed V7 and the same ZH(Φ). Therefore, all combina-
tions lead to the same black hole entropy, and this is only
possible if r+ = r−, i.e., the extremal case corresponds
to a constraint on the parameters β±.

IV. DISCUSSION

3d gravity can be embedded in a 7-manifold with G2-
holonomy. The volume form of this manifold is con-
structed in terms of a stable (generic, in the sense of [5])
form. Indeed, there are essentially two unique such forms
and by using these two stable forms, we split the volume
of the 7-manifold into contributions from the distinct
orbits. Using the structure equations appropriated for
our geometrical set-up, we find that these two contribu-
tions can be rephrased as Chern-Simons actions, one for
a self-dual curvature and one for an anti-self-dual cur-
vature. This observation allows us to recover the two
classically equivalent known actions of 3d gravity, i.e.,
Witten’s standard and exotic actions, thus completing
the picture shown in [5, 13].

In a context that is more general than the theory that
we study here, it has been conjectured that topological
and black hole partition functions are related. Our re-
sults give a concrete realisation of this conjecture: by
writing the action of TMT in terms of the contributions
from the two unique stable forms, we can tune the theory
so that it reproduces the partition function of the stan-
dard action of 3d gravity, thus agreeing with the result
for the BTZ black hole; or we can choose to reproduce
the exotic action, obtaining the correct entropy for the
exotic BTZ black hole. It is worth noticing that a com-
bined standard/exotic entropy is in agreement with black
hole thermodynamics [3], and our results provide a sce-
nario where such combined models can be embedded.

The topological partition function is also conjectured
to be related to a wave function. The wave function for
a static BTZ black hole in the region outside the hori-
zon has been computed within a canonical quantization
scheme [10]. When evaluated at the horizon, their result
takes the form (more details in the Appendix):

|ψ|2 ∼ eµ̃r+ ,

where µ̃ is a quantized number related to the energy lev-
els of the system. This result indeed reassembles the
Euclidean partition function for the BTZ black hole. It
would be interesting to explore the quantization of a non-
static BTZ black hole, so that the relation between the
wave function and the black hole partition function can
be explored for the extremal case, i.e., the case that would
correspond to the conjectures in [8]. This is left for future
work.
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Appendix: Stationary states of the BTZ Black Hole

In this appendix we shortly present the derivation done
in [10], of the non rotating BTZ black hole wave function

Ψ = e(i/4G)
∫

∞

0
drΓ(r)W (τ(r),R(r),F (r)), (A.1)

where τ = τ(0), R = R(0) and F = F (0). The WDW
equation becomes the KG equation

[

∂2

∂τ2
+ F

∂2

∂R2 + A
∂2

∂R
+B

]

eiµW (τ,R,F ) = 0. (A.2)

As these description is based on a collapsing shell we
impose that we have a free wave function, this is a natural
assumption. For this to hapen we should be able to write
the WDW equation as

γab∇a∇bΨ = 0, (A.3)
where γab is the DeWitt supermetric on the config-
uration space and ∇a is the covariant derivative.The
WDW equation is the free KG equation if B = 0 and
A(R,F ) = |F |∂R ln

√

|F | and the inner product is given
by

< Ψ1,Ψ2 >=

∫

dR
√

|F |
Ψ∗

1Ψ2 (A.4)

when F 6= 0, the supermetric can be written in a flat form

by the transformation R∗ = ±
∫

|R|−1/2dR. In terms of
R∗ the KG equation is

[

∂2

∂τ2
± ∂2

∂R2
∗

]

eiµW (τ,R,F ) = 0, (A.5)

the positive sign is for the exterior and the minus sign
for the interior. The solutions are

ψin(τ, R∗) = A±e
−iµ(τ±R

∗
) F < 0,

ψout(τ, R∗) = B±e
−iµ(τ±iR

∗
) F > 0.

(A.6)

In the exterior

R∗ =
1√
Λ

[

ln

(

R
√
Λ +

√

ΛR2 − 8GM√
8GM

)

+
π

2

]

, (A.7)

at the horizon R∗ = ln r+. For a continuous wave func-
tion the matching conditions give the following spectrum

µj =
√
Λ~

(

j +
1

2

)

, j = 0, 1, 2, . . . (A.8)

a similar spectrum was derived in [17].


